JPH0499776A - Extraction of chlorophyll - Google Patents

Extraction of chlorophyll

Info

Publication number
JPH0499776A
JPH0499776A JP2213839A JP21383990A JPH0499776A JP H0499776 A JPH0499776 A JP H0499776A JP 2213839 A JP2213839 A JP 2213839A JP 21383990 A JP21383990 A JP 21383990A JP H0499776 A JPH0499776 A JP H0499776A
Authority
JP
Japan
Prior art keywords
chlorophyll
carbon dioxide
supercritical
extraction
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2213839A
Other languages
Japanese (ja)
Inventor
Seiji Ikeda
清二 池田
Hideo Saikai
西海 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO KUMIAI DAIGO FOODS FORUM
Original Assignee
KYODO KUMIAI DAIGO FOODS FORUM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO KUMIAI DAIGO FOODS FORUM filed Critical KYODO KUMIAI DAIGO FOODS FORUM
Priority to JP2213839A priority Critical patent/JPH0499776A/en
Publication of JPH0499776A publication Critical patent/JPH0499776A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PURPOSE:To effectively extract chlorophyll as an important organism molecule performing photosynthesis of natural substance by using carbon dioxide in a supercritical state. CONSTITUTION:A natural substance (e.g. dried powder of water cress) containing chlorophyll is brought into contact with carbon dioxide in a supercritical state in a solvent such as acetone to extract chlorophyll. Otherwise, chlorophyll is eluted from a natural substance containing chlorophyll into an organic solvent (e.g. ethanol) and resultant organic solvent containing eluted chlorophyll is brought into contact with supercritical carbon dioxide, or else, chlorophyll is eluted from a natural substance using oils and fats (e.g. shortening oil) and brought into contact with supercritical carbon dioxide to extract chlorophyll. Chlorophyll is a bluish green pigment and can be converted to a hem pigment in an animal body to be used as a tinction, a hematopoietic, a wound healing agent, bacteriostat or deodorant, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超臨界二酸化炭素を用いて天然物からクロロ
フィルを抽出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for extracting chlorophyll from natural products using supercritical carbon dioxide.

〔従来の技術〕[Conventional technology]

従来より、光合成を行う重要な生体分子であるクロロフ
ィルは、青緑色素であり、また、動物体内でヘム色素に
転換し得ることなどから1着色料以外に、造血剤、創傷
治療剤、静菌剤、脱臭剤等に用いられている。
Chlorophyll, which is an important biomolecule that performs photosynthesis, is a blue-green pigment and can be converted into heme pigment in the animal body, so it has been used as a coloring agent, as a hematopoietic agent, as a wound treatment agent, and as a bacteriostatic agent. It is used in agents, deodorizers, etc.

このクロロフィルのうち、天然に最も広く分布するのは
クロロフィルaとbであり、これらを単離するには、従
来、イラクサやホウレンソウなどの植物の葉を有機溶媒
により抽出する方法が採用されている。即ち、まずこれ
らの植物からNa、Co3あるいは希薄なNH,を含む
アセトンの80%溶液でクロロフィルa及びbを抽出す
る。この抽出液に石油エーテルを加え、アセトンを水で
洗い出す。次に力ロチノールを除くためメタノールで洗
う。最後に石油エーテルを水で洗い、アセトンとメタノ
ールを除去して、クロロフィルを沈殿させる。次いでタ
ルクの層でこし、タルクを石油エーテルで洗ってカロチ
ンを取り去る。更に、二一テルによってクロロフィルを
抽出する。エーテルは無水Na、So、で乾燥させクロ
ロフィルを石油エーテルで沈殿させる。次いで、少量の
ピリジンに溶かし、石油エーテルで薄めたクロロフィル
を粉末のスクロースあるいはポリエチレンカラムでクロ
マトグラフィーによって分離する。このカラムを0.5
%のインプロパツールを含むペンタンで展開する。結晶
状のクロロフィルaは、エーテル溶液に水を加えること
によって採取し、真空中で溶媒を除くものである。
Among these chlorophylls, chlorophylls a and b are the most widely distributed in nature, and the conventional method for isolating them is to extract the leaves of plants such as nettle and spinach using organic solvents. . That is, first, chlorophylls a and b are extracted from these plants with an 80% acetone solution containing Na, Co3, or dilute NH. Add petroleum ether to this extract and wash out the acetone with water. Next, wash with methanol to remove rotinol. Finally, the petroleum ether is washed with water to remove acetone and methanol and precipitate the chlorophyll. It is then strained through a layer of talc and the talc is washed with petroleum ether to remove the carotene. Furthermore, chlorophyll is extracted by Niteru. The ether is dried with anhydrous Na, So, and the chlorophyll is precipitated with petroleum ether. The chlorophyll, dissolved in a small amount of pyridine and diluted with petroleum ether, is then separated by chromatography on a powdered sucrose or polyethylene column. This column is 0.5
Expand with pentane containing % inproper tools. Crystalline chlorophyll a is collected by adding water to an ether solution and removing the solvent in vacuo.

従って、従来のクロロフィルの単離はこのように工程が
複雑で手間を要するものである。また、有機溶媒を用い
て抽出したクロロフィルはガンの危険性が指摘されてお
り、この点にも問題がある。
Therefore, conventional isolation of chlorophyll requires complicated and time-consuming steps. Furthermore, it has been pointed out that chlorophyll extracted using organic solvents poses a risk of cancer, which also poses a problem.

これに対して、近年超臨界流体を用いた抽圧技術が知ら
れている。
On the other hand, extraction technology using supercritical fluid has recently become known.

この超臨界流体による抽出は、物質固有の臨界点(臨界
温度及び臨界圧力)を超えた超臨界領域の通常流体と呼
ばれるものを用いるもので、この流体は界面の無い気体
とも液体ともいえない単一な相であり、高密度(液体の
それに近い)で、粘度は気体の数倍程度、拡散係数は液
体の100倍程度といわれ、物質移動が速く、従って分
離が容易となり、しかも超臨界状態では等密度線が密集
し、わずかな温度や圧力の変化で密度を大きくすること
ができる。
This extraction using supercritical fluid uses what is called a normal fluid in the supercritical region, which exceeds the critical point (critical temperature and critical pressure) unique to the substance, and this fluid is a simple fluid that cannot be called a gas or liquid without an interface. It is a single phase, has a high density (close to that of a liquid), a viscosity several times that of a gas, and a diffusion coefficient about 100 times that of a liquid. Mass transfer is fast, therefore separation is easy, and it is in a supercritical state. In this case, the isopycnal lines are densely packed, and the density can be increased by slight changes in temperature or pressure.

従って、超臨界抽出法は次に示すような優れた特徴を有
する。
Therefore, the supercritical extraction method has the following excellent features.

(1)高圧であるが、低温で処理できるため、熱的変性
が避けられ、高品質の製品が得られる。
(1) Although it is under high pressure, it can be processed at low temperature, so thermal denaturation can be avoided and high quality products can be obtained.

(2)温度に加えて圧力を操作因子とすることができ、
操作条件にフレキシビリティがある。
(2) In addition to temperature, pressure can be used as an operating factor,
Flexibility in operating conditions.

(3)高揮発性流体を溶剤として使うため、製品の残存
溶剤量をゼロとすることができる。
(3) Since a highly volatile fluid is used as the solvent, the amount of residual solvent in the product can be reduced to zero.

(4)人体の安全や環境上の問題を全く引き起こさない
二酸化炭素を有効に使える。
(4) Carbon dioxide can be used effectively without causing any human safety or environmental problems.

(5)超臨界流体の優れた移動性から、不揮発物質や固
体原料の効率よい抽出ができる。
(5) Due to the excellent mobility of supercritical fluids, non-volatile substances and solid raw materials can be efficiently extracted.

以上の特徴を有しているため、超臨界抽出法は、食品、
生薬、天然香料などから熱劣化しやすい成分を抽出・分
離するに適し、また、その採用により従来の複雑な抽出
工程を大幅に短縮し、コストダウンが図れることが期待
される。
Because of the above characteristics, supercritical extraction is suitable for food,
It is suitable for extracting and separating components that are easily degraded by heat from crude drugs, natural fragrances, etc., and its adoption is expected to significantly shorten the conventional complicated extraction process and reduce costs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、本発明者が超臨界流体抽出法に通常使用される
二酸化炭素で天然物からクロロフィルの抽出を試みたと
ころ、後述する実験で示したように、二酸化炭素のみで
はクロロフィルを全く抽出できないことが判明した。
However, when the present inventor attempted to extract chlorophyll from natural products using carbon dioxide, which is commonly used in supercritical fluid extraction, it was found that chlorophyll could not be extracted at all using carbon dioxide alone, as shown in the experiments described below. found.

本発明は上記事情に鑑みなされたもので、天然物から超
臨界流体抽出法を用いてクロロフィルを抽出し得る方法
を提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for extracting chlorophyll from natural products using a supercritical fluid extraction method.

〔課題を解決するための手段及び作用〕本発明者は上記
目的を達成するため鋭意検討を重ねた結果、有機溶媒の
存在下でクロロフィルを含有する天然物と超臨界状態の
二酸化炭素とを接触させることにより、又はクロロフィ
ルを含有する天然物からクロロフィルを有機溶媒に溶出
し、この溶出クロロフィルを含む有機溶媒と超臨界状態
の二酸化炭素とを接触させることにより、あるいはクロ
ロフィルを含有する天然物からクロロフィルを油脂に溶
出し、このクロロフィルを含む油脂と超臨界状態の二酸
化炭素とを接触させることにより超臨界抽出法を用いて
、天然物からクロロフィルを抽出することに成功したも
ので、しかも油脂を用いた場合にはクロロフィルaが選
択的に抽出できるなど、特異的な選択性を示すことを見
い出し、本発明をなすに至ったものである。
[Means and effects for solving the problem] As a result of extensive studies to achieve the above object, the present inventor brought a natural product containing chlorophyll into contact with carbon dioxide in a supercritical state in the presence of an organic solvent. or by eluting chlorophyll from a natural product containing chlorophyll into an organic solvent and contacting the organic solvent containing the eluted chlorophyll with carbon dioxide in a supercritical state, or by eluating chlorophyll from a natural product containing chlorophyll. This method succeeded in extracting chlorophyll from natural products using the supercritical extraction method by eluting chlorophyll into fats and oils and bringing the fats and oils containing chlorophyll into contact with carbon dioxide in a supercritical state. The present inventors have discovered that chlorophyll a can be selectively extracted when chlorophyll a is present, and thus exhibits specific selectivity, leading to the present invention.

従って、本発明は、有機溶媒の存在下でクロロフィルを
含有する天然物と超臨界状態の二酸化炭素とを接触させ
、又はクロロフィルを含有する天然物からクロロフィル
を有機溶媒に溶出し、この溶出クロロフィルを含む有機
溶媒と超臨界状態の二酸化炭素とを接触させてフロロフ
ィルを抽出することを特徴とするクロロフィルの抽出方
法、及びクロロフィルを含有する天然物からクロロフィ
ルを油脂に溶出し、この溶出クロロフィルを含む油脂と
超臨界状態の二酸化炭素とを接触させてクロロフィルを
抽出することを特徴とするクロロフィルの抽出方法を提
供する。
Therefore, the present invention involves contacting a natural product containing chlorophyll with carbon dioxide in a supercritical state in the presence of an organic solvent, or eluting chlorophyll from a natural product containing chlorophyll into an organic solvent, and removing the eluted chlorophyll. A method for extracting chlorophyll characterized by extracting chlorophyll by bringing an organic solvent containing it into contact with carbon dioxide in a supercritical state, and a method for extracting chlorophyll from a natural product containing chlorophyll into an oil or fat, and an oil or fat containing the eluted chlorophyll. Provided is a method for extracting chlorophyll, which is characterized in that chlorophyll is extracted by bringing the chlorophyll into contact with carbon dioxide in a supercritical state.

以下、本発明について更に詳しく説明する。The present invention will be explained in more detail below.

本発明のクロロフィルの抽出法の対象となる天然物は、
クロロフィルを含むものであればいずれのものも使用で
き、特に制限されないが、−射的には蚕糞、コンフリー
、ホウレン草、クロレラ等が使用され、また、クレソン
乾燥粉末を好適に用いることができる。
The natural products targeted by the chlorophyll extraction method of the present invention are:
Any substance containing chlorophyll can be used, and there are no particular restrictions, but silkworm manure, comfrey, spinach, chlorella, etc. can be used, and dry watercress powder can be suitably used. .

本発明のクロロフィルの抽出法は、あらかじめ天然物を
有機溶媒で湿らせるなど有機溶媒を含浸させた天然物又
は有機溶媒を混合した天然物を使用するか、あるいはク
ロロフィルを含有する天然物からクロロフィルを有機溶
媒に溶出し、この溶出クロロフィルを含む有機溶媒を使
用する。
The chlorophyll extraction method of the present invention uses a natural product that has been impregnated with an organic solvent, such as by pre-wetting the natural product with an organic solvent, or a natural product that has been mixed with an organic solvent, or extracts chlorophyll from a natural product that contains chlorophyll. It is eluted into an organic solvent, and an organic solvent containing the eluted chlorophyll is used.

ここで、有機溶媒としては、例えばアルコール、ベンゼ
ン、クロロホルム、エーテル、アセトン等が挙げられ、
これらの1種を単独で又は2種以上を併用して用いるこ
とができる。なお、これらの有機溶媒で天然物を湿らせ
る方法としては、天然物を有機溶媒中に浸して引き上げ
たり、あるいはスプレー等で有機溶媒を天然物に吹き付
けたりする方法を採用することができる。この場合、有
機溶媒の使用量は天然物100重量部に対し500〜1
000重量部程度とすることが好適である。
Here, examples of the organic solvent include alcohol, benzene, chloroform, ether, acetone, etc.
One type of these can be used alone or two or more types can be used in combination. In addition, as a method of moistening the natural product with these organic solvents, a method of dipping the natural product in the organic solvent and pulling it up, or a method of spraying the organic solvent onto the natural product using a spray or the like can be adopted. In this case, the amount of organic solvent used is 500 to 1 part by weight per 100 parts by weight of the natural product.
It is preferable that the amount is about 0,000 parts by weight.

また有機溶媒でクロロフィルを溶出する方法としては通
常の有機溶媒を用いる抽出法を採用することができる。
Further, as a method for eluting chlorophyll with an organic solvent, an extraction method using a normal organic solvent can be adopted.

この有機溶媒を用いる方法によればクロロフィルaとb
の混合物を抽出できるが、溶媒の種類によってはaとb
の比が変化し、例えばエタノールを用いるとアセトンを
用いるよりもbの比が高くなるなど、選択性に違いがみ
られる。
According to the method using this organic solvent, chlorophyll a and b
It is possible to extract a mixture of a and b depending on the type of solvent.
The ratio of b changes, and for example, when using ethanol, the ratio of b becomes higher than when using acetone, and differences in selectivity are observed.

本発明のクロロフィルの抽圧方法においては、更にクロ
ロフィルを含有する天然物からクロロフィルを油脂に溶
出し、この溶出クロロフィルを含む油脂を使用すること
ができる。
In the chlorophyll extraction method of the present invention, it is possible to further elute chlorophyll from a natural product containing chlorophyll into oil and fat, and use the oil and fat containing this eluted chlorophyll.

ここで、油脂としては超臨界状態の二酸化炭素の抽出温
度で液状のものを使用できる。具体的にはショートニン
グオイル、サラダオイル等の食用油などを挙げることが
でき、天然物がらクロロフィルを溶出し得るものであれ
ばいずれのものも使用可能である。
Here, as the oil or fat, one that is liquid at the extraction temperature of carbon dioxide in a supercritical state can be used. Specific examples include edible oils such as shortening oil and salad oil, and any natural product that can elute chlorophyll can be used.

なお、天然物から油脂を用いてクロロフィルを溶出する
方法としては、例えば油脂と天然物とを混合、撹拌した
後、濾過あるいは静置して上澄み液を採るなど通常の油
脂を用いる抽出法を採用することができる。この油脂中
のクロロフィルの含有量は特に制限されないが、効率の
点から一般に高い濃度であることが好ましい。
In addition, as a method for eluting chlorophyll from natural products using fats and oils, ordinary extraction methods using fats and oils are adopted, such as mixing the fats and oils with natural products, stirring, and then filtering or leaving the mixture to stand to collect the supernatant liquid. can do. The content of chlorophyll in this oil is not particularly limited, but a high concentration is generally preferred from the viewpoint of efficiency.

本発明のクロロフィルの抽出法は超臨界状態の二酸化炭
素を用いるが、ここで、二酸化炭素の超臨界状態は、第
1図に示した二酸化炭素の状態図において斜線で示した
部分であり、具体的には臨界濃度Tc=304.2に以
上でかつ臨界圧力Pc=7.38MPa以上、好ましく
は温度323〜333°K、圧力9.5〜10.5MP
aの範囲の超臨界二酸化炭素を用いることが好適である
The chlorophyll extraction method of the present invention uses carbon dioxide in a supercritical state, and the supercritical state of carbon dioxide is the shaded area in the phase diagram of carbon dioxide shown in Figure 1. Specifically, the critical concentration Tc = 304.2 or more and the critical pressure Pc = 7.38 MPa or more, preferably a temperature of 323 to 333 ° K and a pressure of 9.5 to 10.5 MPa.
It is preferred to use supercritical carbon dioxide in the range a.

なお、二酸化炭素の臨界密度Pcは466kg/m3で
あり、第2図に二酸化炭素の温度・圧力・密度の関係を
示す。
The critical density Pc of carbon dioxide is 466 kg/m3, and FIG. 2 shows the relationship among temperature, pressure, and density of carbon dioxide.

また、超臨界状態の二酸化炭素を天然物もしくは有機溶
媒又は油脂に接触させる方法としは公知の抽出方法を採
用することができ、特に制限されないが、例えば第3図
に示すように抽出槽1で超臨界状態の二酸化炭素と抽出
対象物を接触させた後、抽出相(超臨界流体十溶質)を
分離槽2で低温下において減圧・膨張させ、それらを分
離し、溶質を分離槽2下部から取りだし流体は圧縮機3
を通り、抽出槽1に戻す圧力変化法を好適に採用するこ
とができる(なお、第2図において4は膨張弁である。
Further, as a method for bringing carbon dioxide in a supercritical state into contact with a natural product, an organic solvent, or an oil or fat, a known extraction method can be adopted, and is not particularly limited. For example, as shown in FIG. After bringing the supercritical carbon dioxide into contact with the extraction target, the extraction phase (supercritical fluid and ten solutes) is depressurized and expanded at low temperatures in the separation tank 2 to separate them, and the solutes are extracted from the bottom of the separation tank 2. The fluid taken out is compressor 3
It is possible to suitably adopt a pressure change method in which the liquid is passed through and returned to the extraction tank 1 (note that 4 in FIG. 2 is an expansion valve).

)また、第4図に示すように温度変化法を採用し、抽出
槽1からの抽出相を熱交換器5を通して昇温し、流体と
溶質を分離槽2で分離し、下部より溶質を取り出し、流
体は熱交換器6及び圧縮機3を通して冷却、圧縮した後
、抽出槽1に戻して抽出を行う方法を採用することもで
きる。更に、吸着法を採用し、第5図に示すように抽出
槽1からの抽出相をその溶質のみを吸着する吸着剤を入
れた吸着分離槽7を通して流体から溶質を分離し、流体
を圧縮機3で圧縮した後、抽出槽1ヘリサイクルする方
法でも抽出を行うことができる。
) Also, as shown in Figure 4, a temperature change method is adopted, in which the temperature of the extraction phase from extraction tank 1 is raised through heat exchanger 5, the fluid and solute are separated in separation tank 2, and the solute is taken out from the bottom. Alternatively, a method may be adopted in which the fluid is cooled and compressed through the heat exchanger 6 and the compressor 3, and then returned to the extraction tank 1 for extraction. Furthermore, by adopting an adsorption method, the solute is separated from the fluid by passing the extraction phase from the extraction tank 1 through an adsorption separation tank 7 containing an adsorbent that adsorbs only the solute, as shown in FIG. Extraction can also be carried out by compressing in step 3 and then recycling to extraction tank 1.

上述のように抽出された抽出物は更に常法に従ってクロ
ロフィルを単離することができる。
Chlorophyll can be further isolated from the extract extracted as described above according to a conventional method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のクロロフィルの抽出法に
よれば、超臨界状態の二酸化炭素を用いて天然物からク
ロロフィルを効果的に抽出することができる。
As explained above, according to the chlorophyll extraction method of the present invention, chlorophyll can be effectively extracted from natural products using supercritical carbon dioxide.

以下、実施例、比較例を示し1本発明を具体的に示すが
、本発明は下記の実施例に制限されるものではない。
EXAMPLES Hereinafter, examples and comparative examples will be shown to specifically illustrate the present invention, but the present invention is not limited to the following examples.

ここで、本例で使用した超臨界抽出装置は、第6図の通
りであり、これを説明すると、図中8はC○、ボンベ、
9はクールポンプ(TAITEC製CP−80型)、1
0は送液ポンプ(MILTONROY製 consta
MetricIII) 、11は超臨界クロマトグラフ
(電気化学計器株式会社(DKK)製LSA−1型超臨
界クロマトグラフ)であり、このクロマトグラフ11内
には熱交換カラム12、容量2cm3のセル13が配設
されている。また14はUV検検器器Waters!l
990Jフォトダイオードアレイ検出器)、15はコン
ピューター(EPSONlijPC−286X)、16
はフラクションコレクタ(DKK製のLSA−F)であ
る。
Here, the supercritical extraction apparatus used in this example is as shown in Fig. 6, and to explain this, 8 in the figure is C○, cylinder,
9 is a cool pump (CP-80 type manufactured by TAITEC), 1
0 is a liquid sending pump (MILTONROY consta
Metric III), 11 is a supercritical chromatograph (LSA-1 type supercritical chromatograph manufactured by Denki Kagaku Keiki Co., Ltd. (DKK)), and inside this chromatograph 11, a heat exchange column 12 and a cell 13 with a capacity of 2 cm3 are arranged. It is set up. Also, 14 is UV inspection instrument Waters! l
990J photodiode array detector), 15 is a computer (EPSONlij PC-286X), 16
is a fraction collector (LSA-F manufactured by DKK).

この装置を用いて抽出処理及び抽出相中のクロロフィル
の分析を行う場合は、CO2ボンベ8からの二酸化炭素
ガスをクールポンプ9で液体に冷却し、送液ポンプ10
で超臨界クロマトグラフ11に送入する。送入された液
体二酸化炭素を熱交換カラム12により所定温度に加熱
して超臨界状態とした後、セル13に送り、セル13内
の抽出対象物と接触させ、抽出を行う。抽出物を含む二
酸化炭素(抽出相)を超臨界クロマトグラフ11からフ
ラクションコレクタ16に送り、二酸化炭素をガス化し
て抽出物をフラクションコレクタに採取する。採取して
いる間、コックにより抽出相の一部をUV検出器14に
送り、吸光度を測定し、この測定値をコンピューター1
5により処理して3次元図及び等高線図を作製した。
When performing extraction processing and analysis of chlorophyll in the extraction phase using this device, the carbon dioxide gas from the CO2 cylinder 8 is cooled to a liquid by the cool pump 9, and the liquid feed pump 10
and send it to the supercritical chromatograph 11. The introduced liquid carbon dioxide is heated to a predetermined temperature by the heat exchange column 12 to make it supercritical, and then sent to the cell 13, brought into contact with the object to be extracted in the cell 13, and extracted. Carbon dioxide (extraction phase) containing the extract is sent from the supercritical chromatograph 11 to the fraction collector 16, where the carbon dioxide is gasified and the extract is collected into the fraction collector. During sampling, a part of the extracted phase is sent to the UV detector 14 by the stopcock, the absorbance is measured, and this measurement value is sent to the computer 1.
5 to create a three-dimensional map and a contour map.

この場合、クールポンプ9は0℃に設定して、送液ポン
プ10の流量は2.00m12/minに設定し、超臨
界クロマトグラフ11の恒温槽の温度は55°Cに設定
した。二酸化炭素は熱交換カラム12を通過させるため
55.0℃になっている。
In this case, the cool pump 9 was set at 0°C, the flow rate of the liquid pump 10 was set at 2.00 m12/min, and the temperature of the constant temperature bath of the supercritical chromatograph 11 was set at 55°C. The carbon dioxide is passed through the heat exchange column 12, so the temperature is 55.0°C.

なお、二酸化炭素の圧力は10MPaである。また、フ
ラクションコレクタの出口温度を100.3℃に設定し
た。試料の量は、セルの容量は2cm’であるが、これ
はUV検出器14の濃度上限が決まっているので、この
上限を考慮して決定したものである。以上のようにして
全ての分析条件が整った後、まずUV検出器14を測定
状態にし、20秒後にセルに二酸化炭素を流すことによ
り抽出、分析を行った。
Note that the pressure of carbon dioxide is 10 MPa. Further, the outlet temperature of the fraction collector was set at 100.3°C. The amount of sample is determined by considering the upper concentration limit of the UV detector 14, which is determined because the cell capacity is 2 cm'. After all the analysis conditions were set as described above, the UV detector 14 was first put into the measurement state, and 20 seconds later, extraction and analysis were performed by flowing carbon dioxide into the cell.

〔比較例1〕 二酸化炭素のみによるクロロフィルの抽出を試みた。[Comparative example 1] An attempt was made to extract chlorophyll using only carbon dioxide.

クレソン粉末子さじ3ばいをろ紙に包みこれをセルに入
れ、二酸化炭素を流した。その結果、UV検出器には何
もピークは現れず、何もフラグジョンコレクタに採取で
きなかった。また、ろ紙に包まれたクレソン粉末にも何
も変化は見られず、以上のことから単に二酸化炭素を流
しただけではクロロフィルの抽出が行われないことが認
められた。
Three tablespoons of watercress powder was wrapped in filter paper, placed in a cell, and carbon dioxide was flushed through it. As a result, no peak appeared on the UV detector, and nothing was collected on the fragment collector. Furthermore, no change was observed in the watercress powder wrapped in filter paper, and from the above, it was confirmed that simply flowing carbon dioxide did not extract chlorophyll.

〔実施例1〕 クレソン粉末子さし3ぽいをろ紙に包み、これをアセト
ンで十分に湿らせ、次いでセルに入れ、二酸化炭素を4
分間流した。その結果、UV検出器にクロロフィルのピ
ークが現れた。その3次元図を第7図に、等高線図を第
8図に示す。
[Example 1] Wrap 3 pieces of watercress powder in filter paper, moisten it thoroughly with acetone, then put it in a cell and add 4 pieces of carbon dioxide.
It ran for a minute. As a result, a chlorophyll peak appeared on the UV detector. A three-dimensional diagram is shown in FIG. 7, and a contour map is shown in FIG. 8.

また、ろ紙に包まれたクレソン粉末は緑色から色が抜け
てねずみ色に変化していた。
Additionally, the watercress powder wrapped in filter paper had lost its color from green to a grayish color.

〔実施例2〕 実施例1と同様の操作で、エタノールでクレソン粉末を
十分に湿らせ5同様に二酸化炭素を3.5分間流した。
[Example 2] In the same manner as in Example 1, watercress powder was sufficiently moistened with ethanol, and carbon dioxide was passed through it for 3.5 minutes in the same manner as in 5.

その結果、UV検出器にクロロフィルのピークが現れた
。その3次元図を第9図に、等高線図を第10図に示す
。これらのピークの形はアセトンを用いた場合と違って
おり、クロロフィルbの割合がアセトンを用いた場合よ
りも高くなっていることが認められる。
As a result, a chlorophyll peak appeared on the UV detector. A three-dimensional diagram is shown in FIG. 9, and a contour diagram is shown in FIG. 10. The shapes of these peaks are different from those when acetone is used, and it can be seen that the proportion of chlorophyll b is higher than when acetone is used.

また、クレソン粉末の色はアセトンと同様に変化してい
た。
Also, the color of watercress powder changed in the same way as acetone.

〔比較例2〕 実施例1と同様にクレソン粉末小さじ3ぽいをろ紙に包
み、これを液化させたショートニングオイルで十分に湿
らせ、次いでセルに入れ、二酸化炭素を流した。その結
果、UV検出器にはピークが現れず、フラクションコレ
クタには、白いままのショートニングオイルが搾取され
ただけだった。
[Comparative Example 2] In the same manner as in Example 1, 3 teaspoons of watercress powder was wrapped in filter paper, thoroughly moistened with liquefied shortening oil, and then placed in a cell and carbon dioxide was flushed. As a result, no peak appeared on the UV detector, and only white shortening oil was extracted into the fraction collector.

また、ろ紙に包まれたクレソン粉末は、ショートニング
オイルが多少混ざっていたが、色の変化は見られなかっ
た。
Although the watercress powder wrapped in filter paper contained some shortening oil, no change in color was observed.

従って、アセトン、エタノールと同様に処理してショー
トニングオイルを湿らせるだけではクロロフィルが抽出
できないことが認められた。
Therefore, it was confirmed that chlorophyll could not be extracted simply by moistening shortening oil in the same manner as with acetone and ethanol.

〔実施例3〕 液化させたレヨートニングオイル5mflにクレソン粉
末を1g混ぜ、1分間よく撹拌した後、上澄み液をセル
に入れ、二酸化炭素を流した。その結果、フラクション
コレクタには緑色のショートニングオイルが搾取された
。そのUV吸収曲線図を第11図に示すが、図示の通り
クロロフィルaのピークが確認された。
[Example 3] 1 g of watercress powder was mixed with 5 mfl of liquefied rayotoning oil, and after stirring well for 1 minute, the supernatant liquid was put into a cell and carbon dioxide was flushed. As a result, green shortening oil was squeezed into the fraction collector. The UV absorption curve diagram is shown in FIG. 11, and as shown, the peak of chlorophyll a was confirmed.

〔実施例4〕 実施例3と同様に、サラダオイル5mQとクレソン粉末
1gを1分間撹拌した後、その上澄み液をセルに入れ、
二酸化炭素を流した。その結果、フラクションコレクタ
には緑色のサラダオイルが搾取された。そのUV吸収の
3次元図を第12図に、等高線図を第13図に示す。こ
れからクロロフィルaのピークが確認された。
[Example 4] Similarly to Example 3, after stirring 5 mQ of salad oil and 1 g of watercress powder for 1 minute, the supernatant liquid was poured into a cell,
Carbon dioxide was flushed. As a result, green salad oil was extracted into the fraction collector. A three-dimensional diagram of the UV absorption is shown in Fig. 12, and a contour diagram is shown in Fig. 13. From this, the peak of chlorophyll a was confirmed.

〔比較例3〕 実施例1と同様の方法でソルビタンモノラウレートでク
レソン粉末を湿らせ、二酸化炭素を流した。その結果、
クロロフィルと認められるピークは確認できなかった。
[Comparative Example 3] Watercress powder was moistened with sorbitan monolaurate in the same manner as in Example 1, and carbon dioxide was passed through it. the result,
No peak recognized as chlorophyll could be confirmed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は二酸化炭素の状態図、第2図は二酸化炭素の温
度−圧力−密度関係を示すグラフ、第3図、第4図、第
5図はそれぞれ圧力変化法、温度変化法、吸着法による
超臨界流体抽出法を示す工程図、第6図は実施例で使用
した実験装置を示す工程図、第7図はアセトンを用いた
ときの抽出時間に対する吸光度の変化を示す3次元図、
第8図は第7図の等高線図、第9図はエタノールを用い
たときの抽出時間に対する吸光度の変化を示す3次元図
、第10図は第9図の等高線図、第11図はショートニ
ングオイルを用いたときの吸収曲線。 第12図はサラダオイルを用いたときの抽出時間に対す
る吸光度の変化を示す3次元図、第13図は第12図の
等高線図である。 1・・・抽出槽、2・・・分離槽、3・・・圧縮機、4
・・・膨張弁、5・・・熱交換器、6・・・熱交換器、
7・・・吸着分離槽、8・・・CO2ポンベ、9・・・
クールポンプ、10・・・送液ポンプ、11・・・超臨
界クロマトグラフ、 12・・・熱交換カラム、13・・・セル、14・・・
UV検出器、15・・・コンピュータ16・・・フラク
ションコレクタ
Figure 1 is a phase diagram of carbon dioxide, Figure 2 is a graph showing the temperature-pressure-density relationship of carbon dioxide, and Figures 3, 4, and 5 are pressure change method, temperature change method, and adsorption method, respectively. Fig. 6 is a process diagram showing the experimental equipment used in the examples, Fig. 7 is a three-dimensional diagram showing the change in absorbance with respect to extraction time when using acetone,
Figure 8 is a contour diagram of Figure 7, Figure 9 is a three-dimensional diagram showing the change in absorbance with extraction time when using ethanol, Figure 10 is a contour diagram of Figure 9, and Figure 11 is a shortening oil diagram. Absorption curve when using . FIG. 12 is a three-dimensional diagram showing changes in absorbance with respect to extraction time when salad oil is used, and FIG. 13 is a contour diagram of FIG. 12. 1... Extraction tank, 2... Separation tank, 3... Compressor, 4
... expansion valve, 5 ... heat exchanger, 6 ... heat exchanger,
7... Adsorption separation tank, 8... CO2 pump, 9...
Cool pump, 10... Liquid pump, 11... Supercritical chromatograph, 12... Heat exchange column, 13... Cell, 14...
UV detector, 15...computer 16...fraction collector

Claims (1)

【特許請求の範囲】 1、有機溶媒の存在下でクロロフィルを含有する天然物
と超臨界状態の二酸化炭素とを接触させて、又はクロロ
フィルを含有する天然物からクロロフィルを有機溶媒に
溶出し、この溶出クロロフィルを含む有機溶媒と超臨界
状態の二酸化炭素とを接触させてクロロフィルを抽出す
ることを特徴とするクロロフィルの抽出方法。 2、クロロフィルを含有する天然物からクロロフィルを
油脂に溶出し、この溶出クロロフィルを含む油脂と超臨
界状態の二酸化炭素とを接触させてクロロフィルを抽出
することを特徴とするクロロフィルの抽出方法。
[Claims] 1. A natural product containing chlorophyll is brought into contact with carbon dioxide in a supercritical state in the presence of an organic solvent, or chlorophyll is eluted from a natural product containing chlorophyll into an organic solvent. A method for extracting chlorophyll, which comprises extracting chlorophyll by bringing an organic solvent containing eluted chlorophyll into contact with carbon dioxide in a supercritical state. 2. A method for extracting chlorophyll, which comprises eluting chlorophyll from a natural product containing chlorophyll into oil and fat, and bringing the eluted chlorophyll-containing oil and fat into contact with carbon dioxide in a supercritical state to extract chlorophyll.
JP2213839A 1990-08-13 1990-08-13 Extraction of chlorophyll Pending JPH0499776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2213839A JPH0499776A (en) 1990-08-13 1990-08-13 Extraction of chlorophyll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213839A JPH0499776A (en) 1990-08-13 1990-08-13 Extraction of chlorophyll

Publications (1)

Publication Number Publication Date
JPH0499776A true JPH0499776A (en) 1992-03-31

Family

ID=16645883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213839A Pending JPH0499776A (en) 1990-08-13 1990-08-13 Extraction of chlorophyll

Country Status (1)

Country Link
JP (1) JPH0499776A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082995A (en) * 2004-09-15 2006-03-30 Chugoku Electric Power Co Inc:The Method and system for producing supercritical carbon dioxide
CN103965205A (en) * 2014-05-29 2014-08-06 山东广通宝医药有限公司 Method for producing sodium copper chlorophyllin through supercritical purification
CN104678066A (en) * 2015-03-17 2015-06-03 内蒙古民族大学 Method for recycling chlorophyll solution
CN106083865A (en) * 2016-06-21 2016-11-09 太仓市东明化工有限公司 A kind of chlorophyllous method in high efficiency extraction Folium Bambusae

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082995A (en) * 2004-09-15 2006-03-30 Chugoku Electric Power Co Inc:The Method and system for producing supercritical carbon dioxide
CN103965205A (en) * 2014-05-29 2014-08-06 山东广通宝医药有限公司 Method for producing sodium copper chlorophyllin through supercritical purification
CN104678066A (en) * 2015-03-17 2015-06-03 内蒙古民族大学 Method for recycling chlorophyll solution
CN106083865A (en) * 2016-06-21 2016-11-09 太仓市东明化工有限公司 A kind of chlorophyllous method in high efficiency extraction Folium Bambusae

Similar Documents

Publication Publication Date Title
US5458897A (en) Microwave-assisted extraction from materials containing organic matter
CA2055390C (en) Microwave assisted process for extraction and apparatus therefor
Romanik et al. Techniques of preparing plant material for chromatographic separation and analysis
CA2115599C (en) Fragrance extraction
Herzi et al. Supercritical CO2 extraction of Tetraclinis articulata: chemical composition, antioxidant activity and mathematical modeling
US5338557A (en) Microwave extraction of volatile oils
US11807828B2 (en) Agitator for solventless extraction of cannabis essential oils
WO2008071985A2 (en) Extraction process and purification process
Dang et al. Optimization of supercritical CO2 extraction of oleoresin from black pepper (Piper nigrum L.) and antioxidant capacity of the oleoresin.
JPH0499776A (en) Extraction of chlorophyll
Hadolin et al. Isolation and concentration of natural antioxidants with high-pressure extraction
Suzuki et al. Behavior of chlorophyll derivatives in canola oil processing
Zscheile et al. Determination of carotene in alfalfa
CN107513470A (en) Plants essential oil and its extracting method and application
Koedam et al. Monoterpenes in the volatile leaf oil of Abies. times. arnoldiana Nitz
Ayre et al. Supercritical fluid extraction-a green paradigm in the area of separation science
Huang et al. Separation and Purification of β‐Carotene from Chlorophyll Factory Residues
Jyotirmayee et al. Essential Oils Extracted from CO
Eder et al. Chlorinated hydrocarbons in sediments of the Elbe river and the Elbe estuary
Buskov et al. Separation of chlorophylls and their degradation products using packed column supercritical fluid chromatography (SFC)
Znini et al. Characterization of Lavandula multifida volatile composition from Morocco by headspace solid-phase Microextraction (HS-SPME) and Hydrodistillation coupled to GC–MS
Chaitanya et al. Supercritical fluid extraction of functional ingredients from plants: A Review
Price et al. Flash chromatography—A simple technique of potential value to the food chemist
Ahmad et al. Supercritical fluid extraction and capillary gas chromatography of the rhizomes of Z. Zerumbet
US20040166177A1 (en) Full range nutritional supplements from plant materials and methods for their manufacture