JPH0499174A - Method and device for ion assistant sputtering - Google Patents

Method and device for ion assistant sputtering

Info

Publication number
JPH0499174A
JPH0499174A JP20505590A JP20505590A JPH0499174A JP H0499174 A JPH0499174 A JP H0499174A JP 20505590 A JP20505590 A JP 20505590A JP 20505590 A JP20505590 A JP 20505590A JP H0499174 A JPH0499174 A JP H0499174A
Authority
JP
Japan
Prior art keywords
power source
substrate
cathode
ion
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20505590A
Other languages
Japanese (ja)
Inventor
Hiroshi Harada
寛 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP20505590A priority Critical patent/JPH0499174A/en
Publication of JPH0499174A publication Critical patent/JPH0499174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain an ion assistance effect without reducing a film forming speed in ordinary DC sputtering by simultaneously impressing a DC voltage and a high-frequency wave on a cathode. CONSTITUTION:A DC power source 16 and a high-frequency power source 1 are connected to a discharge electrode 5, an inductor is provided between the power source 16 and electrode 5, and a high-frequency matching device for adjusting a load impedance is furnished between the electrode 5 and power source 1. A vacuum vessel 8 is evacuated, and a working gas is introduced into the vessel 8 from an inlet 10 to hold the vessel 8 at an appropriate sputtering gas pressure. Under these conditions, a DC voltage is impressed on the cathode 5 to produce plasma in the vessel 8. A high-frequency wave is further impressed on the cathode 5 to impress a magnetron bias voltage on a substrate holder 9, hence the positive ion in the plasma close to a substrate is attracted to the substrate 9a, and an ion assistance effect is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種の機能を有する薄膜を作成するイオンアシ
ストスパッタリング方法および装置に関するものであり
、その薄膜の組織構造および内部応力が使用目的に適合
するように任意に制御可能なイオンアシストスパッタリ
ング方法および装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ion-assisted sputtering method and apparatus for producing thin films having various functions, and the present invention relates to an ion-assisted sputtering method and apparatus for producing thin films having various functions, and the structure and internal stress of the thin films are suitable for the purpose of use. The present invention relates to an ion-assisted sputtering method and apparatus that can be arbitrarily controlled so as to perform ion-assisted sputtering.

[従来の技術] 例えば、蒸着装置で基板に所望の材料原子を沈着させ薄
膜を形成する過程で、イオン銃等別に設けたイオン発生
装置によるイオンにて沈着原子をたたきながら(イオン
ボンバード、イオンピーニングあるいはイオンアシスト
と言われている。以後、イオンアシストと呼ぶことにす
る。)薄膜を形成すると、イオンアシストしていない薄
膜と比較して基板との付着力および緻密さが向上し、そ
の結果、硬度1表面粗さ、光反射率、電気抵抗等積々の
機能改善が見られることが確認されている。
[Prior art] For example, in the process of depositing atoms of a desired material onto a substrate using a vapor deposition device to form a thin film, the deposited atoms are bombarded with ions from a separate ion generator such as an ion gun (ion bombardment, ion peening). (Also referred to as ion assist.Hereafter, it will be referred to as ion assist.) When a thin film is formed, the adhesion and density with the substrate are improved compared to a thin film that is not ion assisted, and as a result, It has been confirmed that there is a continuous improvement in functions such as hardness 1 surface roughness, light reflectance, and electrical resistance.

これは沈着原子に運動エネルギを持ったイオンが衝突す
ることで沈着原子が膜面上を移動(マイグレーションと
呼ばれている。)してポテンシャルのより安定したとこ
ろに落ちつくことにより、原子および結晶の配列がより
緻密になる為であると考えられている。
This is because ions with kinetic energy collide with the deposited atoms, causing the deposited atoms to move on the film surface (called migration) and settle down at a more stable potential, resulting in the formation of atoms and crystals. It is thought that this is because the arrangement becomes more dense.

[発明が解決しようとする課題] ところが、スパッタリング装置にイオン銃を組み合わせ
て同様の効果を狙っても、現在の技術では、スパッタリ
ングに用いられるガス圧力レベルとイオン銃で用いるガ
ス圧力レベルが異なっているため、同一真空容器内で同
時に作動させることは困難である。また、蒸着やスパッ
タリング等の薄膜形成装置にイオン銃を取付けると、装
置が非常に複雑になり、また、イオン銃自体の価格が非
常に高いので、装置のコストもかなり大きなものとなっ
てしまう。
[Problem to be solved by the invention] However, even if a sputtering device is combined with an ion gun to achieve the same effect, with the current technology, the gas pressure level used for sputtering and the gas pressure level used by the ion gun are different. Therefore, it is difficult to operate them simultaneously within the same vacuum vessel. Furthermore, when an ion gun is attached to a thin film forming apparatus such as vapor deposition or sputtering, the apparatus becomes very complicated, and since the ion gun itself is very expensive, the cost of the apparatus also increases considerably.

また、基板にバイアス電圧を加えて膜の諸性質を改善し
ようとするバイアススパッタリングと呼ばれる方法が提
案されているが、これはイオンに与えるエネルギのみを
コントロールするものであり、イオンの量の増減はでき
ない。特に、マグネトロンスパッタリングでは、イオン
量が極めて少なく、バイアスによりイオンにエネルギを
与えてもその効果はあまり期待できない。ただ腰高周波
(RF)マグネトロンスパッタリングでは、直流(DC
)マグネトロンスパッタリングに比べ発生するプラズマ
は真空容器内にかなり広がるので、基板にバイアス電圧
を印加することでかなりのイオンアシスト効果を期待す
ることができる。だが、このRFスパッタリングも成膜
スピードがDCスパッタリングに比べて格段に遅いとい
う実際の生産ラインでは致命的と言える欠点があり、ま
た、RFを用いることでかなりのイオン量を得ることは
できるが、その量は可変ではないという欠点もある。
In addition, a method called bias sputtering has been proposed that attempts to improve various film properties by applying a bias voltage to the substrate, but this method only controls the energy given to the ions, and does not change the amount of ions. Can not. In particular, in magnetron sputtering, the amount of ions is extremely small, and even if energy is applied to the ions using a bias, no significant effect can be expected. However, in radio frequency (RF) magnetron sputtering, direct current (DC)
) Compared to magnetron sputtering, the generated plasma spreads considerably within the vacuum chamber, so a considerable ion assist effect can be expected by applying a bias voltage to the substrate. However, this RF sputtering also has the drawback that the film formation speed is much slower than DC sputtering, which can be fatal in actual production lines.Also, although it is possible to obtain a considerable amount of ions by using RF, Another drawback is that the amount is not variable.

DCスパッタリングで基板にバイアスを印加しても引き
寄せられるイオンが少なく、あまり大きなイオンアシス
ト効果を期待できないという問題点を解決するため、タ
ーゲット裏面に取付けられているマグネトロン用磁極構
造体の外周磁極を強めて内周磁極と外周磁極の磁気的バ
ランスを崩しプラズマを基板近傍まで導くという技術が
B、WindowおよびN、 5avvides等によ
りJ、 Vac、 5ciTechno1. A4 (
21、May/Apr、 1986. p196に提案
されているが、この技術は基板側に導かれたプラズマが
基板の半径方向に分布を持ち、また、内周磁極と外周磁
極があまり離れていると、外周磁極を強めた結果、プラ
ズマがターゲットの中心方向に移動して膜厚分布が悪(
なる等という欠点があり、特に、円形ターゲットを利用
して円形基板に成膜する場合、実用化が難しい。
In order to solve the problem that even when a bias is applied to the substrate during DC sputtering, only a few ions are attracted and a large ion assist effect cannot be expected, the outer magnetic pole of the magnetron magnetic pole structure attached to the back of the target has been strengthened. A technique of destroying the magnetic balance between the inner circumferential magnetic pole and the outer circumferential magnetic pole and guiding the plasma to the vicinity of the substrate was described by B, Window and N, 5avvides, etc. in J, Vac, 5ciTechno1. A4 (
21, May/Apr, 1986. This technology is proposed on page 196, but the plasma guided to the substrate side has a distribution in the radial direction of the substrate, and if the inner and outer magnetic poles are too far apart, as a result of strengthening the outer magnetic pole, The plasma moves toward the center of the target, resulting in poor film thickness distribution (
However, it is difficult to put it into practical use, especially when a circular target is used to form a film on a circular substrate.

なお、本発明に最も近いと思われる発明として特開昭6
2−287071号があるが、この発明はターゲットに
投入するRF電力量によってプラズマの密度を決定して
、スパッタリングに寄与する作動ガスイオンがターゲッ
トを叩くエネルギを、同じくターゲットに接続された直
流電源から供給される電圧でコントロールするというも
ので、つぎに示す本発明の思想とは根本的に異なる。
In addition, the invention considered to be closest to the present invention is the patent application published in 1983.
No. 2-287071, this invention determines the density of the plasma by the amount of RF power input to the target, and uses the DC power supply connected to the target to generate the energy for the working gas ions that contribute to sputtering to hit the target. It is controlled by the supplied voltage, which is fundamentally different from the idea of the present invention described below.

本発明の目的は、通常の直流(DC)スパッタリングに
おいて、カソードに直流電圧を印加すると同時に高周波
(RF)を印加することで、成膜スピードを高速に保っ
たままで、前述のようなイオン銃等特別なイオン源を用
いることなく、成膜中に基板に到達するイオン量を適切
にコントロールし、またそのイオンのエネルギも基板に
印加するバイアス電圧で任意にコントロールする方法お
よび装置を提供することにある。
The purpose of the present invention is to apply a direct current voltage to the cathode and simultaneously apply radio frequency (RF) during normal direct current (DC) sputtering, thereby maintaining a high film formation speed and using an ion gun such as the one described above. To provide a method and apparatus for appropriately controlling the amount of ions reaching a substrate during film formation without using a special ion source, and also arbitrarily controlling the energy of the ions by controlling the bias voltage applied to the substrate. be.

[課題を解決するための手段] 本発明においては、通常の直流(DC)放電を用いるマ
グネトロンスパッタリング装置において、カソード(陰
極)に直流(DC)電源と同時に高周波(RF)に電源
を接続し、また、それぞれの電源がカソード部に出力し
た電力が他方の電源に流れ込まないようにインダクタを
DC電源とカソードの間に入れ、ブロッキングコンデン
サをRF電源とカソードの間に(マツチングボックスが
π型の時のみ)入れ、主放電を直流(DC)で行い、同
時に適当な高周波(RF)をカソードに印加する。
[Means for Solving the Problems] In the present invention, in a magnetron sputtering apparatus using normal direct current (DC) discharge, a direct current (DC) power source and a radio frequency (RF) power source are connected to the cathode at the same time, Also, to prevent the power output from each power supply to the cathode from flowing into the other power supply, an inductor is placed between the DC power supply and the cathode, and a blocking capacitor is placed between the RF power supply and the cathode (if the matching box is a π-type (only when the battery is turned on), the main discharge is performed with direct current (DC), and at the same time, an appropriate radio frequency (RF) is applied to the cathode.

[作用] イオンアシスト効果を評価するに際して問題となるのは
、基板に到達するスパッタ原子数(jm)と作動ガスイ
オン数(j+)の比率(j+ /jm )と、基板への
イオンの加速エネルギ(基板バイアス電圧: Ebia
s)である。このうち、E biasは基板および形成
する薄膜が導体の場合は直流電源装置を用いれば良いし
、それ以外の場合は高周波バイアス電源を用いるなど適
当な直流バイアス電圧印加手段を取ることとする。
[Effect] When evaluating the ion assist effect, the issues are the ratio (j+ /jm) of the number of sputtered atoms reaching the substrate (jm) and the number of working gas ions (j+), and the acceleration energy of ions to the substrate. (Substrate bias voltage: Ebia
s). Of these, for E bias, if the substrate and the thin film to be formed are conductors, a DC power supply may be used; in other cases, an appropriate DC bias voltage application means such as a high frequency bias power supply may be used.

今回の発明で制御対象となるのは、j+/jmの方であ
り、その原理は直流放電中のマグネトロンカソードにR
Fを印加すると、DC放電だけの時はほとんどターゲッ
ト上に閉じこめられていたプラズマがターゲットと基板
間に広がるという現象にある。その結果として、基板に
直流バイアス電圧を印加するとDC放電だけの時に比べ
格段に多い正イオンが基板に流入してくる。これはすな
わちj+が大きくなったということであるが、同時にj
m  (成膜スピード)も増えたのでは結果としてj÷
/jITlの値は変わらないことになる。ところが、実
際にはjlTlは増加はするが、その増加率はj十程で
はなく僅かであるので、カソードに印加するRF電力を
上げていくにしたがい、j+/jmは大きくなっていく
The object to be controlled in this invention is j+/jm, and the principle is that R is applied to the magnetron cathode during DC discharge.
The phenomenon is that when F is applied, the plasma, which was mostly confined on the target when only DC discharge was used, spreads between the target and the substrate. As a result, when a DC bias voltage is applied to the substrate, significantly more positive ions flow into the substrate than when only DC discharge is applied. This means that j+ has become larger, but at the same time j
If m (film formation speed) also increased, the result would be j÷
The value of /jITl will not change. However, in reality, although jlTl increases, the rate of increase is not as high as j0, but only slightly, so as the RF power applied to the cathode is increased, j+/jm increases.

[実施例] 本発明を薄膜堆積装置の一つであるスパッタリング装置
に適用した実施例を第1図に示す。
[Example] FIG. 1 shows an example in which the present invention is applied to a sputtering apparatus, which is one type of thin film deposition apparatus.

第1図において、lは基板流入イオン量制御用高周波電
源装置、2は電源側と負荷側のインピーダンス整合を行
うマツチングボックスでもある高周波整合装置、3はマ
グネトロン用磁極構造体、4は磁極構造体3の内周磁極
と外周磁極のバランスを調整する為のソレノイドコイル
、5は電源から放電用電力を供給する放電電極でもある
カット(陰極)、6は成膜物質から成るターゲット、7
は真空ポンプにつながる排気口、8は真空容器、9は基
板9aを保持する基板ホルダ(本発明ではこのホルダ9
をイオン量計測用プローブとして利用)、10は真空容
器8内に作動ガスを導入するための導入口、11は真空
計、12は基板ホルダ9に流入したイオン量を計測する
ための電流計、13は基板9aにバイアス電圧を印加す
るための直流電源装置、14はカソード(陰極)5に印
加された高周波が放電用直流電源16に流入することを
防止するインダクタ、15はインダクタ14をもし高周
波が通過した場合にも放電用直流電源16に流入しない
ように取付けたローパスフィルタ、16は主放電を発生
し成膜を行うための直流電源装置、17はソレノイドコ
イル4に電流を供給するための直流電源装置である。そ
して、これらは、第1図に示すように構成されている。
In Fig. 1, l is a high-frequency power supply device for controlling the amount of ions flowing into the substrate, 2 is a high-frequency matching device which is also a matching box for impedance matching between the power supply side and the load side, 3 is a magnetic pole structure for the magnetron, and 4 is a magnetic pole structure. A solenoid coil for adjusting the balance between the inner magnetic pole and the outer magnetic pole of the body 3, 5 a cut (cathode) which is also a discharge electrode that supplies discharge power from a power source, 6 a target made of a film-forming substance, 7
8 is an exhaust port connected to a vacuum pump, 8 is a vacuum container, and 9 is a substrate holder that holds a substrate 9a (in the present invention, this holder 9
(used as a probe for measuring the amount of ions), 10 is an inlet for introducing a working gas into the vacuum container 8, 11 is a vacuum gauge, 12 is an ammeter for measuring the amount of ions flowing into the substrate holder 9, 13 is a DC power supply device for applying a bias voltage to the substrate 9a; 14 is an inductor that prevents high frequency waves applied to the cathode 5 from flowing into the discharge DC power supply 16; and 15 is a DC power supply device for applying a bias voltage to the substrate 9a. 16 is a DC power supply device for generating the main discharge and forming a film, and 17 is for supplying current to the solenoid coil 4. It is a DC power supply. These are configured as shown in FIG.

この装置を用いてイオンアシスト成膜を行う方法を以下
に示す。
A method for performing ion-assisted film formation using this apparatus will be described below.

まず、真空容器8に連結された排気用の真空ポンプで十
分に真空容器8内の排気を行い、その後、真空容器8内
に適量の作動ガス(通常Ar)を導入口10から導入し
て真空容器8内をスパッタリング適正ガス圧力に保つ。
First, the inside of the vacuum container 8 is sufficiently evacuated using an evacuation pump connected to the vacuum container 8, and then an appropriate amount of working gas (usually Ar) is introduced into the vacuum container 8 from the inlet 10 to create a vacuum. The inside of the container 8 is maintained at an appropriate gas pressure for sputtering.

この状態でカソード5に直流電圧を印加して真空容器8
内にプラズマを発生させる。更に、カソード5に高周波
を印加し、基板ホルダ9に負バイアス電圧(約−10〜
−200V程度)を印加して基板近傍のプラズマ中の正
イオン(Arイオン)を基板9aに引きつけ、イオンア
シスト効果を得る。
In this state, a DC voltage is applied to the cathode 5 and the vacuum container 8 is
Generate plasma inside. Furthermore, a high frequency is applied to the cathode 5, and a negative bias voltage (approximately -10 to
-200 V) is applied to attract positive ions (Ar ions) in the plasma near the substrate to the substrate 9a, thereby obtaining an ion assist effect.

第2図に、DCIAM電時に、カソード5に投入する高
周波電力PRFを変化させたときの基板9aに流入する
正イオン数(j+)と基板9aに付着するスパック原子
数(jm)の変化の様子を示す。また、イオンアシスト
量の評価として各投入高周波電力PRFに対するj+ 
/jWlの変化状態を第3図に示す。なお、第2図およ
び第3図のグラフにおいて、カソードに投入した直流電
流DCはIA固定とし、成膜ガス圧力は20 mTor
r 、コイル励磁電流はOAとした。第2図に示すよう
にj÷の変化と比較してjIllの変化はかなり小さ(
、カソード5に投入された高周波電力はターゲット6−
基板98間のかなり広範囲に渡ってプラズマを生成して
いると言える。したがって、第3図のように高周波投入
電力PRFが増加するにしたがってj+ /jrrlは
増加する。すなわち、投入する高周波電力を増加するほ
どイオンアシスト量も増加すると言える。
FIG. 2 shows how the number of positive ions (j+) flowing into the substrate 9a and the number of spuck atoms (jm) adhering to the substrate 9a change when the high-frequency power PRF input to the cathode 5 is changed during DCIAM operation. shows. In addition, as an evaluation of the ion assist amount, j+ for each input high frequency power PRF
FIG. 3 shows how /jWl changes. In the graphs of Figures 2 and 3, the DC current applied to the cathode was fixed at IA, and the film-forming gas pressure was 20 mTor.
r, and the coil excitation current was set to OA. As shown in Figure 2, the change in jIll is quite small compared to the change in j÷ (
, the high frequency power input to the cathode 5 is applied to the target 6-
It can be said that plasma is generated over a fairly wide area between the substrates 98. Therefore, as shown in FIG. 3, as the high frequency input power PRF increases, j+/jrrl increases. In other words, it can be said that as the input high-frequency power increases, the amount of ion assist increases.

第4図に成膜ガス圧力2 mTorr  (コイル励磁
電流は+4.O,−4A)で直流放電電流IAの状態で
高周波電力を徐々にカソード5に印加していった特のカ
ソード5−アース間の電位差の変化状態を示す。パラメ
ータとしてカソード外周のコイルの励磁電流をとり、そ
の値が正値の時、カソード5の外周の磁極を強める方向
とした。第4図のように、カソード5に供給する高周波
電力がある値を越えると、この放電空間の放電インピー
ダンスが急減し、また、その現象はソレノイドコイル4
をカソード5の外周磁極を強める方向に励磁する程、顕
著になる。
Figure 4 shows a special relationship between the cathode 5 and the ground where high-frequency power was gradually applied to the cathode 5 under the condition of a film-forming gas pressure of 2 mTorr (coil excitation current: +4.0, -4A) and a DC discharge current IA. This shows the state of change in the potential difference. The excitation current of the coil on the outer periphery of the cathode was taken as a parameter, and when the value was a positive value, the magnetic pole on the outer periphery of the cathode 5 was set to be strengthened. As shown in FIG. 4, when the high frequency power supplied to the cathode 5 exceeds a certain value, the discharge impedance of this discharge space decreases rapidly, and this phenomenon also occurs in the solenoid coil 4.
The more the outer magnetic pole of the cathode 5 is excited in the direction of strengthening, the more noticeable it becomes.

第5図にソレノイドコイル4の励磁電流が+4Aの場合
(放電ガス圧2mTorr )のj+とjmの変化の様
子を示す。これを見てわかるとおり、この放電インピー
ダンスが下がる時点で、jIllは急減する。このjI
llの急減は放電インピーダンスの低下によるスパッタ
率の低下が原因であると考えられる。いずれにせよ、そ
の結果として、第6図に示すとおり、この変化点を越え
るとj÷/jmは急増して、やや成膜スピードは落ちる
ものの、今までと比べると格段に大きなイオンアシスト
効果を得ることができるようになる。
FIG. 5 shows how j+ and jm change when the excitation current of the solenoid coil 4 is +4 A (discharge gas pressure 2 mTorr). As can be seen, jIll rapidly decreases when the discharge impedance decreases. This jI
The sudden decrease in ll is considered to be caused by a decrease in sputtering rate due to a decrease in discharge impedance. In any case, as a result, as shown in Figure 6, after this change point, j÷/jm increases rapidly, and although the film formation speed decreases slightly, the ion assist effect is much greater than before. be able to obtain it.

なお、前記実施例においては、マツチングボックスであ
る高周波整合装置2の構造をL型としたので、高周波整
合装置2と放電電極であるカソード5を直接接続したが
、高周波整合装置2の構造がπ型の場合は、放電電極5
に加えられた直流電力が高周波電源装置1に流入するの
で、高周波整合装置2と放電電極5の間にブロッキング
コンデンサを設けておく。
In the above embodiment, the structure of the high frequency matching device 2 which is a matching box is L-shaped, so the high frequency matching device 2 and the cathode 5 which is a discharge electrode are directly connected. However, the structure of the high frequency matching device 2 is In the case of π type, the discharge electrode 5
Since the DC power added to flows into the high frequency power supply device 1, a blocking capacitor is provided between the high frequency matching device 2 and the discharge electrode 5.

[発明の効果] 本発明によれば、通常のDCマグネトロンスパッタリン
グと比較して格段に大きなイオンアシスト効果を得るこ
とができ、また放電ガス圧力とカソードの外周磁極の強
さをコントロールすることで、やや成膜スピードは落ち
るものの更にその4倍程度のイオンアシスト効果を得る
ことができる。これにより、低抵抗で緻密な膜が形成や
、膜の内部応力の低減が可能となり、また、基板に到達
するイオン量が通常のマグネトロンスパッタリングより
格段に多いので、反応性スパッタリングや膜の結晶構造
のコントロールも可能となり新機能薄膜の開発が可能に
なる。
[Effects of the Invention] According to the present invention, it is possible to obtain a much larger ion assist effect compared to normal DC magnetron sputtering, and by controlling the discharge gas pressure and the strength of the outer magnetic pole of the cathode, Although the film formation speed is slightly lower, it is possible to obtain an ion assist effect about four times that speed. This makes it possible to form a dense film with low resistance and reduce the internal stress of the film.Also, since the amount of ions reaching the substrate is significantly larger than that of normal magnetron sputtering, reactive sputtering and the crystal structure of the film can be improved. control, making it possible to develop thin films with new functions.

また、従来のイオンアシスト効果の大きなRFマグネト
ロンスパッタリングと比較しても、本発明によれば、イ
オンアシスト量は減少するが、成膜スピードはDCマグ
ネトロンスパッタリングと同等であり、成膜スピードを
落とさずにイオンアシスト効果を得る新手段であると言
える。
Furthermore, compared to conventional RF magnetron sputtering, which has a large ion assist effect, according to the present invention, although the amount of ion assist is reduced, the film formation speed is the same as that of DC magnetron sputtering, without reducing the film formation speed. It can be said that this is a new means of obtaining an ion assist effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の1実施例を
示す縦断面図、第2図〜第6図は、それぞれDCIA放
電時にカソードに高周波電力を供給した時のj++jm
の変化状態を示す線図であり、第2図および第5図はR
F投入電カーj÷。 jm線図、第3図および第6図はRF投入電カーj+ 
/j+n線図、第4図はRF投投入力カーカソードアー
ス間の電圧線図である。 1・・・・・・高周波電源装置、2・・・・・・高周波
整合装置、3・・・・・・マグネトロン用磁極構造体、
4・・・・・・ソレノイドコイル、 5・・・・・・カソード(陰極、放電電極)、6・・・
・・・ターゲット、   7・・・・・・排気口、8・
・・・・・真空容器、   9・・・・・・基板ホルダ
、9a・・・基板、     10・・・・・・作動ガ
ス導入口、11・・・・・・真空計、    12・・
・・・・電流計、13・・・・・・基板バイアス用直流
電源装置、14・・・・・・インダクタ、 15・・・・・・ローパスフィルタ、 16・・・・・・放電用直流電源装置、17・・・・・
・ソレノイドコイル用直流電源装置。
FIG. 1 is a longitudinal sectional view showing one embodiment of the apparatus for carrying out the method of the present invention, and FIGS. 2 to 6 show j++jm when high frequency power is supplied to the cathode during DCIA discharge, respectively.
FIG. 2 and FIG. 5 are diagrams showing the state of change of R.
F input power car j÷. jm diagram, Figures 3 and 6 are RF input car j+
/j+n diagram, FIG. 4 is a voltage diagram between the RF input input car cathode and ground. 1... High frequency power supply device, 2... High frequency matching device, 3... Magnetic pole structure for magnetron,
4...Solenoid coil, 5...Cathode (cathode, discharge electrode), 6...
...Target, 7...Exhaust port, 8.
...Vacuum container, 9...Substrate holder, 9a...Substrate, 10...Working gas inlet, 11...Vacuum gauge, 12...
... Ammeter, 13 ... DC power supply for substrate bias, 14 ... Inductor, 15 ... Low pass filter, 16 ... DC for discharge Power supply, 17...
・DC power supply device for solenoid coil.

Claims (2)

【特許請求の範囲】[Claims] (1)直流放電を利用するマグネトロンスパッタリング
装置の放電電極に直流電源と同時に高周波電源を接続し
、この高周波が直流電源に流れないように直流電源と電
極の間にインダクタを設け、放電電極と高周波電源の間
に負荷インピーダンス調整用の高周波整合装置を設け、
基板に負バイアス電圧を印加する装置を備えた装置を用
いてイオンアシストスパッタリングを行うに際して、直
流放電で成膜中の基板に流入するイオン量を、放電電極
に加える高周波電力量を変化させることで調整すること
を可能としたイオンアシストスパッタリング方法。
(1) A high-frequency power source is connected to the discharge electrode of a magnetron sputtering device that uses DC discharge at the same time as a DC power source, and an inductor is installed between the DC power source and the electrode to prevent this high frequency from flowing to the DC power source. A high frequency matching device for load impedance adjustment is installed between the power supplies,
When performing ion-assisted sputtering using a device equipped with a device that applies a negative bias voltage to the substrate, the amount of ions flowing into the substrate during film formation by DC discharge can be controlled by changing the amount of high-frequency power applied to the discharge electrode. Ion-assisted sputtering method that allows adjustment.
(2)直流放電を利用するマグネトロンスパッタリング
装置の放電電極に直流電源と高周波電源を接続し、直流
電源と放電電極の間にインダクタを設け、放電電極と高
周波電源の間には負荷インピーダンス調整用の高周波整
合装置を設けて、この高周波整合装置で放電電極に加え
る高周波電力量を変化可能とし、かつ、基板に負バイア
ス電圧を印加する装置を設けたイオンアシストスパッタ
リング装置。
(2) A DC power source and a high frequency power source are connected to the discharge electrode of a magnetron sputtering device that uses DC discharge, an inductor is provided between the DC power source and the discharge electrode, and an inductor is installed between the discharge electrode and the high frequency power source for adjusting the load impedance. An ion-assisted sputtering apparatus that is provided with a high-frequency matching device that can vary the amount of high-frequency power applied to a discharge electrode, and that is provided with a device that applies a negative bias voltage to a substrate.
JP20505590A 1990-08-03 1990-08-03 Method and device for ion assistant sputtering Pending JPH0499174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20505590A JPH0499174A (en) 1990-08-03 1990-08-03 Method and device for ion assistant sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20505590A JPH0499174A (en) 1990-08-03 1990-08-03 Method and device for ion assistant sputtering

Publications (1)

Publication Number Publication Date
JPH0499174A true JPH0499174A (en) 1992-03-31

Family

ID=16500698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20505590A Pending JPH0499174A (en) 1990-08-03 1990-08-03 Method and device for ion assistant sputtering

Country Status (1)

Country Link
JP (1) JPH0499174A (en)

Similar Documents

Publication Publication Date Title
Ferreira et al. Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering (DOMS) mode
WO2018186901A1 (en) High power resonance pulse ac hedp sputtering source and method for material processing
EP3211119B1 (en) Methof of sputtering and sputter system
US6171454B1 (en) Method for coating surfaces using a facility having sputter electrodes
US20090246385A1 (en) Control of crystal orientation and stress in sputter deposited thin films
WO2010076862A1 (en) Magnetic field control for uniform film thickness distribution in sputtering apparatus
KR20010042128A (en) Method and apparatus for deposition of biaxially textured coatings
US20090242388A1 (en) Stress adjustment in reactive sputtering
CN104451569A (en) Method for improving quality of magnetron sputtering film in large size by ion implantation
Chistyakov et al. Advances in high power pulse reactive magnetron sputtering
JPH0499174A (en) Method and device for ion assistant sputtering
JPS59173265A (en) Sputtering device
US20050233089A1 (en) Sputter method or device for the production of natural voltage optimized coatings
JPH11172431A (en) Magnetron sputter film formation and device therefor
KR100388294B1 (en) Evaporation method of metal thin film on polyimide for circuit board
JPH02107763A (en) Thin film formation
CN102230160B (en) Overvoltage pulse-enhanced magnetic control sputtering film plating method
JP2000129439A (en) Sputtering apparatus and method
JPH02185967A (en) Method and device for bias sputtering
JPH02243762A (en) Sputtering device
JPH049465A (en) Method and device for controlling dc potential in thin film forming device
JPH0250958A (en) Film-forming equipment by sputtering method
JPS63307272A (en) Ion beam sputtering device
JPS6240386A (en) Ecr plasma treatment device
JPS6043482A (en) Sputtering device