JPH0499122A - Nonoxidative heating method for steel material - Google Patents
Nonoxidative heating method for steel materialInfo
- Publication number
- JPH0499122A JPH0499122A JP20472690A JP20472690A JPH0499122A JP H0499122 A JPH0499122 A JP H0499122A JP 20472690 A JP20472690 A JP 20472690A JP 20472690 A JP20472690 A JP 20472690A JP H0499122 A JPH0499122 A JP H0499122A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- gas
- temperature
- flame
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 58
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 51
- 239000010959 steel Substances 0.000 title claims abstract description 51
- 239000000463 material Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims description 26
- 239000007789 gas Substances 0.000 claims abstract description 42
- 239000001257 hydrogen Substances 0.000 claims abstract description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 29
- 239000000567 combustion gas Substances 0.000 claims abstract description 7
- 230000003647 oxidation Effects 0.000 claims description 27
- 238000007254 oxidation reaction Methods 0.000 claims description 27
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 238000002485 combustion reaction Methods 0.000 claims description 8
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 abstract description 10
- 239000000571 coke Substances 0.000 abstract description 2
- 239000000446 fuel Substances 0.000 abstract description 2
- 238000007664 blowing Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 238000001499 laser induced fluorescence spectroscopy Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004435 EPR spectroscopy Methods 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は、鋼材を高温にまで高速で無酸化加熱する方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of heating steel materials to high temperatures at high speed without oxidation.
〈従来技術とその課題〉
従来から、鋼材を高温にまで無酸化加熱する方法の1つ
として、バーナから高温の燃焼ガスを噴射して加熱する
“直火無酸化加熱法“が良く知られている。<Prior art and its problems> The "direct fire non-oxidation heating method", which heats steel by injecting high-temperature combustion gas from a burner, has been well known as one of the methods for heating steel materials to high temperatures without oxidation. There is.
第2図は、従来の直火無酸化加熱法の一例を説明した概
念図である。第2図において、垂直方向に移動する薄鋼
板(1)の通路両側の炉壁(2)には適切に設計された
バーナ(3)が設置されているが、このバーナ(3)に
より空気比−0,9〜0.95の条件で燃料ガスを燃焼
させて還元火炎(4)を形成させ、これを被加熱薄鋼板
+11に衝突させる。これにより、還元火炎(4)の作
用で表面が酸化されることなく薄鋼板(1)の加熱がな
される訳である。FIG. 2 is a conceptual diagram illustrating an example of a conventional direct fire non-oxidation heating method. In Figure 2, suitably designed burners (3) are installed on the furnace walls (2) on both sides of the passage of the vertically moving thin steel plate (1). The fuel gas is combusted under the conditions of -0.9 to 0.95 to form a reduction flame (4), which is made to collide with the heated thin steel plate +11. Thereby, the thin steel plate (1) is heated without the surface being oxidized by the action of the reducing flame (4).
そして、この直火加熱法は「還元性ガスにより雰囲気調
整した加熱炉内でラジアントチューブ等を用いて間接加
熱する方法」に比べて鋼材の加熱速度を著しく速くでき
ると言う大きな特徴を有していた。ただ、この方法の場
合、無酸化加熱を実現する必須の条件として“燃料ガス
燃焼時の空気比を1より小さくしても良好な燃焼性が保
証できるバーナ”を用いることが挙げられるが、米国特
許第3320085号明細書には上記目的で使用される
性能の良好なラジアントカップバーナが示されており、
また特公昭64−4408号として同様目的の空気比7
0.85〜0.95で燃焼させる直火還元加熱バーナが
提案されている。This direct-fire heating method has the great feature of being able to significantly increase the heating rate of steel compared to indirect heating using a radiant tube in a heating furnace whose atmosphere has been adjusted using reducing gas. Ta. However, in the case of this method, an essential condition to achieve non-oxidation heating is to use a burner that can guarantee good combustibility even if the air ratio during fuel gas combustion is less than 1. Patent No. 3320085 discloses a radiant cup burner with good performance used for the above purpose,
Also, as Special Publication No. 64-4408, air ratio 7 for the same purpose
A direct-fired reduction heating burner that burns at a temperature of 0.85 to 0.95 has been proposed.
しかしながら、このような従来の直火加熱法には次のよ
うな問題があった。即ち、1つには、ガス燃焼時の空気
比を1よりも小さくすると無酸化性能は良好になるもの
の、燃焼加熱効率が落ちてしまい、無酸化性能を維持す
るためには加熱効率を犠牲にしなければならないと言う
問題である。However, such conventional direct flame heating methods have the following problems. In other words, for one thing, if the air ratio during gas combustion is made smaller than 1, the non-oxidation performance will improve, but the combustion heating efficiency will drop, and in order to maintain the non-oxidation performance, heating efficiency must be sacrificed. The problem is that it has to be done.
更に、2つ目として、還元炎を利用した無酸化加熱では
鋼材の加熱温度に限界があって高々800〜900℃が
上限となり、これ以上に加熱するとどうしても被加熱鋼
材の表面が酸化さてしまうと言う問題が指摘される。Furthermore, secondly, in non-oxidizing heating using a reducing flame, there is a limit to the heating temperature of the steel material, and the upper limit is 800 to 900 degrees Celsius, and if heated above this, the surface of the steel material to be heated will inevitably oxidize. The problem is pointed out.
そこで、無酸化加熱性能向上のために火炎温度を上昇さ
せる手段として、超高温のプラズマガスを火炎中にイン
ジェクションする方法が提案された(特開昭62−50
416号)。これは、鋼材に衝突する際の火炎温度が高
いほど無酸化加熱限界温度が高くなると言う経験を踏ま
え、超高温のプラズマガスを火炎中にインジェクション
して火炎温度を高めようとしたものである。Therefore, a method of injecting ultra-high temperature plasma gas into the flame was proposed as a means of increasing the flame temperature in order to improve non-oxidation heating performance (Japanese Patent Laid-Open No. 62-50
No. 416). This is an attempt to increase the flame temperature by injecting ultra-high temperature plasma gas into the flame, based on the experience that the higher the flame temperature when it collides with the steel material, the higher the non-oxidation heating limit temperature becomes.
第3図は、上記特開昭62−50416号公報に示され
た「プラズマガスをインジェクションして火炎温度を高
める実験結果からの“火炎温度と無酸化加熱限界温度”
との関係を示したグラフ」である。この第3図によれば
、火炎温度を400℃引き上げることにより無酸化加熱
限界(上限)温度も200〜250℃上昇することが窺
える。Figure 3 shows "Flame temperature and non-oxidation heating limit temperature" from the experimental results of increasing flame temperature by injecting plasma gas, as shown in the above-mentioned Japanese Patent Application Laid-Open No. 62-50416.
This is a graph showing the relationship between According to FIG. 3, it can be seen that by raising the flame temperature by 400°C, the non-oxidation heating limit (upper limit) temperature also increases by 200 to 250°C.
しかし、この火炎温度上昇型の無酸化加熱性能向上策に
も、次のような問題点が指摘された。However, the following problems were pointed out with this flame temperature increase type non-oxidation heating performance improvement measure.
例えば、上述したように、第3図によれば無酸化加熱限
界温度を900℃から1100℃まで上昇させるには火
炎温度を1600℃から2000℃にまで上昇させる必
要がある。従って、このためには火炎の含熱量をそのま
ま上昇させることが要され、
(2000℃−1600℃)/1600℃=0.25な
る計算式から明らかなように少なくとも25%の入熱増
が必要であり、プラズマガスのインジェクションでこれ
に対処するためには該プラズマガスの顕熱量が燃焼ガス
の25%以上大きいことが条件となる。ところが、プラ
ズマガスのインジェクション法では上記入熱増を電気エ
ネルギーで賄わなければならず、しかも上記値に相応す
るプラズマの発生に要する電気エネルギはバーナー入熱
の30%以上大きいものとなることから、これはエネル
ギコストの著しい上昇につながる。For example, as described above, according to FIG. 3, in order to raise the non-oxidation heating limit temperature from 900°C to 1100°C, it is necessary to raise the flame temperature from 1600°C to 2000°C. Therefore, for this purpose, it is necessary to directly increase the heat content of the flame, and as is clear from the calculation formula (2000°C - 1600°C)/1600°C = 0.25, an increase in heat input of at least 25% is required. In order to deal with this problem by injecting plasma gas, the sensible heat amount of the plasma gas must be 25% or more larger than that of the combustion gas. However, in the plasma gas injection method, the increase in heat input must be covered by electrical energy, and moreover, the electrical energy required to generate plasma corresponding to the above value is 30% or more greater than the burner heat input. This leads to a significant increase in energy costs.
しかも、火炎温度を上昇させるとバーナの耐久性が著し
く低下するとの事実もあり、設備技術的には決して好ま
しい手段とは言えない上、被加熱鋼材の溶損事故の可能
性も高まる恐れがあった。Moreover, there is also the fact that increasing the flame temperature will significantly reduce the durability of the burner, which is by no means a desirable method from an equipment engineering perspective, and may also increase the possibility of melting and damage to the steel being heated. Ta.
このようなことから、本発明が目的としたのは、従来の
無酸化加熱法に指摘される前記問題点を解消し、燃焼加
熱効率が良好で、かつ過度の熱量供給を要することなく
無酸化加熱上限温度を高め得る鋼材の無酸化加熱手段を
提供することであった。Therefore, the purpose of the present invention is to solve the problems pointed out in the conventional non-oxidation heating method, to achieve good combustion heating efficiency, and to provide a non-oxidation method without requiring excessive heat supply. The object of the present invention is to provide a non-oxidation heating means for steel materials that can increase the upper limit heating temperature.
〈課題を解決するための手段〉
本発明者は、上記目的を達成すべく鋭意研究を重ねた結
果、特に還元炎の性質について基礎的な検討の中から「
火炎中で鋼材が還元される領域は水素ラジカル(原子状
水素)の濃度が高い領域と対応しており、鋼材の非酸化
加熱や還元のためには“火炎中の水素ラジカル濃度が高
いこと”が条件であって、火炎温度を高めることは必ず
しも必要でない」との事実を見出したのである。<Means for Solving the Problems> As a result of extensive research to achieve the above object, the present inventors have discovered the following from a basic study, particularly regarding the properties of reduction flame:
The area where steel is reduced in flame corresponds to the area where the concentration of hydrogen radicals (atomic hydrogen) is high, and for non-oxidative heating and reduction of steel, it is necessary to have a high concentration of hydrogen radicals in the flame. They found that it is not necessary to raise the flame temperature.
そして、更に検討を深め、「鋼材を加熱するガスの成分
として1100pp以上の水素ラジカルが存在していれ
ば、該加熱ガス(火炎等)温度の高低に直接的には関係
なく無酸化加熱が可能となる」との知見を得ることもで
きた。Further investigation revealed that ``If 1,100 pp or more of hydrogen radicals exist as a component of the gas that heats the steel material, non-oxidation heating is possible regardless of the temperature of the heating gas (flame, etc.). We were also able to obtain the knowledge that
第4図は、上記知見を得るきっかけとなった簡単な実験
例で、ブンゼンバーナ(5)による空気比の小さい還元
炎(6)に表面が酸化した小径の綱線(7)を挿入し、
表面が還元される領域を火炎軸上で調べる様子を示して
いる。そして、この実験により、鋼線表面が還元される
領域は火炎軸上のa点からb点に至るまでであることが
確認された。更に、この際の“火炎軸上の距離と水素ラ
ジカルの濃度及び火炎温度の関係”を調査して第5図の
結果を得たが、この調査結果から、前記“火炎軸上のa
点からb点に至る領域”が“水素ラジカルの濃度が11
00ppを超えた領域”と一致すること も明らかとな
り、鋼材の還元には火炎温度の高低は直接的に関係せず
に火炎ガスの組成(水素ラジカルの濃度)が問題であっ
て、水素ラジカルの富化が重要な要件となることを知っ
た訳である。Figure 4 shows a simple experimental example that led to the above findings, in which a small-diameter wire (7) with an oxidized surface was inserted into a reducing flame (6) with a small air ratio produced by a Bunsen burner (5).
This shows how the area where the surface is reduced is examined on the flame axis. Through this experiment, it was confirmed that the area where the steel wire surface is reduced is from point a to point b on the flame axis. Furthermore, we investigated the "relationship between the distance on the flame axis, the concentration of hydrogen radicals, and the flame temperature" and obtained the results shown in Figure 5.
The region from point to point b” has a “concentration of hydrogen radicals of 11
It is also clear that the reduction of steel materials is not directly related to the flame temperature, but rather the composition of the flame gas (concentration of hydrogen radicals). I learned that enrichment is an important requirement.
本発明は、上記知見事項等に基づいてなされたもので、
「水素ラジカルを100pp+n以上含む高温のガスを
接触させて鋼材を加熱することによって、鋼材の安定し
た無酸化加熱を実施し得るようにした点」に大きな特徴
を有している。The present invention has been made based on the above-mentioned findings, etc., and aims to achieve stable non-oxidation heating of steel materials by heating the steel materials by contacting them with a high-temperature gas containing 100 pp+n or more of hydrogen radicals. It has a major characteristic in that it has been
ここで、前記「高温のガス」とは、鋼材加熱のために適
用される一般的な温度に加熱されたガス(火炎を含む)
を意味しており、「特定の成る高い温度以上に加熱され
たガス」と言った限定的なものではない。Here, the above-mentioned "high-temperature gas" refers to gas (including flame) heated to a general temperature applied for heating steel materials.
It is not limited to "a gas heated to a certain high temperature or higher."
また、上記水素ラジカルは、例えば水素ガスを作動ガス
とするプラズマジェット発生装置により形成することが
できる。即ち、プラズマジェットでは、第6図に示した
ように、特定の温度で2原子の作動ガスが解離する現象
が起き、水素ガスを作動ガスとするプラズマジェットで
は多量の水素ラジカルが形成される。Moreover, the hydrogen radicals can be formed, for example, by a plasma jet generator using hydrogen gas as a working gas. That is, in a plasma jet, as shown in FIG. 6, a phenomenon occurs in which two atoms of the working gas dissociate at a specific temperature, and in a plasma jet using hydrogen gas as the working gas, a large amount of hydrogen radicals are formed.
従って、この水素ラジカルを例えば低い空気比で燃焼す
る火炎中に注入して混合し、これを吹付けて鋼材面に衝
突・接触させれば、鋼材面は還元雰囲気で覆われて酸化
から保護されると共に、火炎ガスからの伝熱によって鋼
材は所定温度に昇温することとなる。Therefore, if these hydrogen radicals are injected into a flame burning at a low air ratio, mixed, and sprayed to collide with and come into contact with the steel surface, the steel surface will be covered with a reducing atmosphere and protected from oxidation. At the same time, the temperature of the steel material increases to a predetermined temperature due to heat transfer from the flame gas.
プラズマジェット発生装置としては、第7図に示したよ
うな構造のものが一般的であるが、その作動ガスとして
“水素を含みかつ酸化性のガスを含まないガス”を用い
れば、水素をrHz−2HJに従って解離させることが
でき、水素ラジカルが生成する。A typical plasma jet generator has the structure shown in Figure 7, but if a "gas containing hydrogen but not containing oxidizing gas" is used as the working gas, hydrogen can be generated at rHz. -2HJ can be dissociated to generate hydrogen radicals.
勿論、水素ラジカルの生成は、高温プラズマ発生法のみ
ではなく低温プラズマ発生法によっても良いことは言う
までもない。Of course, hydrogen radicals can be generated not only by high-temperature plasma generation methods but also by low-temperature plasma generation methods.
なお、本発明法の実施に当っては、次のような手法を採
用することができる。In addition, in carrying out the method of the present invention, the following method can be adopted.
(a) 火炎の代わりに水素ラジカルを含む高温ガス
を鋼材に衝突させて該鋼材の加熱を行う。(a) Instead of flame, high-temperature gas containing hydrogen radicals collides with the steel material to heat the steel material.
(b) 火炎温度が1600℃以下の通常燃焼火炎中
に、火炎温度を引き上げることなく “水素ラジカルを
含むガス”を投入し、これを鋼材に接触させて該鋼材の
加熱を行う。(b) A "gas containing hydrogen radicals" is introduced into a normal combustion flame with a flame temperature of 1600° C. or lower without raising the flame temperature, and the steel material is heated by being brought into contact with the gas.
そして、これらによって、前述した“火炎の高温化に伴
う弊害”を受けることなく鋼材の無酸化加熱性能を向上
できる。With these, the oxidation-free heating performance of the steel material can be improved without suffering the aforementioned "adverse effects associated with high flame temperatures."
更に、既設の“空気比:1.0以下で燃焼させる無酸化
加熱バーナを備えた鋼材加熱炉”において火炎(排ガス
)中へ水素ラジカルをインジェクションした場合には、
水素ラジカルの濃度:100ppH1以上を保ちさえす
れば無酸化加熱バーナの空気比を1近くに上昇させても
鋼材の酸化を生じることが1く、従って燃焼加熱効率上
大きな利益を確保しつつ安定した無酸化加熱が可能とな
る。Furthermore, when hydrogen radicals are injected into the flame (exhaust gas) in an existing "steel heating furnace equipped with a non-oxidizing heating burner that burns at an air ratio of 1.0 or less,"
Concentration of hydrogen radicals: 100pp As long as the pH is maintained at 1 or higher, oxidation of the steel will not occur even if the air ratio of the non-oxidizing heating burner is increased to nearly 1, and therefore the combustion heating efficiency can be stabilized while ensuring great benefits in terms of combustion heating efficiency. Non-oxidizing heating becomes possible.
ここで、水素ラジカル濃度の測定は、例えばレーザー誘
起蛍光分光分析法(LIFS法)や電子スピン共鳴法(
E S R法)等の如き周知の方法により比較的容易に
行えることは言うまでもない。Here, the hydrogen radical concentration can be measured by, for example, laser-induced fluorescence spectroscopy (LIFS method) or electron spin resonance method (
It goes without saying that this can be done relatively easily by a well-known method such as the ESR method.
続いて、本発明を実施例によって更に具体的に説明する
。Next, the present invention will be explained in more detail with reference to Examples.
〈実施例〉
第1図で示したように、高温ガス発生装置(8)で燃料
ガス(コークス炉ガス)を燃焼させて1100℃の燃焼
ガスを発生させ、一方、水素ラジカル発生装置(9)に
て高濃度の水素ラジカルを生成させると共に、両者を混
合して水素ラジカル富化高温ガスを得、これを加熱炉の
炉壁(2)に設けた吹き出しノズルQOIから0.8f
l厚のil鋼板(1)に吹きつけて該鋼板の加熱を実施
した。<Example> As shown in Fig. 1, fuel gas (coke oven gas) is combusted in a high-temperature gas generator (8) to generate combustion gas at 1100°C, while a hydrogen radical generator (9) At the same time as generating high concentration hydrogen radicals, the two are mixed to obtain hydrogen radical-enriched high-temperature gas, which is then 0.8 f
A 1-thick IL steel plate (1) was blown onto the steel plate (1) to heat the steel plate.
この際、まず水素ラジカル富化高温ガス中の水素ラジカ
ル濃度を300ppm+に調整し、約10秒で900℃
まで加熱した結果、鋼板の酸化は無く、安定した無酸化
加熱を達成できたことが確認された。At this time, first, the hydrogen radical concentration in the hydrogen radical-enriched high-temperature gas was adjusted to 300 ppm+, and the temperature was increased to 900°C in about 10 seconds.
As a result, there was no oxidation of the steel plate, confirming that stable oxidation-free heating was achieved.
次に、高温ガスの温度を上昇させると共に水素ラジカル
の混合割合をも高め、水素ラジカル濃度:5000pp
m以上、温度:1250℃とした水素ラジカル富化高温
ガスを、同様に0.8鶴厚の薄鋼板(1)に衝突させて
1100℃にまで加熱した結果、やはり銅板表面を酸化
させることなく安定した加熱ができることを確認した。Next, the temperature of the high-temperature gas was raised, and the mixing ratio of hydrogen radicals was also increased to reach a hydrogen radical concentration of 5000 pp.
As a result of similarly bombarding a 0.8 mm thick thin steel plate (1) with hydrogen radical-enriched high-temperature gas at 1250°C and heating it to 1100°C, the copper plate surface was not oxidized. It was confirmed that stable heating was possible.
また、これとは別に、既設の無酸化加熱バーナの火炎中
に水素ラジカルをインジェクションすると、無酸化加熱
バーナの空気比を0.98まで上昇させても、水素ラジ
カルの濃度が1100pp以上に保てるならば無酸化性
能上格別な問題を生じないことも確認された。更に、こ
の場合、無酸化加熱バーナの空気比を0.9〜0.98
に上昇させたことにより、0.8mH薄鋼板を750℃
まで加熱する場合で、燃料使用量が12%も低減される
ことが分かった。Separately, if hydrogen radicals are injected into the flame of an existing non-oxidizing heating burner, the concentration of hydrogen radicals can be maintained at 1100 pp or more even if the air ratio of the non-oxidizing heating burner is increased to 0.98. It was also confirmed that no particular problem occurred in terms of non-oxidation performance. Furthermore, in this case, the air ratio of the non-oxidizing heating burner is set to 0.9 to 0.98.
By raising the temperature to 750℃, the 0.8mH thin steel plate was
It was found that the amount of fuel used was reduced by 12% when heated to
(効果の総括〉
以上に説明した如く、この発明によれば、エネルギコス
トの上昇や操業トラブルを生じることなく、しかも間接
加熱方式に比べて著しくコンパクトな設備でもって鋼材
の無酸化加熱を安定に実施することが可能となるなど、
産業上極めて有用な効果がもたらされる。(Summary of Effects) As explained above, according to the present invention, the non-oxidation heating of steel materials can be stably performed without increasing energy costs or causing operational troubles, and with equipment that is significantly more compact than indirect heating methods. It becomes possible to implement
Industrially extremely useful effects are brought about.
第1図は、実施例で採用した鋼材無酸化加熱手法の概略
説明図である。
第2図は、従来の直火無酸化加熱法の一例を説明した概
念図である。
第3図は、火炎温度と無酸化加熱限界温度との関係を示
したグラフである。
第4図は、火炎中での酸化膜付鋼線の還元実験法を示し
た説明図である。
第5図は、火炎軸上の各位置における水素ラジカルの濃
度及び火炎温度の関係を示したグラフである。
第6図は、2原子ガスを作動ガスとしたプラズマ発生装
置のガス温度と熱量及びガスの状態との関係を示したグ
ラフである。
第7図は、プラズマ発生装置の一例を示した概略図であ
る。
図面において、
1・・・薄鋼板、 2・・・炉壁。
3・・・バーナ、 4・・・還元火炎。
5・・・ブンゼンバーナ、 6・・・火炎。
7・・・鋼線、 8・・・高温ガス発生装置
。
9・・・水素ラジカル発生装置。
10・・・吹き出しノズル。FIG. 1 is a schematic explanatory diagram of the non-oxidation heating method for steel material adopted in the example. FIG. 2 is a conceptual diagram illustrating an example of a conventional direct fire non-oxidation heating method. FIG. 3 is a graph showing the relationship between flame temperature and non-oxidation heating limit temperature. FIG. 4 is an explanatory diagram showing an experimental method for reducing an oxidized steel wire in a flame. FIG. 5 is a graph showing the relationship between hydrogen radical concentration and flame temperature at each position on the flame axis. FIG. 6 is a graph showing the relationship between the gas temperature, the amount of heat, and the state of the gas in a plasma generator using diatomic gas as the working gas. FIG. 7 is a schematic diagram showing an example of a plasma generation device. In the drawings: 1... Thin steel plate, 2... Furnace wall. 3... Burner, 4... Reduction flame. 5...Bunsen burner, 6...flame. 7... Steel wire, 8... High temperature gas generator. 9...Hydrogen radical generator. 10...Blowout nozzle.
Claims (2)
を接触させて鋼材を加熱することを特徴とする、鋼材の
無酸化加熱法。(1) A non-oxidation heating method for steel, which is characterized by heating the steel by bringing it into contact with a high-temperature gas containing 100 ppm or more of hydrogen radicals.
を使用する加熱炉において、該燃焼ガス中に水素ラジカ
ルを100ppm以上吹き込み、これを接触させて鋼材
を加熱することを特徴とする、鋼材の無酸化加熱法。(2) In a heating furnace that uses combustion gas generated by combustion at an air ratio of less than 1.0, 100 ppm or more of hydrogen radicals are blown into the combustion gas, and the steel material is heated by contacting the hydrogen radicals with the hydrogen radicals. A non-oxidizing heating method for steel materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20472690A JPH0499122A (en) | 1990-08-01 | 1990-08-01 | Nonoxidative heating method for steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20472690A JPH0499122A (en) | 1990-08-01 | 1990-08-01 | Nonoxidative heating method for steel material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0499122A true JPH0499122A (en) | 1992-03-31 |
Family
ID=16495296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20472690A Pending JPH0499122A (en) | 1990-08-01 | 1990-08-01 | Nonoxidative heating method for steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0499122A (en) |
-
1990
- 1990-08-01 JP JP20472690A patent/JPH0499122A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0507995B1 (en) | Segregated zoning combustion | |
TWI397611B (en) | Furnace atmosphere activation method and apparatus | |
US3413161A (en) | Process for the generation and utilization of furnace atmospheres for the heat treatment of metals, especially of steel | |
KR20180125518A (en) | Furnace Furnace and Heat Treatment Method for Heat Treatment of Metal Strips | |
JPS6078247A (en) | Heat exchange under high intensity combustion while suppressing generation of carbon monoxide and device thereof | |
JPH0499122A (en) | Nonoxidative heating method for steel material | |
JPH11287566A (en) | Protective atmosphere heating | |
JP3081123B2 (en) | Direct flame reduction heating method for metals | |
JPS6330973B2 (en) | ||
US6402805B1 (en) | Method for an improved energy input into a scrap bulk | |
JP3959773B2 (en) | Thermal storage type atmospheric gas heating method and thermal storage type atmospheric gas heating device | |
EP2354655B1 (en) | Method for combustion of a low-grade fuel | |
TW201908682A (en) | Method for reducing nitrogen oxides in a strip processing furnace | |
JPH09243056A (en) | Heat accumulation switching burner | |
JPH0499123A (en) | Method for removing oxide layer on surface of steel material | |
JP3493299B2 (en) | Gas carburizing method and apparatus | |
SU857282A1 (en) | Method of wire heating in patenting furnace | |
KR102498261B1 (en) | Method for reducing nitrogen oxides in strip processing furnaces | |
KR100474816B1 (en) | Air insulating nozzle equipment for the annealing furnace of continuous galvanizing line and using thereby air insualting method | |
JP2759354B2 (en) | Bright annealing method and apparatus for stainless steel strip | |
JPH0121205B2 (en) | ||
JPH0517816A (en) | Method for removing scale layer from surface of high temperature steel material | |
JPH10259420A (en) | Method for reducing oxide of metallic plate | |
JPH06257723A (en) | Oxygen burner | |
JPS6373009A (en) | High load combustion device |