JPH05100000A - Calculating apparatus of iron loss of overlapping of direct current - Google Patents

Calculating apparatus of iron loss of overlapping of direct current

Info

Publication number
JPH05100000A
JPH05100000A JP3258845A JP25884591A JPH05100000A JP H05100000 A JPH05100000 A JP H05100000A JP 3258845 A JP3258845 A JP 3258845A JP 25884591 A JP25884591 A JP 25884591A JP H05100000 A JPH05100000 A JP H05100000A
Authority
JP
Japan
Prior art keywords
magnetic
flux density
iron loss
magnetic flux
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3258845A
Other languages
Japanese (ja)
Other versions
JP2941516B2 (en
Inventor
Yoshio Hirano
野 芳 生 平
Keiji Iwata
田 圭 司 岩
Koji Ueyama
山 高 次 植
Kenji Umetsu
津 健 司 梅
Hiroo Kaneko
子 博 夫 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3258845A priority Critical patent/JP2941516B2/en
Publication of JPH05100000A publication Critical patent/JPH05100000A/en
Application granted granted Critical
Publication of JP2941516B2 publication Critical patent/JP2941516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a calculating apparatus which calculates the iron loss of a magnetic member in a small amount of calculations without manufacturing a trial part by calculating the iron loss of a magnetic member based on the magnetic flux density to an alternating current component of the magnetic member calculated from a constant of a magnetic material and the value of the increased iron loss of the magnetic material. CONSTITUTION:A constant determining means determines a constant of a material based on the magnetic flux density to a direct current component of a magnetic member 30 calculated from the initial magnetization characteristics of the magnetic material 40, e.g. in the shape of a ring which is made of the same material as the magnetic member 30 and has a very small demagnetizing coefficient and the increased magnetic permeability of the material 40. A calculating means calculates the iron loss of the magnetic member 30 based on the magnetic flux density corresponding to an alternating current component of the magnetic member 30 calculated from the constant of the material and the increased iron loss of the magnetic material 40. Therefore, the iron loss of the magnetic member 30 in any optional shape can be accurately calculated from one magnetic material 40 without manufacturing a trial member 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばスイッチング電
源の平滑チョークのように直流電流に交流電流が重畳し
た電流で励磁された磁性材料の鉄損を計算する装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for calculating the iron loss of a magnetic material excited by a current in which an alternating current is superimposed on a direct current, such as a smoothing choke of a switching power supply.

【0002】[0002]

【従来技術】磁界の計算は、マックスウェル方程式をも
とに差分法や有限要素法による近似を行い、計算の対象
となる磁性部品を微小領域に分割して計算を行ってい
た。
2. Description of the Related Art A magnetic field is calculated by performing approximation by a difference method or a finite element method on the basis of Maxwell's equation and dividing a magnetic component to be calculated into minute regions.

【0003】ここで差分法および有限要素法について説
明する。なお、「電気工学の有限要素法」(中田高義,
高橋則雄 著,森北出版)を参考文献とした。
Here, the difference method and the finite element method will be described. "Finite element method of electrical engineering" (Takayoshi Nakata,
The reference was Norio Takahashi, Morikita Publishing.

【0004】磁界計算を行うためには以下に示す基礎方
程式のうち(1)式を解く必要がある。一般的には変数
の扱いを容易にするため(2)式,及び(3)式を加え
て(4)式を解くことが多い。
In order to perform the magnetic field calculation, it is necessary to solve the equation (1) among the basic equations shown below. Generally, in order to easily handle variables, equations (2) and (3) are often added to solve equation (4).

【0005】rotH=J・・・(1) H:磁界強度(A/m),J:電流密度(A/m2) なお、H,Jはベクトルを表す。RotH = J (1) H: magnetic field strength (A / m), J: current density (A / m 2 ) H and J represent vectors.

【0006】B=μH・・・(2) B:磁束密度(Wb/m2),μ:透磁率 なお、B,Hはベクトルを表す。B = μH (2) B: magnetic flux density (Wb / m 2 ), μ: magnetic permeability B and H represent vectors.

【0007】B=rotA・・・(3) A:ベクトルポテンシャル(Wb/m) なお、B,Aはベクトルを表す。B = rotA (3) A: Vector potential (Wb / m) B and A represent vectors.

【0008】 (rotν・rotA)=J・・・(4) ν(=1/μ):磁気抵抗率 なお、A,Jはベクトルを表す。(Rotν · rotA) = J (4) ν (= 1 / μ): Magneto-resistivity Note that A and J represent vectors.

【0009】しかし、(4)式は偏微分方程式であるた
め、これを直接解くことは極めて困難である。そこで何
らかの近似を用いて解くことになりその方法として差分
法あるいは有限要素法がある。以下これらの近似法の具
体的な説明を行う。なお、簡単にするため(4)式を2
次元場(x,y座標のみ)で取り扱う。
However, since the equation (4) is a partial differential equation, it is extremely difficult to solve it directly. Therefore, some kind of approximation is used for the solution, and the method is the difference method or the finite element method. A specific description of these approximation methods will be given below. For simplification, equation (4) is set to 2
Handle in the dimensional field (x, y coordinates only).

【0010】(4)式の2次元場での方程式は、The equation in the two-dimensional field of the equation (4) is

【0011】[0011]

【数1】 [Equation 1]

【0012】となり、2次元場では磁束密度はBX,BY
しか存在しないように仮定しているためベクトルポテン
シャルはAZ成分しかもたない。また電流はZ方向に無
限長に流れている状態である。以後の説明ではAZを単
にAと書く。
In the two-dimensional field, the magnetic flux density is B X , B Y
Since it is assumed that there exists only the vector potential, it has only A Z component. Moreover, the current is in a state of flowing infinitely in the Z direction. In the following description, A Z is simply written as A.

【0013】「差分法」差分法は、図11に示すように
計算の対象とする領域を格子状に分割し、各格子点でベ
クトルポテンシャルAZをテイラー展開して(5)式に
示す方程式を近接する格子点のポテンシャルの関係式に
して数値計算する方法である。具体的には図11に示す
点(i,j)のまわりで2次のテイラー展開を行うと、
"Difference method" In the difference method, as shown in FIG. 11, a region to be calculated is divided into a grid shape, and the vector potential A Z is Taylor-expanded at each grid point to obtain an equation (5). Is a method of numerical calculation by using as a relational expression of the potentials of adjacent lattice points. Specifically, when a second-order Taylor expansion is performed around the point (i, j) shown in FIG.

【0014】[0014]

【数2】 [Equation 2]

【0015】となる。ここでhx,hyは格子間の距離で
ある。(5)式,(6)式を用いるとi,jに関して、
[0015] Here, h x and h y are distances between the lattices. Using equations (5) and (6), for i and j,

【0016】[0016]

【数3】 [Equation 3]

【0017】という方程式が得られる。J(i,j),
x,hy,νy(=1/μy),νx(=1/μx)は計算
条件として与えられるため残りのAに関する値が未知数
となる。同様な手段で各格子点について(7)式の方程
式をたてれば格子点の総数の元数を持つ連立方程式がで
きる。しかし、実際には電流源の遠方にある端の境界部
分の格子点はA=0とおき既知の値として扱うため元数
が多少減った連立方程式を解くことになる。
The following equation is obtained. J (i, j),
Since h x , h y , ν y (= 1 / μ y ) and ν x (= 1 / μ x ) are given as calculation conditions, the remaining values of A are unknowns. If the equation (7) is established for each lattice point by the same means, a simultaneous equation having an element of the total number of lattice points can be formed. However, in practice, the grid points at the boundary portion at the far end of the current source are set as A = 0 and are treated as known values, so simultaneous equations with a slightly reduced element number are solved.

【0018】以上の手続きの内、格子状に分割する手続
き,連立方程式を計算する手続き,求まったAの値から
(2)式および(3)式でH,Bを求める手続きはコン
ピュータで行い既知のAの値のインプット,材料定数で
あるνx,νy,電流条件などはオペレータによる。
Among the above procedures, the procedure of dividing into a grid, the procedure of calculating simultaneous equations, and the procedure of obtaining H and B from equations (2) and (3) from the obtained value of A are performed by computer. The operator inputs the value of A, the material constants ν x and ν y , and the current condition.

【0019】「有限要素法」有限要素法は、計算の対象
とする領域を要素と呼ばれる微小領域に分割し要素内の
ベクトルポテンシャルAの分布を単純な関数で近似して
解析を行う方法である。要素の形状についての制限はな
いが、例えば図12に示すような三角形がよく用いられ
る。三角形の各頂点を節点と呼び連続した番号がつけら
れ、要素にも連続した番号がつけられる。
"Finite Element Method" The finite element method is a method of dividing a region to be calculated into minute regions called elements and approximating the distribution of the vector potential A in the element by a simple function to perform analysis. .. Although there is no limitation on the shape of the element, for example, a triangle as shown in FIG. 12 is often used. Each vertex of the triangle is called a node and is numbered consecutively, and the elements are also numbered consecutively.

【0020】今、(5)式をNow, the equation (5) is

【0021】[0021]

【数4】 [Equation 4]

【0022】とおくと、Aが方程式を満す真の解であれ
ば、 f(A)=0 となる。なお、Aはベクトルを表す。Aが近似解A′で
あったとすると f(A′)=R となる。なお、A′はベクトルを表す。このRの計算対
象領域全体にわたる積分(和)である ∬Rdxdy が最小になるようにA′を求めれば、A=A′とするこ
とができる。そこで各要素に関する重み関数を導入して
重みつき積分を行うようにすると実際の演算操作が可能
となり定量的にA′を求めることができる。
In other words, if A is a true solution that satisfies the equation, then f (A) = 0. In addition, A represents a vector. If A is the approximate solution A ', then f (A') = R. A'denotes a vector. If A ′ is obtained so that ∬Rdxdy, which is the integral (sum) of R over the entire calculation target region, is obtained, A = A ′ can be obtained. Therefore, if a weighting function for each element is introduced and weighted integration is performed, an actual calculation operation becomes possible and A ′ can be quantitatively obtained.

【0023】∬R・Wdxdy=0・・・(8) この重み関数Wに補間関数と呼ばれるものを導入したの
が一般に有限要素法と呼ばれている。要素内の任意の点
のポテンシャルはそれらの節点のポテンシャルの関数と
して
∬R · Wdxdy = 0 (8) Introducing what is called an interpolation function into this weighting function W is generally called a finite element method. The potential of any point in the element is a function of the potential of those nodes

【0024】[0024]

【数5】 [Equation 5]

【0025】と表現でき、この場合のNiが補間関数で
ある。図12に示した三角形要素であると、例えば節点
iに関しては、 Ni=(1/2S)×(bi+cix+diy) S:三角形の面積 bi=xjk−xkji=yj−yki=xk−xj ・・・(10) で定義される。そして(8)式は具体的に、
Can be expressed as follows, and N i in this case is an interpolation function. With the triangular element shown in FIG. 12, for example, with respect to the node i, N i = (1 / 2S) × (b i + c i x + d i y) S: Area of the triangle b i = x j y k −x k is defined by y j c i = y j -y k d i = x k -x j ··· (10). Equation (8) is

【0026】[0026]

【数6】 [Equation 6]

【0027】となり、(11)式を部分積分すると、And partial integration of equation (11) gives

【0028】[0028]

【数7】 [Equation 7]

【0029】となる。この(12)式において、It becomes In this equation (12),

【0030】[0030]

【数8】 [Equation 8]

【0031】のように補間関数の微分に置き換えられ
る。補間関数の微分は(10)式により容易に求めら
れ、 ∂Ni/∂x=ci/2S ∂Ni/∂y=di/2S となる。このようにして(12)式より1つの要素に関
し、その要素を構成する節点の数だけ連立方程式をたて
ることができる。各々の要素に関して(12)式に基づ
く連立方程式を立て近接する要素間で共用される節点に
関して重ね合わされて最終的には節点の総数の元数を持
つ連立方程式ができる。この連立方程式を解くことによ
り近似解A′を求めることができる。しかし、実際には
電流源の遠方にある端の境界部分の節点のポテンシャル
はA=0とおき既知の値として扱うため元数が多少減っ
た連立方程式を解くことになる。
It can be replaced with the derivative of the interpolation function as follows. The differential of the interpolation function is easily obtained by the equation (10), and becomes ∂N i / ∂x = c i / 2S ∂N i / ∂y = d i / 2S. In this way, from equation (12), for one element, simultaneous equations can be set up for the number of nodes forming the element. A simultaneous equation based on the equation (12) is established for each element, and the simultaneous equations having the radix of the total number of nodes are superposed on the nodes shared by the adjacent elements. An approximate solution A'can be obtained by solving this simultaneous equation. However, in reality, the potential of the node at the boundary portion at the far end of the current source is set as A = 0 and is treated as a known value, and therefore the simultaneous equations with a slightly reduced element are solved.

【0032】以上の手続きの内、要素に分割する手続
き,連立方程式を計算する手続き,求まったAの値から
(2)式および(3)式でH,Bを求める手続きはコン
ピュータで行い既知のAの値のインプット,材料定数で
あるνx,νy,電流条件などはオペレータによる。
Of the above procedures, the procedure of dividing into elements, the procedure of calculating simultaneous equations, and the procedure of obtaining H and B from equations (2) and (3) from the obtained value of A are performed by a computer and are known. The input of the value of A, the material constants ν x , ν y , the current condition, etc. are determined by the operator.

【0033】以上、差分法,有限要素法を2次元場にお
いて説明したが、3次元場においても同様な手続きによ
り解くことが可能である。
Although the difference method and the finite element method have been described in the two-dimensional field, they can be solved in the three-dimensional field by the same procedure.

【0034】この方法を用いて、図13に示すような直
流電流に交流電流が重畳(直流重畳)した電流で励磁さ
れた磁性部品の磁界計算を行うには電流の変化を微小な
時間間隔で分割し、時々刻々と変化する電流値に応じて
計算するのが一般的な方法である。これは、直流重畳電
流の交流成分により、磁性材料内部に発生する渦電流の
影響を考慮して計算する必要があるからである。その
際、磁性部品の磁気特性は直流重畳状態では一般にはヒ
ステリシスを有し非線形である。そのため微小時間毎に
計算された磁界強度または磁束密度に応じて磁気特性の
修正を行い、同じ電流値に対し反復計算を行わなければ
ならなかった(例えば、電気学会論文誌A,109巻6
号 頁247〜254 平成元年「有限要素法によるヒス
テリシス損失の解析」榎園正人,池下浩二著および特開
平2−232773号公報)。つまり、材料の非線形性
に関する反復計算と、電流が時間変化を行うことに関す
る反復計算が必要であり、直流重畳状態の計算による模
擬を行うために必要な総反復計算数はおよそ次に示す、 総反復計算数=(非線形に関する反復計算数)×(電流
の時間変化に関する反復計算数) のように見積もられる。
Using this method, in order to calculate the magnetic field of a magnetic component excited by a current in which an alternating current is superposed (direct current superposed) on a direct current as shown in FIG. 13, a change in current is changed at minute time intervals. It is a general method to divide and calculate according to the current value which changes every moment. This is because it is necessary to perform the calculation in consideration of the influence of the eddy current generated inside the magnetic material due to the AC component of the DC superimposed current. At that time, the magnetic characteristics of the magnetic component are generally non-linear and have a hysteresis in the DC superposed state. Therefore, it was necessary to correct the magnetic characteristics according to the magnetic field strength or the magnetic flux density calculated for each minute time, and to repeat the calculation for the same current value (for example, the Institute of Electrical Engineers of Japan, Vol. 109, Vol. 6).
Pp. 247-254, 1989, "Analysis of Hysteresis Loss by Finite Element Method," Masato Enokizono, Koji Ikeshita and Japanese Patent Laid-Open No. 2-232773). In other words, iterative calculations for the nonlinearity of the material and iterative calculations for the time-varying current are required, and the total number of iterative calculations required to perform the simulation by calculating the DC superposition state is as follows. The number of iterative calculations = (the number of iterative calculations regarding the non-linearity) × (the number of iterative calculations regarding the time change of the current).

【0035】[0035]

【発明が解決しようとする課題】上記の方法を用いてあ
る磁性材料の鉄損を計算する場合、例えば非線形に関す
る反復計算数を10回,電流の時間変化に関する反復計
算数を12回とすると、総反復計算数は120回(=1
0×12)となる。この120回という総反復計算数は
一般的な回数であり特に多いものではない。
When calculating the iron loss of a magnetic material using the above method, for example, if the number of iterations for nonlinearity is 10 and the number of iterations for current change over time is 12, The total number of iterative calculations is 120 (= 1
0x12). The total number of repetitive calculations of 120 times is a general number and is not particularly large.

【0036】また鉄損計算においては直流成分値を複数
想定した計算を必要とするのが普通であり、この場合
は、総計算量はさらに増し、直流電流値の想定数に上記
反復計算を乗じた値になる。このように磁界計算を用い
るには、多量の計算が必要となる問題があった。
Further, in the iron loss calculation, it is usual to require a calculation assuming a plurality of DC component values. In this case, the total calculation amount is further increased, and the assumed number of DC current values is multiplied by the above iterative calculation. It becomes a value. As described above, there is a problem that a large amount of calculation is required to use the magnetic field calculation.

【0037】従って、このような計算を小型の計算機で
短時間に行うことは極めて困難であるため大型で高速処
理計算しうる計算機を必要としていた。一方、磁界計算
を行わずに鉄損を得ようとすると類似の形状をした磁性
部品の測定値から推定するか、少なくとも一個の試作品
の製作を余儀なくされていた。また、その試作品が所望
の鉄損値を有しない場合には試作を重ねる必要があり、
そのための期間および費用は膨大なものであった。
Therefore, since it is extremely difficult to perform such a calculation in a short time with a small-sized computer, a large-sized computer capable of high-speed processing calculation has been required. On the other hand, when trying to obtain iron loss without performing magnetic field calculation, it was inferred from measured values of magnetic parts having similar shapes, or at least one prototype had to be manufactured. Also, if the prototype does not have the desired iron loss value, it is necessary to repeat trial production,
The period and cost for doing so were enormous.

【0038】本発明は、上記問題点を解決するため特に
試作品を製作することなく、かつ少ない計算量で磁性部
品の鉄損を算定する鉄損計算装置を提供することを目的
とする。
It is an object of the present invention to provide an iron loss calculation device for calculating the iron loss of a magnetic component with a small amount of calculation without producing a prototype in order to solve the above problems.

【0039】[0039]

【課題を解決するための手段】本発明は、直流電流に交
流電流が重畳した電流で励磁された磁性部材の鉄損を算
出する鉄損計算装置において、磁性部材(30)と同一
材質で反磁界係数が極小である形状をした磁性材料(4
0)の初磁化特性に基づいて磁性部材の直流電流成分に
対する磁束密度(BDC)を算出する第1磁束密度算出手
段(1);第1磁束密度算出手段(1)が算出した磁束
密度(BDC)と磁性材料(40)の増分透磁率(μ)に
基づいて材料定数(μZi)を決定する定数決定手段
(1);材料定数(μZi)に基づいて磁性部材(30)
の交流電流成分に対する磁束密度(BAC)を算出する第
2磁束密度算出手段(1);および、第2磁束密度算出
手段(1)が算出した磁束密度(BAC)と磁性材料(4
0)の増分鉄損値(W′)に基づいて磁性部材(30)
の鉄損(W)を算出する計算手段(1);を備える。な
お、カッコ内の記号は、図面に示し後述する実施例の対
応要素又は対応事項を示す。
According to the present invention, in an iron loss calculating device for calculating iron loss of a magnetic member excited by a current in which a direct current and an alternating current are superposed, the same material as that of the magnetic member (30) is used. Magnetic material (4
0) First magnetic flux density calculation means (1) for calculating the magnetic flux density (B DC ) with respect to the direct current component of the magnetic member based on the initial magnetization characteristic; magnetic flux density (1) calculated by the first magnetic flux density calculation means (1) B DC ) and a constant determining means (1) for determining a material constant (μ Zi ) based on the incremental magnetic permeability (μ) of the magnetic material (40); a magnetic member (30) based on the material constant (μ Zi ).
Second magnetic flux density calculation means (1) for calculating the magnetic flux density (B AC ) for the AC current component of the magnetic flux density (B AC ) and the magnetic material (4) calculated by the second magnetic flux density calculation means (1).
Magnetic member (30) based on the incremental iron loss value (W ') of 0)
Calculation means (1); for calculating the iron loss (W) of Symbols in parentheses indicate corresponding elements or corresponding matters in the embodiments shown in the drawings and described later.

【0040】[0040]

【作用】これによれば、定数決定手段(1)は磁性部材
(30)と同一材質で反磁界係数が極小である形状をし
た磁性材料(40)の初磁化特性から算出された磁性部
材の直流電流成分に対する磁束密度(BDC)と磁性材料
(40)の増分透磁率(μ)に基づいて材料定数
(μZi)を決定し、計算手段(1)は材料定数(μZi
から算出された磁性部材(30)の交流電流成分に対す
る磁束密度(BAC)と磁性材料(40)の増分鉄損値
(Wi)に基づいて磁性部材(30)のインダクタンス
(L)を算出する。
According to this, the constant deciding means (1) of the magnetic member is calculated from the initial magnetization characteristics of the magnetic material (40) which is made of the same material as the magnetic member (30) and has a minimum demagnetizing factor. The material constant (μ Zi ) is determined based on the magnetic flux density (B DC ) with respect to the direct current component and the incremental magnetic permeability (μ) of the magnetic material (40), and the calculation means (1) uses the material constant (μ Zi ).
The inductance (L) of the magnetic member (30) is calculated based on the magnetic flux density (B AC ) with respect to the alternating current component of the magnetic member (30) and the incremental iron loss value (W i ) of the magnetic material (40) calculated from To do.

【0041】従って、1個の磁性材料(40)により任
意の形状をした磁性部材(30)の鉄損(W)を特に磁
性部材(30)を試作することなく精度よく算出するの
で、試作費用および試作期間が短縮される。
Therefore, since the iron loss (W) of the magnetic member (30) having an arbitrary shape is accurately calculated from one magnetic material (40) without trial manufacture of the magnetic member (30), the trial production cost can be reduced. And the trial period is shortened.

【0042】また、1回の計算が小型計算機でも比較的
短時間に行えるため複数の材質特性,形状に関して計算
水準を設けることができ機器の設計上、必要とされる所
定の直流重畳特性に対し最適な材質,形状を決定しう
る。本発明の他の目的および特徴は図面を参照した以下
の実施例の説明により明らかになろう。
Further, since one calculation can be performed in a relatively short time even with a small computer, it is possible to set calculation levels for a plurality of material characteristics and shapes, and for a predetermined DC superposition characteristic required in designing the equipment. The optimum material and shape can be determined. Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0043】[0043]

【実施例】図1に、本発明の一実施例の計算機10の構
成概要を示す。計算機10は、全体の制御を行うCPU
1,制御プログラムが格納されているROM2,制御プ
ログラムが一時的に使用するRAM3,各装置間のデー
タのやりとりを行う内部システム・バス4,各種情報を
記憶するメモリ5,対話型グラフィック端末機20とシ
ステム・バス4を接続するI/F(インタフェース)
6,およびオペレータからの指示を入力し所定の情報を
表示する操作表示部7等から構成されている。図2に、
計算の対象となる磁性部品30を示す。この磁性部品3
0は、スイッチング電源に用いられているチョークコア
と呼ばれるものである。符号31および32はフェライ
トでできた磁性部材であり、符号33は導線で磁性部材
31に巻線を施したコイル部分である。また、符号34
は磁性部材31および32の間にギャップを設けるため
に挿入された非磁性のスペーサーである。このスペーサ
ー34の厚さを変えることにより、直流重畳を可変し線
形領域での使用が可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic configuration of a computer 10 according to an embodiment of the present invention. The computer 10 is a CPU that controls the entire system.
1, a ROM storing a control program 2, a RAM temporarily used by the control program 3, an internal system bus 4 for exchanging data between devices, a memory 5 for storing various information 5, an interactive graphic terminal 20 I / F (interface) that connects the
6, and an operation display section 7 for inputting instructions from an operator and displaying predetermined information. In Figure 2,
The magnetic component 30 to be calculated is shown. This magnetic component 3
0 is a choke core used in a switching power supply. Reference numerals 31 and 32 are magnetic members made of ferrite, and reference numeral 33 is a coil portion obtained by winding the magnetic member 31 with a conductive wire. Also, reference numeral 34
Is a non-magnetic spacer inserted to provide a gap between the magnetic members 31 and 32. By changing the thickness of the spacer 34, it is possible to change the DC superposition and use it in a linear region.

【0044】図3に、CPU1のフローチャートを示
し、磁性部品(チョークコア)30の直流重畳特性を算
出する処理動作を説明する。
FIG. 3 shows a flowchart of the CPU 1, and the processing operation for calculating the DC superposition characteristics of the magnetic component (choke core) 30 will be described.

【0045】電源が投入されると処理モード等を初期化
して(ステップ1:以下カッコ内ではステップという語
を省略する)、入力を読み込む(2)。読み込まれる入
力は、磁性部品(チョークコア)30と同一材質からな
るリング状の試料40の初磁化特性,増分透磁率,増分
鉄損および直流重畳電流の直流成分値,交流成分値等で
ある。
When the power is turned on, the processing mode and the like are initialized (step 1: the word "step" is omitted hereinafter in parentheses) and the input is read (2). The input to be read is the initial magnetization characteristic of the ring-shaped sample 40 made of the same material as the magnetic component (choke core) 30, the incremental magnetic permeability, the incremental iron loss, the DC component value of the DC superimposed current, the AC component value, and the like.

【0046】リング状の試料40の初磁化特性は、図4
に示すような直流磁気測定装置を用いて測定する。すな
わち電界強度H(A/m)は、 H=NI/l・・・(13) N:導線の巻数,I:DC電源による直流電流値,l:
試料40の磁路長より求まり、磁束密度B(wb/
2)は測定電圧を積分回路で積分した出力値より求ま
る。この初磁化特性(電界強度Hと磁束密度Bの関係)
の測定結果を図5に示す。
The initial magnetization characteristic of the ring-shaped sample 40 is shown in FIG.
The measurement is performed using a DC magnetic measuring device as shown in. That is, the electric field strength H (A / m) is H = NI / l (13) N: number of windings of conducting wire, I: direct current value by DC power source, l:
The magnetic flux density B (wb /
m 2 ) is obtained from the output value obtained by integrating the measured voltage with the integrating circuit. This initial magnetization characteristic (relationship between electric field strength H and magnetic flux density B)
The measurement result of is shown in FIG.

【0047】次にリング状の試料40の増分透磁率の測
定について説明する。まず、JIS(C−2514)に
記載されている直流重畳特性測定装置(図示しない)を
用いてリング状の試料40の直流重畳特性を測定する。
その測定結果を図6に示す。縦軸はインダクタンスL
(μH),横軸は直流重畳電流の直流成分の値I
DC(A)を示している。なお、本実施例で測定した際の
直流重畳電流の交流成分の実効値は1.0mAであり周
波数は1.0kHZであった。このインダクタンスLの
値から増分透磁率μZを計算により求める。すなわち、
増分透磁率μZは、 μZ=π×R×L/(μ0×N2×Ae)・・・(14) π:円周率,R:リング試料40の平均直経(m), μ0:真空の透磁率(H/m),N:導線の巻数 Ae:リング試料40の断面積(m2) となる。さらに、直流重畳の直流成分の値IDCから次式
により直流電流成分により生じるリング試料40内の磁
界強度H(A/m)は、 H=N×IDC/(π×R)・・・(15) となる。この磁界強度の値から先に測定した初磁化特性
の磁界強度と磁束密度の関係からIDCは、磁束密度Bへ
変換される。この結果を図7に示す。この磁束密度の値
は直流重畳電流の直流成分によりリング試料40内に発
生した磁束密度を意味している。
Next, the measurement of the incremental magnetic permeability of the ring-shaped sample 40 will be described. First, the DC superposition characteristic of the ring-shaped sample 40 is measured by using a DC superposition characteristic measuring device (not shown) described in JIS (C-2514).
The measurement result is shown in FIG. The vertical axis shows the inductance L
(ΜH), the horizontal axis is the value I of the DC component of the DC superimposed current
DC (A) is shown. The effective value of the AC component of the DC superimposed current when measured in this embodiment the frequency is 1.0mA was 1.0kH Z. The incremental permeability μ Z is calculated from the value of the inductance L. That is,
Incremental magnetic permeability μ Z is μ Z = π × R × L / (μ 0 × N 2 × Ae) (14) π: Circumferential ratio, R: Average direct radius (m) of ring sample 40, μ 0 : Permeability of vacuum (H / m), N: Number of turns of conducting wire Ae: Cross-sectional area (m 2 ) of ring sample 40. Further, the magnetic field strength H (A / m) in the ring sample 40 generated from the direct current component value I DC of the direct current superposition by the direct current component is H = N × I DC / (π × R) ... (15) From the value of the magnetic field strength, I DC is converted into the magnetic flux density B from the relationship between the magnetic field strength and the magnetic flux density of the initial magnetization characteristic measured previously. The result is shown in FIG. 7. The value of the magnetic flux density means the magnetic flux density generated in the ring sample 40 by the DC component of the DC superimposed current.

【0048】なお、計算により増分透磁率や磁束密度が
求められるのは試料がリング状で反磁界係数が無視でき
るためであり、磁性部品(チョークコア)30のような
形状をしたものから測定すると大きな測定誤差を伴う。
The reason why the incremental magnetic permeability and the magnetic flux density are obtained by calculation is that the sample is ring-shaped and the demagnetizing factor can be neglected. When measured from a magnetic component (choke core) 30 having a shape. With large measurement error.

【0049】次に、リング状の試料40の増分鉄損の測
定について説明する。図8に示すような装置(JIS規
定)により測定し、直流電流IDC′に対する鉄損W′お
よび磁束密度BAC′を得る。この結果を図9(a)に示
す。
Next, the measurement of the incremental iron loss of the ring-shaped sample 40 will be described. The measurement is performed by an apparatus (JIS standard) as shown in FIG. 8 to obtain the iron loss W'and the magnetic flux density B AC 'with respect to the direct current I DC '. The result is shown in FIG.

【0050】再度、図3のフローチャートに戻る。入力
を読み込むと、オペレータによりスタート指示があるま
で、その他のモード処理を行う(3,4)。その他のモ
ード処理には後述するメッシュ分割の際の範囲指定等が
含まれる。スタート指示があると対話型グラフィック端
末機20を用いて磁性部品(チョークコア)30を微小
領域に分割した幾何学情報を読み込み、メモリ5に記憶
する(5,6)。この分割は、本実施例では磁界計算に
有限要素法を用いるので図10に示すようなメッシュと
呼ばれる三角形要素に分割を行う。図10は、図2のC
−C断面図であり磁性部品(チョークコア)30を囲む
空間P1−P2−P3−P4−P1内のおける分割情報
が読み込まれる。磁性部品(チョークコア)30を囲む
空間は操作表示部7により指定される。なお、磁界計算
に差分法を用いるならば差分格子と呼ばれる等間隔分割
を行う。
Returning again to the flowchart of FIG. When the input is read, other mode processing is performed until the operator gives a start instruction (3, 4). Other mode processing includes range specification and the like at the time of mesh division described later. When there is a start instruction, the interactive graphic terminal 20 is used to read the geometric information obtained by dividing the magnetic component (choke core) 30 into minute regions and store the geometric information in the memory 5 (5, 6). In this embodiment, since the finite element method is used for the magnetic field calculation in this embodiment, it is divided into triangular elements called mesh as shown in FIG. FIG. 10 shows C of FIG.
It is a C cross-sectional view, and the division information in the space P1-P2-P3-P4-P1 surrounding the magnetic component (choke core) 30 is read. The space surrounding the magnetic component (choke core) 30 is designated by the operation display unit 7. If the difference method is used for the magnetic field calculation, an equal interval division called a difference grid is performed.

【0051】次に、この幾何学情報とステップ2で得た
初磁化特性および直流重畳電流の直流成分値に基づいて
磁界計算を行う(7)。この場合用いる初磁化特性は図
5に示したように磁界強度に対して非線形性を有するた
め、磁界計算は、幾何学情報による微小領域に対して有
限要素法による非線形磁界解析、すなわちニュートン・
ラプソン法(前述の「電気工学の有限要素法」200頁
(中田高義,高橋則雄著,森北出版)記載)のような非
線形反復計算を行う。これは、適当な初期透磁率値μか
ら出発して磁界強度,磁束密度値を求め図5に示した値
と一致した場合は計算を終了するが、一致しない場合に
は材料定数である透磁率値μを変えて所望の精度に落ち
着くまで反復計算を行う。本実施例では10回の反復計
算で収束した。これにより直流電流成分に対する各微小
領域の磁束密度BDCが計算される。
Next, a magnetic field is calculated based on this geometric information, the initial magnetization characteristic obtained in step 2 and the DC component value of the DC superimposed current (7). Since the initial magnetization characteristic used in this case has nonlinearity with respect to the magnetic field strength as shown in FIG. 5, the magnetic field calculation is performed by a finite element nonlinear magnetic field analysis, that is, Newton
Nonlinear iterative calculation such as the Rapson method (described in “Finite Element Method of Electrical Engineering” on page 200 (Takayoshi Nakata, Norio Takahashi, Morikita Publishing)) is performed. This starts the calculation from an appropriate initial magnetic permeability value μ, finds the magnetic field strength and magnetic flux density value, and ends the calculation when they match the values shown in FIG. 5, but when they do not match, the magnetic permeability, which is the material constant, The value μ is changed and repeated calculation is performed until the desired accuracy is reached. In this example, the calculation was converged after 10 iterations. As a result, the magnetic flux density B DC of each minute region with respect to the direct current component is calculated.

【0052】次に、得られた磁性部品(チョークコア)
30内部の各微小領域の磁束密度BDCから図7に示す増
分透磁率μZと磁束密度の関係を用いて、各微小領域の
増分透磁率μZiを決定する(8)。具体的にはステップ
2の入力読込で得られた増分透磁率μZと磁束密度の結
果を予め適当な関数で近似して記憶し、ステップ7で得
られた各微小領域の磁束密度BDCからつきつぎにこの関
数により増分透磁率μZiを決定する。本実施例では3次
関数により近似した。
Next, the obtained magnetic component (choke core)
From the magnetic flux density B DC of each minute region inside 30, the incremental permeability μ Zi of each minute region is determined using the relationship between the incremental magnetic permeability μ Z and the magnetic flux density shown in FIG. 7 (8). Specifically, the results of the incremental magnetic permeability μ Z and the magnetic flux density obtained by the input reading in step 2 are approximated and stored in advance by an appropriate function, and the magnetic flux density B DC of each minute region obtained in step 7 is calculated. The incremental permeability μ Zi is then determined by this function. In this embodiment, the approximation is performed by a cubic function.

【0053】次に、各微小領域の増分透磁率μZiとステ
ップ5で得られた幾何学情報およびステップ2で読み込
まれた直流重畳電流の交流電流成分値からステップ7で
行ったと同じ磁界計算法を用いて計算を1回だけ行う
(9)。計算が1回でよい理由は増分透磁率μZiの値
に、交流電流成分により発生する渦電流の影響が加味さ
れているからである。従って、ここでは磁性部品(チョ
ークコア)30に印加する直流重畳電流の交流成分の実
効値と周波数は、リング試料40の増分透磁率の測定し
た際の直流重畳電流の交流成分の実効値(1.0mA)
および周波数(1.0kHZ)と測定条件を一致させて
いる。この結果、交流電流成分に対応した磁束密度BAC
と磁界強度HACが得られる。
Next, from the incremental magnetic permeability μ Zi of each minute region, the geometrical information obtained in step 5, and the alternating current component value of the DC superimposed current read in step 2, the same magnetic field calculation method as that used in step 7 is calculated. The calculation is performed only once using (9). The reason why the calculation may be performed once is that the influence of the eddy current generated by the alternating current component is added to the value of the incremental magnetic permeability μ Zi . Therefore, here, the effective value and frequency of the AC component of the DC superimposed current applied to the magnetic component (choke core) 30 are the effective value (1) of the AC component of the DC superimposed current when the incremental magnetic permeability of the ring sample 40 is measured. 0.0 mA)
And it is made to coincide with the measurement conditions and frequency (1.0kH Z). As a result, the magnetic flux density B AC corresponding to the alternating current component
And the magnetic field strength H AC is obtained.

【0054】次に、交流電流成分に対応した磁束密度B
ACおよびステップ2で入力読込したリング状の試料40
の鉄損W′に対応する直流電流IDC′を変換した磁束密
度BDC′から磁性部品(チョークコア)30の鉄損Wを
算出する(10)。なお、直流電流IDC′から磁束密度
DC′への変換は(15)式より磁界強度を求め、この
値から先に測定した初磁化特性の磁界強度と磁束密度の
関係から磁束密度BDC′が求まる。磁束密度BDC′とリ
ング状の試料40の鉄損W′の関係を図9(b)に示
す。
Next, the magnetic flux density B corresponding to the alternating current component
Ring-shaped sample 40 input and read in AC and step 2
The iron loss W of the magnetic component (choke core) 30 is calculated from the magnetic flux density B DC ′ obtained by converting the DC current I DC ′ corresponding to the iron loss W ′ of (10). In order to convert the direct current I DC ′ to the magnetic flux density B DC ′, the magnetic field strength is obtained from the equation (15), and from this value, the magnetic flux density B DC is calculated from the relationship between the magnetic field strength of the initial magnetization characteristic and the magnetic flux density previously measured. ′ Is obtained. FIG. 9B shows the relationship between the magnetic flux density B DC ′ and the iron loss W ′ of the ring-shaped sample 40.

【0055】各微小領域の鉄損Wiは次式に示すように
磁束密度BDC′と磁束密度BACの関数から求まり、 Wi=F(BDC′,BAC)・・・(16) 磁性部品(チョークコア)30の鉄損Wは、 W=∫Widv・・・(17) dv:磁性部品(チョークコア)30領域内の各要素の
体積 より求まる。
The iron loss W i of each minute region is obtained from the function of the magnetic flux density B DC ′ and the magnetic flux density B AC as shown in the following equation, and W i = F (B DC ′, B AC ) ... (16 ) The iron loss W of the magnetic component (choke core) 30 is obtained by W = ∫W i dv (17) dv: volume of each element in the magnetic component (choke core) 30 region.

【0056】次に、反復計算の指示すなわちステップ2
で入力された直流重畳電流の直流成分の数だけ反復計算
したか否かをチェックし(11)、直流電流成分の数に
達してないとステップ5に戻り以下の処理(5〜11)
を実行し直流電流成分の数だけ反復計算すると結果を操
作表示部7に表示する(12)。
Next, iterative calculation instruction, that is, step 2
It is checked whether or not it has been iteratively calculated for the number of DC components of the DC superimposed current input in (11), and if the number of DC current components has not been reached, the process returns to step 5 and the following processing (5-11).
Is executed and the calculation is repeated for the number of DC current components, the result is displayed on the operation display unit 7 (12).

【0057】この実施例ではステップ7で行った磁界計
算の反復計算は10回で、ステップ9で行った磁界計算
は1回であり、1つの直流重畳電流の直流成分に関し
て、計11回の磁界計算で鉄損が求められた。
In this embodiment, the iterative calculation of the magnetic field calculation performed in step 7 is 10 times, the magnetic field calculation performed in step 9 is 1 time, and the magnetic field is calculated 11 times in total for the DC component of one DC superimposed current. Iron loss was calculated.

【0058】[0058]

【発明の効果】本発明の直流重畳の鉄損計算装置によれ
ば、1個の磁性材料(40)により任意の形状をした磁
性部材(30)の鉄損(W)を特に磁性部材(30)を
試作することなく精度よく算出するので、試作費用およ
び試作期間が短縮される。
According to the DC-superposed iron loss calculating apparatus of the present invention, the iron loss (W) of the magnetic member (30) having an arbitrary shape made of one magnetic material (40) can be used as the magnetic member (30). ) Is accurately calculated without trial production, so trial production cost and trial period are shortened.

【0059】また、1回の計算が小型計算機でも比較的
短時間に行えるため複数の材質特性,形状に関して計算
水準を設けることができ機器の設計上、必要とされる所
定の直流重畳特性に対し最適な材質,形状を決定しう
る。
Further, since one calculation can be performed in a relatively short time even with a small computer, it is possible to set calculation levels for a plurality of material characteristics and shapes, and to meet a predetermined DC superposition characteristic required in designing the equipment. The optimum material and shape can be determined.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の鉄損計算機10の構成を
示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an iron loss calculator 10 according to an embodiment of the present invention.

【図2】 計算の対象となる磁性部品(チョークコア)
30を示す拡大斜視図である。
[Fig. 2] Magnetic parts (choke core) to be calculated
It is an expansion perspective view which shows 30.

【図3】 図1に示すCPU1の処理動作を示すフロー
チャートである。
FIG. 3 is a flowchart showing a processing operation of the CPU 1 shown in FIG.

【図4】 リング状の試料40の初磁化特性を測定する
直流磁気測定装置の構成概要を示すブロック図である。
FIG. 4 is a block diagram showing a schematic configuration of a DC magnetism measuring device for measuring initial magnetization characteristics of a ring-shaped sample 40.

【図5】 図4に示す直流磁気測定装置で測定された初
磁化特性(電界強度Hと磁束密度Bの関係)を示すグラ
フである。
5 is a graph showing initial magnetization characteristics (relationship between electric field strength H and magnetic flux density B) measured by the DC magnetometer shown in FIG.

【図6】 リング状の試料40の直流重畳特性の測定結
果を示すグラフであり、縦軸はインダクタンスL(μ
H),横軸は直流重畳電流の直流成分の値IDC(A)を
示す。
FIG. 6 is a graph showing the measurement results of the DC superimposition characteristics of the ring-shaped sample 40, where the vertical axis represents the inductance L (μ
H), the horizontal axis indicates the value I DC (A) of the DC component of the DC superimposed current.

【図7】 リング状の試料40の磁束密度Bに対する増
分透磁率(μ)の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the magnetic flux density B of the ring-shaped sample 40 and the incremental magnetic permeability (μ).

【図8】 リング状の試料40の増分鉄損(W′)を測
定する装置の構成概要を示すブロック図である。
FIG. 8 is a block diagram showing a schematic configuration of an apparatus for measuring the incremental iron loss (W ′) of the ring-shaped sample 40.

【図9】 (a)は直流電流IDC′に対する鉄損W′の
関係を示すグラフであり、(b)は磁束密度BDC′に対
する鉄損W′の関係を示すグラフである。
FIG. 9A is a graph showing the relationship of iron loss W ′ to DC current I DC ′, and FIG. 9B is a graph showing the relationship of iron loss W ′ to magnetic flux density B DC ′.

【図10】 メッシュ分割された、図2に示す磁性部品
(チョークコア)30のC−C断面図である。
10 is a cross-sectional view taken along line CC of the magnetic component (choke core) 30 shown in FIG. 2, which is mesh-divided.

【図11】 差分法による分割の一例を示す平面図であ
る。
FIG. 11 is a plan view showing an example of division by the difference method.

【図12】 有限要素法による分割の一例を示す平面図
である。
FIG. 12 is a plan view showing an example of division by the finite element method.

【図13】 直流電流に交流電流が重畳した状態を示す
タイミングチャートである。
FIG. 13 is a timing chart showing a state in which an alternating current is superimposed on a direct current.

【符号の説明】[Explanation of symbols]

1:CPU(第1磁束密度算出手段,第2磁束密度算出
手段,定数決定手段,計算手段) 2:ROM 3:RAM 4:システム・バス 5:メモリ 6:I/F 7:操作表示部 10:計算機 20:対話型グラフ
ィック端末機 30:磁性部品(磁性部材) 40:リング試料(磁性材料)
1: CPU (first magnetic flux density calculation means, second magnetic flux density calculation means, constant determination means, calculation means) 2: ROM 3: RAM 4: system bus 5: memory 6: I / F 7: operation display unit 10 : Calculator 20: Interactive graphic terminal 30: Magnetic part (magnetic member) 40: Ring sample (magnetic material)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年11月21日[Submission date] November 21, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0040[Item name to be corrected] 0040

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0040】[0040]

【作用】これによれば、定数決定手段(1)は磁性部材
(30)と同一材質で反磁界係数が極小である形状をし
た磁性材料(40)の初磁化特性から算出された磁性部
材の直流電流成分に対する磁束密度(BDC)と磁性材料
(40)の増分透磁率(μ)に基づいて材料定数
(μZi)を決定し、計算手段(1)は材料定数(μZi
から算出された磁性部材(30)の交流電流成分に対す
る磁束密度(BAC)と磁性材料(40)の増分鉄損値
(Wi)に基づいて磁性部材(30)の鉄損(W)を算
出する。
According to this, the constant deciding means (1) of the magnetic member is calculated from the initial magnetization characteristics of the magnetic material (40) which is made of the same material as the magnetic member (30) and has a minimum demagnetizing factor. The material constant (μ Zi ) is determined based on the magnetic flux density (B DC ) with respect to the direct current component and the incremental magnetic permeability (μ) of the magnetic material (40), and the calculation means (1) uses the material constant (μ Zi ).
Core loss of the magnetic flux density to the alternating current component of the calculated magnetic member (30) (B AC) and incremental iron loss value of the magnetic material (40) (W i) the magnetic member (30) based on the a (W) calculate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅 津 健 司 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 金 子 博 夫 相模原市淵野辺5−10−1 新日本製鐵株 式会社エレクトロニクス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Umezu 20-1 Shintomi, Futtsu City Technical Development Division, Nippon Steel Corporation (72) Inventor Hiroo Kaneko 5-10-1 Fuchinobe, Sagamihara Nippon Steel Co., Ltd. Electronics Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】直流電流に交流電流が重畳した電流で励磁
された磁性部材の鉄損を算出する鉄損計算装置におい
て、 磁性部材と同一材質で反磁界係数が極小である形状をし
た磁性材料の初磁化特性に基づいて磁性部材の直流電流
成分に対する磁束密度を算出する第1磁束密度算出手
段;第1磁束密度算出手段が算出した磁束密度と前記磁
性材料の増分透磁率に基づいて材料定数を決定する定数
決定手段;材料定数に基づいて磁性部材の交流電流成分
に対する磁束密度を算出する第2磁束密度算出手段;お
よび、 第2磁束密度算出手段が算出した磁束密度と前記磁性材
料の増分鉄損値に基づいて磁性部材の鉄損を算出する計
算手段;を備えることを特徴とする、直流重畳の鉄損計
算装置。
1. An iron loss calculating device for calculating iron loss of a magnetic member excited by a current in which an alternating current is superimposed on a direct current, wherein a magnetic material made of the same material as the magnetic member and having a minimum diamagnetic field coefficient. Magnetic flux density calculating means for calculating the magnetic flux density for the direct current component of the magnetic member based on the initial magnetization characteristic of the magnetic member; a material constant based on the magnetic flux density calculated by the first magnetic flux density calculating means and the incremental magnetic permeability of the magnetic material. A second magnetic flux density calculating means for calculating a magnetic flux density for an alternating current component of the magnetic member based on the material constant; and a magnetic flux density calculated by the second magnetic flux density calculating means and the increment of the magnetic material. A direct current superimposition iron loss calculation device comprising: a calculation unit that calculates the iron loss of the magnetic member based on the iron loss value.
JP3258845A 1991-10-07 1991-10-07 DC superposition iron loss calculator Expired - Fee Related JP2941516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3258845A JP2941516B2 (en) 1991-10-07 1991-10-07 DC superposition iron loss calculator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3258845A JP2941516B2 (en) 1991-10-07 1991-10-07 DC superposition iron loss calculator

Publications (2)

Publication Number Publication Date
JPH05100000A true JPH05100000A (en) 1993-04-23
JP2941516B2 JP2941516B2 (en) 1999-08-25

Family

ID=17325831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3258845A Expired - Fee Related JP2941516B2 (en) 1991-10-07 1991-10-07 DC superposition iron loss calculator

Country Status (1)

Country Link
JP (1) JP2941516B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110081943A (en) * 2008-09-30 2011-07-15 히타치 긴조쿠 가부시키가이샤 Method for analyzing dc superposition characteristics of inductance element and electromagnetic field simulator
JP2016114387A (en) * 2014-12-11 2016-06-23 新日鐵住金株式会社 Magnetic characteristic measuring method, magnetic characteristic measuring system, and program
JP2017058327A (en) * 2015-09-18 2017-03-23 新日鐵住金株式会社 Electromagnetic field analysis device, electromagnetic field analysis method and program
WO2022190550A1 (en) * 2021-03-08 2022-09-15 オムロン株式会社 Magnetic saturation detecting circuit, noise filter, motor driver, and magnetic saturation detecting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110081943A (en) * 2008-09-30 2011-07-15 히타치 긴조쿠 가부시키가이샤 Method for analyzing dc superposition characteristics of inductance element and electromagnetic field simulator
JP2016114387A (en) * 2014-12-11 2016-06-23 新日鐵住金株式会社 Magnetic characteristic measuring method, magnetic characteristic measuring system, and program
JP2017058327A (en) * 2015-09-18 2017-03-23 新日鐵住金株式会社 Electromagnetic field analysis device, electromagnetic field analysis method and program
WO2022190550A1 (en) * 2021-03-08 2022-09-15 オムロン株式会社 Magnetic saturation detecting circuit, noise filter, motor driver, and magnetic saturation detecting method

Also Published As

Publication number Publication date
JP2941516B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
Parreira et al. Obtaining the magnetic characteristics of an 8/6 switched reluctance machine: from FEM analysis to the experimental tests
Chen et al. Demagnetizing factors for rectangular prisms
Botha Numerical integration scheme for the near-singular green function gradient on general triangles
Kuczmann Potential formulations in magnetics applying the finite element method
JP2941516B2 (en) DC superposition iron loss calculator
Brachtendorf et al. Macromodeling of hysteresis phenomena with SPICE
Dular et al. An evolutive software environment for teaching the finite element method in electromagnetism
JP2984108B2 (en) DC superposition inductance calculator
US5621649A (en) Method for analyzing electromagnetic field
JP5909488B2 (en) Magnetic field analysis program and magnetic field analysis method
JP2000268061A (en) Method and device for analyzing electromagnetic field
JPH0573527A (en) Electromagnetic field analysis device
Trowbridge Low frequency electromagnetic field computation in three dimensions
Zhu et al. A dynamic equivalent circuit model for solid magnetic cores for high switching frequency operations
Pantelyat Numerical analysis of impulse electromagnetic fields in soft ferromagnetic materials
JP2005207900A (en) Magnetic field analysis method, magnetic field analysis program, and recording medium for recording magnetic field analysis program
MacBain Magnetic field simulation from a voltage source
Fukushima Numerical computation of electromagnetic field for general static and axisymmetric current distribution
JPH07319945A (en) Method for analyzing magnetic field
Wang et al. 3-D FEM analysis in electromagnetic system considering vector hysteresis and anisotropy
Youness et al. Adjoint based topology optimization in nonlinear magnetostatics application to hall effect thrusters
Colonias et al. Magnet design applications of the magnetostatic program called TRIM
JP2574193B2 (en) Electromagnetic field analysis method
Karmaker et al. An integral equation formulation for electromagnetic field analysis in electrical apparatus
Marusov Accurate calculation of field expansion coefficients in FEM magnetostatic simulations

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees