JPH0498738A - Liquid metal ion source - Google Patents

Liquid metal ion source

Info

Publication number
JPH0498738A
JPH0498738A JP2213885A JP21388590A JPH0498738A JP H0498738 A JPH0498738 A JP H0498738A JP 2213885 A JP2213885 A JP 2213885A JP 21388590 A JP21388590 A JP 21388590A JP H0498738 A JPH0498738 A JP H0498738A
Authority
JP
Japan
Prior art keywords
liquid metal
electrode
ion
electric field
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2213885A
Other languages
Japanese (ja)
Inventor
Aritono Teraoka
寺岡 有殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2213885A priority Critical patent/JPH0498738A/en
Publication of JPH0498738A publication Critical patent/JPH0498738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To make it possible to perform electric field emission of ion in a low electric field by providing a mechanism irradiating the surface of a needlelike liquid metal electrode with light. CONSTITUTION:A liquid metal electrode 16 is installed, keeping insulation, in a vacuum vessel 14 and applied with a positive bias voltage via power source 12. The electrode 16 is energized and heated by a power source 11 and keeps a melting state of metal. Ion is effectively extracted by being provided with a bias electrode 15, and is prevented to diffuse in to space as much as possible. The kinetic energy of ion is decided by the voltage applied from accelerating power source 13. In the case of vacuum ultraviolet, utilizing the flange of a light introducing window 18a the vacuum vessel 14 is connected to a light source and a spectral system. The ion being radially radiated from the tip of the liquid metal electrode 16 passes through the bias electrode 15, and thereafter enters into a convergent lens system 17 and is formed into beam, and enough ion current can be obtained in a low electric field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集束イオンビーム装置および二次イオン質量分
析器等に装着される液体金属イオン源に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid metal ion source installed in a focused ion beam device, a secondary ion mass spectrometer, and the like.

〔従来の技術〕[Conventional technology]

1986年1日刊工業新聞社発行、日本学術振興会編、
「電子・イオンビームハンドブック」、第二板、第22
4頁から第229頁に記載されているように、液体金属
イオン源では溶融状態に保った液体金属電極に正電圧を
印加するとエミッタ先端の液体金属表面には正電場によ
る負の圧力が生じる。それが表面張力を上回ると液体金
属はティラーコーンと呼ばれる円錐形状に変形する。そ
の先端径が十分に減少してそこでの電場が数十V / 
n m程度になると電界蒸発過程により表面から原子は
イオン化して脱離する。
Published by Nikkan Kogyo Shimbun, 1986, edited by Japan Society for the Promotion of Science,
"Electron/Ion Beam Handbook", 2nd board, No. 22
As described on pages 4 to 229, in a liquid metal ion source, when a positive voltage is applied to a liquid metal electrode kept in a molten state, a negative pressure is generated on the surface of the liquid metal at the tip of the emitter due to a positive electric field. When the surface tension is exceeded, the liquid metal deforms into a conical shape called a tiller cone. The diameter of the tip is sufficiently reduced so that the electric field there becomes several tens of V/
When the particle size becomes about nm, atoms are ionized and desorbed from the surface by the field evaporation process.

従来技術としては、以上述べた現象を利用して集束イオ
ンビーム装置および二次イオン質量分析器のイオン源と
して液体金属イオン源が利用されている。液体金属イオ
ン源のエミッタにはキャピラリー型とニードル型がある
。前者では内径20μm程度の細管の先端に試料溜から
液体金属を送る必要があるため低融点金属が用いられる
。また液体金属送出のための加圧機構も必要である。後
者は先端径0.5〜]、Oumめ固体金属針をティラー
コーンの下地として用いる。その材料は液体金属でよく
濡れること、およびそれと反応しないことを条件として
選択される。多くの場合にタングステン、ニッケルが用
いられる。ニードル型の方が構造が簡単で高融点金属も
イオン化できるため現在の主流になっている。
In the prior art, liquid metal ion sources have been used as ion sources for focused ion beam devices and secondary ion mass spectrometers, taking advantage of the above-described phenomenon. There are two types of emitters for liquid metal ion sources: capillary type and needle type. In the former case, a low melting point metal is used because it is necessary to send liquid metal from a sample reservoir to the tip of a thin tube with an inner diameter of about 20 μm. A pressurizing mechanism for liquid metal delivery is also required. The latter has a tip diameter of 0.5~] and uses a round solid metal needle as the base of the tiller cone. The material is selected on the condition that it is well wetted by the liquid metal and does not react with it. Tungsten and nickel are often used. The needle type is currently the mainstream because it has a simpler structure and can ionize high-melting point metals.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

液体金属イオン源の電界蒸発ては固体の電界蒸発とは異
なってエミッタとなるティラーコーンの先端径は印加電
圧の上昇と共に自動的に減少する。電界蒸発が起こる程
度の高い電界を実現するためには数+nm程度にまで先
端径が減少する必要がある。ニードル型液体金属イオン
源における電流−電圧特性はニードルの形状、その表面
状態、試料溜との位置関係、試料溜の構造等液体金属試
料がティラーコーンに供給される過程の特性、および粘
性抵抗に大きく依存する。そのなめ先端径が減少するに
つれて試料供給過程の特性の影響が顕著になり、電流−
電圧特性に異常が観測されるようになる。それを克服す
るためには試料溜からのニードルの突き出しを短くする
、ニードル表面に清をつける、ニードル先端の円錐角を
大きくするなとして粘性抵抗を低減させることが試みら
れているか効果は充分ではない。そこでこれらの工夫に
加えて、低電界でティラーコーンの先端径が大きく、試
料供給過程の特性、粘性抵抗の影響が著しく現れない状
態で、強度が十分で且つ安定した電界蒸発を実現する液
体金属イオン源か求められている。
In field evaporation of a liquid metal ion source, unlike field evaporation of a solid, the tip diameter of the tiller cone serving as an emitter automatically decreases as the applied voltage increases. In order to realize an electric field high enough to cause field evaporation, it is necessary to reduce the tip diameter to about several nanometers. The current-voltage characteristics of a needle-type liquid metal ion source depend on the shape of the needle, its surface condition, its positional relationship with the sample reservoir, the characteristics of the process in which the liquid metal sample is supplied to the tiller cone, such as the structure of the sample reservoir, and viscous resistance. Much depends. As the tip diameter decreases, the influence of the characteristics of the sample supply process becomes more pronounced, and the current −
Abnormalities begin to be observed in voltage characteristics. In order to overcome this, attempts have been made to reduce the viscous resistance by shortening the protrusion of the needle from the sample reservoir, cleaning the needle surface, and increasing the cone angle of the needle tip, but the effects are not sufficient. do not have. Therefore, in addition to these measures, we developed a liquid metal that achieves stable electric field evaporation with sufficient strength in a low electric field and with a large tip diameter of the tiller cone, without being noticeably affected by the characteristics of the sample supply process or viscous resistance. An ion source is required.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の液体金属イオン源は、針状液体金属電極に正電
圧を印加して該針状液体金属電極の先端近傍より表面の
原子をイオン化して脱離させる際に、該針状液体金属電
極の表面に光を照射する機構を具備することを特徴とし
ている。
The liquid metal ion source of the present invention applies a positive voltage to the acicular liquid metal electrode to ionize and desorb surface atoms from near the tip of the acicular liquid metal electrode. It is characterized by having a mechanism for irradiating light onto the surface of the device.

〔作用〕[Effect]

電界蒸発の原理は電荷交換モデルで説明されている。第
2図は液体金属電極の表面の原子の電界蒸発を説明する
ための原子間ポテンシャルである。mtmtvはポテン
シャルエネルギー、横軸Rは原子間距離、図中の■は液
体金属電極を構成する元素のイオン化ポテンシャル、φ
はその仕事関数である。液体金属電極の表面Aから表面
原子A3を表面に対して垂直に引き離すときの電気的に
中性状態のポテンシャルは、電界による電子雲の分極の
影響を受けて若干変化するが基本的にその形を変えない
。第2図でU、、Fは電界のある場合の電子基低状態の
ポテンシャルを表す。Ulは脱離する原子の電子が液体
金属電極に移ることで形成される電荷交換状態のポテン
シャルを表す。それは電界とのクーロン相互作用のため
に大きくその形を変える。第2図では電界のある場合の
電荷交換状態のポテンシャルを01’で表す。電界が十
分強いときには電荷交換状態のポテンシャルは電子基底
状態のポテンシャルUfiFとその極小点付近で交差す
る。それらの状態間で電子相関が強い場合には、この交
差はCで表す疑似交差となって電子基底状態(U a’
)から電荷交換状態(u+F>への電子状態量遷移が起
こる。電荷交換状態(U +F)は連続エネルギー状態
であるので表面原子A、はイオン化してA8+の形で表
面から脱離する。
The principle of field evaporation is explained by a charge exchange model. FIG. 2 shows an interatomic potential for explaining electric field evaporation of atoms on the surface of a liquid metal electrode. mtmtv is the potential energy, the horizontal axis R is the interatomic distance, ■ in the figure is the ionization potential of the element constituting the liquid metal electrode, φ
is its work function. The electrically neutral potential when surface atoms A3 are separated from surface A of the liquid metal electrode perpendicular to the surface changes slightly due to the polarization of the electron cloud due to the electric field, but basically its shape is do not change. In FIG. 2, U, , F represent the potential of the electronic ground state in the presence of an electric field. Ul represents the potential of the charge exchange state formed when the electrons of the desorbing atoms transfer to the liquid metal electrode. It changes its shape significantly due to Coulomb interaction with the electric field. In FIG. 2, the potential of the charge exchange state in the presence of an electric field is represented by 01'. When the electric field is sufficiently strong, the potential of the charge exchange state intersects the potential of the electronic ground state UfiF near its minimum point. If the electronic correlation between these states is strong, this intersection becomes a pseudo-crossover denoted by C, and the electronic ground state (U a'
) to the charge exchange state (u+F>) occurs. Since the charge exchange state (U + F) is a continuous energy state, the surface atoms A are ionized and desorbed from the surface in the form of A8+.

エネルギーhνの光30の照射によって電子基底状態の
ポテンシャル(U、’″)から電子励起状態のポテンシ
ャル(U、” )に光励起した場合には、疑似交差(C
)をさらに高エネルギー側の疑似交差(C゛)に移動さ
せることができる。そのときは電界蒸発を可能にする電
界のポテンシャル(U’ )の傾きを小さくすることが
できる。
When the electronic ground state potential (U,''') is photoexcited to the electronic excited state potential (U,'') by irradiation with the light 30 of energy hν, a pseudocrossing (C
) can be moved to a pseudo-crossing (C゛) on the higher energy side. In this case, the slope of the electric field potential (U') that enables field evaporation can be reduced.

従って、より一層低い電界での蒸発が可能となる。Therefore, evaporation can be performed in an even lower electric field.

それによってティラーコーンの先端径が比較的大きく、
先端への試料の供給が円滑に行われる状態で安定した電
界蒸発を可能とする液体金属イオン源が実現できる。
As a result, the tip diameter of the tiller cone is relatively large,
A liquid metal ion source that enables stable field evaporation while the sample is smoothly supplied to the tip can be realized.

〔実施例〕〔Example〕

以下に液体金属イオン源の一実施例について説明する。 An example of a liquid metal ion source will be described below.

第1図には光照射型液体金属イオン源の略図を示す、液
体金属電極16は絶縁を保って真空容器14の中に設置
される。液体金属電極16にはバイアス電源12により
正のバイアス電圧が印加される。加熱電源11によって
液体金属電極16は通電加熱されて金属の溶融状態を保
つ。バイアス電極15を設けることで効率的にイオンを
引き出し、且つその空間的発散をできるだけ防ぐ。イオ
ンの運動エネルギーは加速電源13から印加する電圧で
決まる。
FIG. 1 shows a schematic diagram of a light irradiation type liquid metal ion source, in which a liquid metal electrode 16 is placed in a vacuum container 14 while maintaining insulation. A positive bias voltage is applied to the liquid metal electrode 16 by the bias power supply 12 . The liquid metal electrode 16 is electrically heated by the heating power source 11 to keep the metal in a molten state. By providing the bias electrode 15, ions can be extracted efficiently and their spatial divergence can be prevented as much as possible. The kinetic energy of the ions is determined by the voltage applied from the acceleration power source 13.

光は液体金属電極16の斜め方向から光導入窓18を用
いて照射する。真空紫外光の場合には光導入窓18のフ
ランジを利用して真空紫外光の光源および分光系(図示
省略)に真空容器14を接続する。液体金属電極16の
先端から放射状に放出されるイオンはバイアス電8i1
5を通過した後、集束レンズ系17に入ってビーム化さ
れる。
Light is applied to the liquid metal electrode 16 from an oblique direction using the light introduction window 18 . In the case of vacuum ultraviolet light, the flange of the light introduction window 18 is used to connect the vacuum vessel 14 to a vacuum ultraviolet light source and a spectroscopic system (not shown). Ions emitted radially from the tip of the liquid metal electrode 16 are biased by the bias voltage 8i1.
5, it enters a focusing lens system 17 and is converted into a beam.

液体金属試料20としてガリウムを用いた。それを試料
溜19に満たす。ガリウムは融点29゜78℃であるの
で容易に融解する。そのためイオン注入の場合を除いて
は集束イオンビーム装置で最もよく用いられる液体金属
試料である。その−価イオンの蒸発電界は15V/nm
であることが知られている。本発明の液体金属イオン源
を用いて、波長403nm (3,1eV)の色素レー
サー光を照射しながら電界蒸発を観測したところ、蒸発
電界は約52%の8V/nmに低下した。さらにティラ
ーコーン先端への液体金属試料供給の乱れが原因と思わ
れる電流−電圧特性の異常は著しく低下した。
Gallium was used as the liquid metal sample 20. The sample reservoir 19 is filled with it. Gallium has a melting point of 29° to 78°C, so it melts easily. Therefore, except for ion implantation, it is the most commonly used liquid metal sample in focused ion beam devices. The evaporation electric field of the -valent ions is 15V/nm.
It is known that When electric evaporation was observed using the liquid metal ion source of the present invention while irradiating dye laser light with a wavelength of 403 nm (3.1 eV), the evaporation electric field decreased to 8 V/nm, which is about 52%. Furthermore, abnormalities in current-voltage characteristics, which were thought to be caused by disturbances in the supply of liquid metal sample to the tip of the tiller cone, were significantly reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように光を照射しながら電界蒸発を行う本
方法によれば、従来の比べて低電界でもイオンの電界放
射が可能となる。これによって液体金属電極の先端径が
比較的大きく、電極先端部への液体金属試料の輸送が従
来に比べて円滑に進む条件で十分なイオン電流が得られ
るようになった。また使用する電源装置も低電圧型でよ
いため、その分電界蒸発を利用した装置が簡便、安価に
なる。
As explained above, according to this method of performing field evaporation while irradiating light, field emission of ions becomes possible even with a lower electric field than in the conventional method. As a result, a sufficient ionic current can be obtained under the conditions that the tip diameter of the liquid metal electrode is relatively large and the transport of the liquid metal sample to the electrode tip proceeds more smoothly than in the past. Furthermore, since the power supply device used may be of a low voltage type, the device using electric field evaporation becomes simpler and cheaper.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液体金属イオン源の概略図、第2図は
電界蒸発の原理を示す図である。 11・・・加熱電源、12・・・バイアス電源、13・
・・加速電源、14・・・真空容器、15・・・バイア
ス電極、16・・・液体金属電極、17・・・集束レン
ズ系、18・・・光導入窓、19・・・試料溜、20・
・・液体金属試料。
FIG. 1 is a schematic diagram of the liquid metal ion source of the present invention, and FIG. 2 is a diagram showing the principle of field evaporation. 11... Heating power supply, 12... Bias power supply, 13.
... Accelerating power source, 14... Vacuum container, 15... Bias electrode, 16... Liquid metal electrode, 17... Focusing lens system, 18... Light introduction window, 19... Sample reservoir, 20・
...Liquid metal sample.

Claims (1)

【特許請求の範囲】[Claims] イオン化すべき液体金属試料を容れる試料溜と、試料溜
内から外に突き出して配置され、かつ、加熱電源に接続
される液体金属電極と、液体金属電極前方に配置された
集束レンズ系と、液体金属電極と集束レンズ系との間に
配置されたバイアス電極とを具備した液体金属イオン源
において、液体金属電極の表面に光を照射する機構を具
備したことを特徴とする液体金属イオン源。
a sample reservoir containing a liquid metal sample to be ionized; a liquid metal electrode protruding from the sample reservoir and connected to a heating power source; a focusing lens system disposed in front of the liquid metal electrode; A liquid metal ion source comprising a bias electrode disposed between a metal electrode and a focusing lens system, the liquid metal ion source comprising a mechanism for irradiating light onto the surface of the liquid metal electrode.
JP2213885A 1990-08-13 1990-08-13 Liquid metal ion source Pending JPH0498738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2213885A JPH0498738A (en) 1990-08-13 1990-08-13 Liquid metal ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213885A JPH0498738A (en) 1990-08-13 1990-08-13 Liquid metal ion source

Publications (1)

Publication Number Publication Date
JPH0498738A true JPH0498738A (en) 1992-03-31

Family

ID=16646631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213885A Pending JPH0498738A (en) 1990-08-13 1990-08-13 Liquid metal ion source

Country Status (1)

Country Link
JP (1) JPH0498738A (en)

Similar Documents

Publication Publication Date Title
US7709807B2 (en) Magneto-optical trap ion source
EP3066680B1 (en) Bright and durable field emission source derived from refractory taylor cones
US9837239B2 (en) Techniques for optimizing nanotips derived from frozen taylor cones
JP2007087676A (en) Field emission type electron gun and electron beam device using it
US4994711A (en) High brightness solid electrolyte ion source
JPH07192669A (en) Adjusting method for electric field ionization type gas phase ion source
US20090121148A1 (en) High Brightness Solid State Ion Beam Generator, its use, and Method for Making such a Generator
JPH09145896A (en) Fast atomic beam source
JPH0498738A (en) Liquid metal ion source
JPS58178944A (en) Liquid metal ion source
JPH0378739B2 (en)
JPH11329321A (en) Tandem acceleration electrostatic lens
JPH1164598A (en) Laser plasma x-ray source
JPS58158844A (en) Ion gun
JPH05159730A (en) Aperture
JP3198362B2 (en) Electron emitting device and image forming apparatus
JP3469404B2 (en) Field emission type charged particle gun and charged particle beam irradiation device
JPS6322405B2 (en)
JPH01289057A (en) Charged particle beam generation device
JPH0418424B2 (en)
JPS63288017A (en) Formation of fine pattern
JPH0451438A (en) Electron beam exposure device and method
JPS58137943A (en) Ion source
JPS58225537A (en) Ion source unit
Brodie et al. Particle beams: sources, optics, and interactions