JPH0498502A - Control system for number of pumps with fuzzy inference - Google Patents
Control system for number of pumps with fuzzy inferenceInfo
- Publication number
- JPH0498502A JPH0498502A JP21731890A JP21731890A JPH0498502A JP H0498502 A JPH0498502 A JP H0498502A JP 21731890 A JP21731890 A JP 21731890A JP 21731890 A JP21731890 A JP 21731890A JP H0498502 A JPH0498502 A JP H0498502A
- Authority
- JP
- Japan
- Prior art keywords
- pumps
- water
- water level
- pump
- inflow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 102
- 230000007423 decrease Effects 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 15
- 235000020681 well water Nutrition 0.000 description 5
- 239000002349 well water Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 241000219198 Brassica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
- Feedback Control In General (AREA)
- Flow Control (AREA)
Abstract
Description
【発明の詳細な説明】
A、産業上の利用分野
本発明は、上水道ンステム等の採水井で、井戸への流入
水予測と井戸水位とからポンプ運転台数の増減を指令す
るポンプ台数制御方式に関し、特に、ファジー推論を用
いたポンプ台数制御方式に関する。[Detailed Description of the Invention] A. Industrial Application Field The present invention relates to a pump number control method for commanding an increase/decrease in the number of pumps in operation based on a prediction of inflow water into the well and the well water level in a water sampling well such as a water supply system. In particular, it relates to a system for controlling the number of pumps using fuzzy inference.
B 発明の概要
本発明は、上水道システム等の採水井で、井戸への流入
水予測と井戸水位とからポンプ運転台数の増減を指令す
るポンプ台数制御方式において、水位設定データ及び流
入水量予測データを蓄積し、台数制御演算処理を行う工
業用パソコンと、ファジー推論に基づくルール及びメン
バーシップ関数を設定されるファジー推論コントローラ
と、対人及び対システムの入出力装置とを備え、予め運
転順番を設定された複数台のポンプを台数制御すること
により、
ベテラン操作員を付ききりにしなくても、その考え方を
具現でき、流入水量の急激な増加、減少にポンプの始動
/停止を迅速に追従させることが可能で、ポンプ台数が
多くても設定レベル間隔をそれほど広くとらずに済む技
術を提供するものである。B. Summary of the Invention The present invention uses water level setting data and inflow water volume prediction data in a pump number control method that commands an increase or decrease in the number of pumps in operation based on a prediction of inflow water into the well and the well water level in a water sampling well of a water supply system, etc. It is equipped with an industrial PC that performs storage and number control calculation processing, a fuzzy inference controller that is set with rules and membership functions based on fuzzy inference, and input/output devices for interpersonal and system systems, and the operating order is set in advance. By controlling the number of multiple pumps, it is possible to realize this idea without requiring experienced operators all the time, and it is possible to quickly start and stop the pumps in response to sudden increases and decreases in the amount of inflow water. It is possible to provide a technology that does not require setting level intervals to be very wide even if there are a large number of pumps.
C1従来の技術
上水道システム等のポンプ井で現在採用されているポン
プ台数の制御方法は、ポンプ井の水位を計測し、水位に
応じて運転台数を設定している。C1 Conventional Technology The method of controlling the number of pumps currently employed in pump wells such as water supply systems measures the water level of the pump well and sets the number of pumps in operation according to the water level.
ポンプの運転台数は、流入水量の変化に従って増減させ
る必要がある。このため、水量の変化をポンプ井水位の
変化により検出し、ポンプの運転台数を変えて、ポンプ
井水位を一定範囲内に制御する。The number of pumps in operation needs to be increased or decreased according to changes in the amount of inflow water. For this reason, a change in the amount of water is detected by a change in the pump well water level, and the number of operating pumps is changed to control the pump well water level within a certain range.
第9図は、従来のポンプ台数制御回路の一例を示す構成
図である。図中91はポンプ井、92は水位計、93は
変換器、94は警報設定器、95は運転順序切換回路、
96はポンプ運転回路で、ポンプ井91の水位を計測し
た水位計92からの信号を変換器93を介して警報設定
器94に人力し、ポンプ運転信号に変えて、運転順序切
換回路95によりポンプ運転台数を制御する。前記警報
設定器94は、例えば第10図に示すように設定される
。同図において、例えばNO,1ポンプは、ポンプ井の
水位がL5以上になったとき始動し、該水位がL2以下
に低下するまで運転する。流入水量かNO,lポンプの
能力よりも多く、更に水位が上昇してL6に達すると、
NO,2ポンプを始動する。N003ポンプも同様に運
転される。FIG. 9 is a configuration diagram showing an example of a conventional pump number control circuit. In the figure, 91 is a pump well, 92 is a water level gauge, 93 is a converter, 94 is an alarm setting device, 95 is an operation order switching circuit,
Reference numeral 96 denotes a pump operation circuit, which manually inputs a signal from a water level meter 92 that measures the water level of the pump well 91 to an alarm setting device 94 via a converter 93, converts it into a pump operation signal, and controls the pump by an operation order switching circuit 95. Control the number of vehicles in operation. The alarm setting device 94 is set as shown in FIG. 10, for example. In the figure, for example, the NO.1 pump starts when the water level in the pump well reaches L5 or higher, and operates until the water level drops to L2 or lower. When the amount of inflow water exceeds the capacity of the NO,l pump and the water level rises further and reaches L6,
Start the NO.2 pump. Pump N003 is operated similarly.
D3発明が解決しようとする課題
上記従来のポンプ台数制御方式は、簡単という長所はあ
るが、流入水量の変動が頻繁な場合に、ポンプの始動/
停止回数が多くなって好ましくない。また、流入水量と
ポンプ容量の関係によっては、水量の変化が小さくても
ポンプの始動/停止の頻度が多くなるため、増設を重ね
て流入水量が増して行くような場合には、不適当である
。D3 Problems to be Solved by the Invention The conventional pump number control method described above has the advantage of being simple, but when the amount of inflow water fluctuates frequently, it is difficult to start/start the pumps.
This is not desirable as the number of stops increases. Also, depending on the relationship between the amount of inflow water and the pump capacity, the pump may start/stop more frequently even if the change in water amount is small, so it may not be suitable if the amount of inflow water increases due to repeated installations. be.
即ち、従来のポンプ台数制御方式には、下記の課題があ
る。That is, the conventional pump number control method has the following problems.
(1)流入水量の予測が正確であり、かつベテランの操
作員の場合には最適の運転台数を設定することができる
が、常時ベテランの操作員を付ききりにして台数設定を
行うわけにはいかない。(1) If the amount of inflow water is predicted accurately and the operator is an experienced operator, it is possible to set the optimal number of operating units, but it is not possible to always have an experienced operator on hand to set the number of operating units. It's fleeting.
(2)ポンプ井水位によってポンプ運転台数を決定して
いるため、ポンプ井の容積がポンプの吐出能力に比較し
て小さい場合は、流入水量の急激な増加、減少にポンプ
の始動/停止が追従できない。(2) The number of pumps in operation is determined by the water level in the pump well, so if the volume of the pump well is small compared to the discharge capacity of the pump, the start/stop of the pumps will follow the sudden increase or decrease in the amount of inflow water. Can not.
(3)水位による台数制御では、ポンプ台数が多い場合
、HWL (高設定水位)とLWL (低設定水位)の
間隔を広くとる必要があり、ポンプ井水位の変動が大き
くなってしまう。また、その間隔を狭くすると、水位計
の検出精度がよほど良くなければ制御できず、そのうえ
検出精度がクリアされたとしても、ポンプの始動/停止
の頻度が多くなって好ましくない。(3) When controlling the number of pumps based on water level, if there are many pumps, it is necessary to have a wide interval between HWL (high set water level) and LWL (low set water level), resulting in large fluctuations in pump well water level. Furthermore, if the interval is narrowed, control cannot be achieved unless the detection accuracy of the water level gauge is very good, and even if the detection accuracy is cleared, the frequency of starting/stopping of the pump increases, which is not preferable.
本発明は、このような課題に鑑みて創案されたもので、
ヘテラン操作員を付ききりにしなくてもその考え方を具
現でき、流入水量の急激な増加。The present invention was created in view of these problems, and
This idea can be implemented without requiring Heteran operators to be present all the time, and the amount of inflow water can rapidly increase.
減少にポンプの始動/停止を迅速に追従させることがで
き、ポンプ台数が多くても設定レベル間隔をそれほど広
くとらずに済むポンプ台数制御方式を提供することを目
的としている。It is an object of the present invention to provide a pump number control method that allows the start/stop of the pumps to quickly follow the decrease in the number of pumps, and that does not require setting level intervals to be very wide even if the number of pumps is large.
64課題を解決する1こめの手段
本発明における上記課題を解決するための手段は、水道
システムの井戸や配水池の水位と流入水量からポンプ運
転台数の増減を指令するポンプ台数制御方式において、
水位設定データ及び流入水量予測データを蓄積し、台数
制御演算処理を行う工業用パソコンと、ファジー推論に
基づくルール及びメンパーンツブ関数を設定されるファ
ジー推論コントローラと、対人及び対システムの入出力
装置とを備え、予め運転順番を設定された複数台のポン
プを台数制御するポンプ台数制御方式によるものとする
。A means for solving the above-mentioned problems in the present invention is a method for controlling the number of pumps that commands an increase or decrease in the number of pumps in operation based on the water level and inflow water volume of wells and distribution reservoirs of the water system.
An industrial computer that accumulates water level setting data and inflow water volume prediction data and performs arithmetic processing for controlling the number of units, a fuzzy inference controller that is set with rules and maintenance functions based on fuzzy inference, and input/output devices for personnel and systems. A pump number control method is used to control the number of pumps in which the operating order is set in advance.
F0作用
本発明は、流入水量の予測と、ファジー推論によるポン
プ台数の増減決定とでポンプの運転台数を決定するポン
プ台数制御方式である。F0 Effect The present invention is a pump number control method that determines the number of pumps in operation by predicting the amount of inflow water and determining whether to increase or decrease the number of pumps using fuzzy reasoning.
ファジー推論は、AI(人工知能)技術の進歩と共に注
目されるようになった理論である。Alでは、ある分野
において、所要の知識ベース及び思考判断のルールをコ
ンピュータに記憶させれば人間と同様な自動診断システ
ムを構成できるわけであるが、ただ、人間のように曖昧
な表現を受付けることはできず、論理的にきちんとした
表現を与えなければならない。この欠点を補い、曖昧さ
をコンピュータに導入するために重視されているのがフ
ァジー制御(Fuzzy Control)て、高さ
とか大きさを表現する際に、可能性の高い数値は採用し
ても、確定した数値は使用しない。Fuzzy inference is a theory that has gained attention with the advancement of AI (artificial intelligence) technology. In Al, in a certain field, it is possible to construct an automatic diagnosis system similar to that of a human by storing the required knowledge base and thinking and judgment rules in a computer, but it is not possible to accept ambiguous expressions like a human. It is not possible to do so, but it must be expressed logically. In order to compensate for this shortcoming and introduce ambiguity into computers, fuzzy control is being emphasized. Don't use fixed numbers.
具体的にはメンバーシップ関数を知識ベースとし、専用
の推論ルールを設けることになる。Specifically, membership functions are used as the knowledge base, and dedicated inference rules are provided.
本発明では、メンパーンツブ関数として現在の水位及び
水位変動予測をそれぞれ例えば5段階に設定し、推論ル
ールはそれらのマトリックス構成によるものとして、下
記の工程を行っている。In the present invention, the current water level and the water level fluctuation prediction are each set in, for example, five stages as a maintenance function, and the inference rule is based on the matrix configuration of these, and the following steps are performed.
(1)流入水量を予測する。(1) Predict the amount of inflow water.
(2)予測した流入水量が最適範囲か判断する。(2) Determine whether the predicted amount of inflow water is within the optimal range.
(3)予測流入水量が最適範囲の場合、最適時間が充分
に長ければポンプ台数は現状を維持する。(3) When the predicted amount of inflow water is within the optimal range, the number of pumps will remain the same if the optimal time is long enough.
(4)予測流入水量が最適範囲外の場合、不適時間が充
分に長ければポンプ台数の増減を行う。(4) If the predicted inflow water amount is outside the optimal range, increase or decrease the number of pumps if the unsuitable time is long enough.
(5)前記最適時間又は不適時間が充分に長くない場合
は、ファジー推論によりポンプ台数の増。(5) If the optimal time or unsuitable time is not long enough, increase the number of pumps by fuzzy reasoning.
減又は現状維持を判定する。Determine whether to decrease or maintain the status quo.
(6)ポンプ台数を増減すると決定した場合は、その指
令を発する。台数の増減は1台ずつ行う。(6) If it is decided to increase or decrease the number of pumps, issue the command. Increase or decrease the number of machines one by one.
G、実施例
以下、図面を参照して、本発明の実施例を詳細に説明す
る。G. Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第1図は、本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.
図中、1は水位設定データと流入水量予測データとを蓄
積し、台数制御演算処理を行う工業用パソコン、2はフ
ァジー推論に基づくルール及びメンバーシップ関数を設
定されるファジー推論コントローラ、3はマンマシン・
インターフェイス、4はプロセス個人出力装置、5はそ
れらを連結するLAN(Locai Area N
etwork)である。In the figure, 1 is an industrial computer that stores water level setting data and inflow water volume prediction data and performs arithmetic processing for controlling the number of units, 2 is a fuzzy inference controller that is set with rules and membership functions based on fuzzy inference, and 3 is a personal computer. Machine
interface, 4 is a process personal output device, and 5 is a LAN (Locai Area N) that connects them.
etwork).
工業用パソコン1は、水位設定データや流入量予測デー
タ等のデータ蓄積と台数制御の演算処理を行うもので、
LANインターフェイスを備えている。ファジー推論コ
ントローラ2は、ルールとメンパーンツブ関数を蓄積し
、ファジー推論を行う。マンマシン・インターフェイス
3は、CRTとキーボード及びマウスを備えた対人入出
力装置で、各種の設定、システムメンテナンス及び結果
表示を行う。プロセス個人出力装置4は、流入予測デー
タ及び現在水位データを入力され、1台増指令又は1台
減指令を出力する。The industrial PC 1 is used to accumulate data such as water level setting data and inflow prediction data, and perform calculation processing for controlling the number of units.
Equipped with a LAN interface. The fuzzy inference controller 2 stores rules and member functions and performs fuzzy inference. The man-machine interface 3 is a human input/output device equipped with a CRT, keyboard, and mouse, and performs various settings, system maintenance, and result display. The process individual output device 4 receives inflow prediction data and current water level data, and outputs an instruction to increase by one or decrease by one.
上記のポンプ台数制御装置は、監視制御装置やローカル
制御装置に組込んで共用することも可能であるか、本実
施例では、第2図に示す如く、ポンプ井21に配設され
たポンプ(n台)22を制御する。The above-mentioned pump number control device can be incorporated into a monitoring control device or a local control device for common use.In this embodiment, as shown in FIG. n units) 22.
第3図は、上記装置による本発明のポンプ台数制御方式
の一例を示すフローチャートである。同図において、フ
ローは、まず工業用パソコン1に流入量予測データか人
力された時点で開始され、パソコン1は、予測流入水量
Qか最適範囲か否かを判断する。最適範囲とは、各ポン
プの吐出水量をqとし、現在の運転台数をkとすると、
第4図(a)に示す如く、
(k−1)q≦Q≦(k+1)q
であるときに成立する。また、ポンプが大、小の2種類
存在し、吐出水量か小(qs)のポンプが1台であると
すると、第4図(b)に示す如く、最適範囲は、
a:0台の場合の最適範囲、
b、小ポンプが1台の場合の最適範囲、C:大ポンプが
【台の場合の最適範囲、d;大ポンプが2台の場合の最
適範囲、e、大ポンプが3台の場合の最適範囲、f〜:
大ポンプが4〜台の場合の最適範囲、となる。FIG. 3 is a flowchart showing an example of the pump number control method of the present invention using the above device. In the figure, the flow starts when inflow prediction data is manually entered into the industrial personal computer 1, and the personal computer 1 determines whether the predicted inflow water amount Q is within the optimum range or not. The optimal range is, where q is the amount of water discharged from each pump, and k is the current number of pumps in operation.
As shown in FIG. 4(a), it holds true when (k-1)q≦Q≦(k+1)q. Also, if there are two types of pumps, large and small, and there is one pump with a small discharge water volume (qs), the optimal range is a: 0 units, as shown in Figure 4 (b). b: Optimal range when there is one small pump; C: Optimal range when there are two large pumps; d: Optimal range when there are two large pumps; e: Optimal range when there are three large pumps. Optimal range, f~:
This is the optimal range when there are 4 or more large pumps.
さて、予測流入水量が最適範囲の場合は、次に最適時間
TMが充分に長いか否かを調べる。最適時間TMとは、
当該ポンプ井の底面積をSとし、現在水位をhとすると
、
M
LWL≦h+51:(Q k q)/Sコdt≦H
WLが成立する最長時間で、即ち現在のままの台数で運
転し、予測流入水@Qが正しいとすると水位かLWLと
HWLの間に保たれる時間を意味する。Now, if the predicted amount of inflow water is within the optimal range, then it is checked whether the optimal time TM is sufficiently long. What is the optimal time TM?
If the bottom area of the pump well is S and the current water level is h, then M LWL≦h+51: (Q k q)/S codt≦H
The longest time for which WL is established, that is, if the current number of units is operated and the predicted inflow water @Q is correct, it means the time that the water level is maintained between LWL and HWL.
予め基準時間Toを設定しておいて、TM≧T。A reference time To is set in advance, and TM≧T.
であれば最適時間は充分長いとし、T M < T o
であれば最適時間は短いとする。最適時間か充分に長け
ればポンプ台数は現状を維持する。If so, the optimal time is sufficiently long, and T M < T o
If so, the optimal time is short. If the optimal time is long enough, the number of pumps will remain the same.
同様な考え方で不適時間とその基準時間も設定しておき
、予測流入水量Qか最適範囲外の場合、不適時間か充分
長ければポンプ台数を増減する。Using the same concept, unsuitable time and its reference time are also set, and if the predicted inflow water amount Q is outside the optimal range, the number of pumps is increased or decreased if the unsuitable time is long enough.
前記最適時間又は不適時間が長くない場合は、ファジー
推論によりポンプ台数の増、減又は現状維持を判定する
ことになる。If the optimal time or unsuitable time is not long, it is determined by fuzzy inference whether to increase or decrease the number of pumps or maintain the current status.
既に述べたように、ファジー推論では数値的な特定を行
わない。本実施例では、メンバーシップ関数として、現
在の水位及び水位変動予測をそれぞれNB、SS、M、
PS、PBの曖昧な5段階に設定し、それらの間に第1
表でマトリックスに表示されるような推論ルールを設定
する。As already mentioned, fuzzy inference does not involve numerical specification. In this example, the current water level and water level fluctuation prediction are respectively NB, SS, M, and M as membership functions.
Set to 5 ambiguous stages of PS and PB, and between them
Set up inference rules as shown in a matrix in a table.
第1表
NB
NS
NS
水位変動予測
NB NS M PS PB
NBI NBI NB′NSI M
N B’ N B’ N sl M
S
NB: NS
PS’PB
NS
PSIPBiPB
上表は、IP−THENルールをマトリックスで示した
もので、例えば、IF〜現在水位がPS(管理上限にや
や近い)で、水位変動予測がPB(水位がかなり上昇す
る)であれば、THEN〜ポンプ台数はPB(増加が必
要)という具合に、5x5=25通りのルールを示して
いる。Table 1 NB NS NS Water level fluctuation prediction NB NS M PS PB NBI NBI NB'NSI M N B'NB' N sl M S NB: NS PS'PB NS PSIPBiPB The above table shows the IP-THEN rules in a matrix. For example, if IF ~ current water level is PS (slightly close to the control upper limit) and water level fluctuation prediction is PB (water level will rise considerably), then THEN ~ number of pumps is PB (needs to increase). shows 5x5=25 rules.
以下、本発明におけるファジー推論を更に詳細に説明す
る。Hereinafter, fuzzy inference in the present invention will be explained in more detail.
第5図はメンバーシップ関数の説明図である。FIG. 5 is an explanatory diagram of membership functions.
同図(a)に示す如く、水位りにHH(上限)。As shown in Figure (a), the water level is HH (upper limit).
H(管理上限)、L(管理下限)、LL(下限)を設定
し、Hからしの間を水位管理範囲とする。Set H (upper control limit), L (lower control limit), and LL (lower limit), and set the water level control range between H and mustard.
これに対する現在水位のメンバーシップ関数は、同図(
b)に示す如く、
NB・管理下限にかなり近い。The membership function of the current water level for this is shown in the same figure (
As shown in b), it is quite close to the NB/control lower limit.
NS:管理下限にやや近い。NS: Slightly close to the lower control limit.
M :中間。M: Medium.
PS:管理上限にやや近い。PS: Slightly close to the management upper limit.
PB 管理上限にかなり近い。PB It's pretty close to the management limit.
また、水位変動予測のメンバーシップ関数は、同図(c
)に示す如く、
NB・水位かかなり下降する。In addition, the membership function for water level fluctuation prediction is shown in the same figure (c
), the NB water level will drop considerably.
NS、水位がやや下降する。NS, the water level will drop slightly.
M :水位が変わらない。M: The water level does not change.
PS 水位がやや上昇する。PS The water level will rise slightly.
PB、水位がかなり上昇する。PB, the water level will rise considerably.
一方で、ポンプ台数増減のメンバーシップ関数は、同図
(d)に示す如く、
NB;ポンプ台数は減少か必要。On the other hand, the membership function for increasing or decreasing the number of pumps is as shown in Figure (d): NB: The number of pumps should decrease or decrease.
NS:ポンプ台数は減少がやや必要。NS: There is a slight need to reduce the number of pumps.
M :ポンプ台数は現状維持でよい。M: The number of pumps can be maintained as is.
PS;ポンプ台数は増加がやや必要。PS: There is a slight need to increase the number of pumps.
PB;ポンプ台数は増加が必要。PB: The number of pumps needs to be increased.
である。It is.
第6図と第7図は推論ルールの説明図である。FIGS. 6 and 7 are explanatory diagrams of inference rules.
第6図(a)は予測流入水量の検討図で、図中、直線は
ポンプの吐出量qを示し、曲線は予測流入推量を示して
いる。上方の点線は現在の台数での管理上限を示し、下
方の点線は現在の台数の管理下限を示している。現在時
を0とすると、tI時からt2時までの間に予測流入量
が管理上限を越える期間か予測されるので、t1時に台
数増加の必要があり、t2時に台数減少の必要がある。FIG. 6(a) is a diagram for examining the predicted amount of inflow water. In the figure, the straight line indicates the discharge amount q of the pump, and the curved line indicates the estimated estimated amount of inflow. The upper dotted line indicates the upper limit for managing the current number of devices, and the lower dotted line indicates the lower limit for managing the current number of devices. If the current time is 0, it is predicted that the predicted inflow will exceed the management upper limit between time tI and time t2, so it is necessary to increase the number of vehicles at time t1, and to decrease the number at time t2.
時間Tは、第3図のフローチャートにも示すように、始
動又は停止の指令が出されてから動作が完了するまでの
時間で、L2時はこれを考慮して早目に設定されている
。第6図(b)は、上記に対応する水位の時間特性図で
ある。As shown in the flowchart of FIG. 3, the time T is the time from when a start or stop command is issued until the operation is completed, and the L2 time is set early in consideration of this. FIG. 6(b) is a water level time characteristic diagram corresponding to the above.
第6図に示すような予測流入水量及び水位設定に対する
ファジー推論を第7図に示す。を−t 1のとき、第7
図(a)に示す現在水位図で水位かLWL−HWL間の
h′であったとするとポンプ台数変更の必要度(0〜1
)はPSを頂点とする三角形との交線及びPBを頂点と
する三角形との交線で得られる。また、第7図(b)に
示す水位変動予測図で変動−h〜+h間のh′であった
とすると、同様に、Mを頂点とする三角形との交線及び
PSを頂点とする三角形との交線が得られ、前記ルール
マトリックスにより、ポンプ台数変更の必要度(−1〜
+1)は、第7図(c)に斜線領域で示す如く、プラス
側に示される。この推論結果が0,75%以上であれば
ボン11台増と判定し、−0,75%以下であればポン
1l台減と判定することにする。FIG. 7 shows fuzzy inference for the predicted inflow water amount and water level settings as shown in FIG. When −t 1, the seventh
In the current water level chart shown in Figure (a), if the water level is h' between LWL and HWL, the degree of necessity for changing the number of pumps (0 to 1
) is obtained by the line of intersection with the triangle whose apex is PS and the line of intersection with the triangle whose apex is PB. In addition, if the water level fluctuation prediction diagram shown in Fig. 7(b) indicates a fluctuation h' between -h and +h, similarly, the intersection line with the triangle with M as the apex and the triangle with PS as the apex. The intersection line of is obtained, and the necessity of changing the number of pumps (-1 to
+1) is shown on the plus side, as shown by the hatched area in FIG. 7(c). If the result of this inference is 0.75% or more, it will be determined that there is an increase of 11 units, and if it is less than -0.75%, it will be determined that there will be a decrease of 11 units.
第7図(d)、(e)及び(f)はt=t2時のファジ
ー推論を示し、第7図(f)に示すように推論結果はマ
イナス側に示され、1台減と判定される。Figures 7(d), (e), and (f) show the fuzzy inference when t=t2, and as shown in Figure 7(f), the inference results are shown on the negative side, and it is determined that one vehicle is reduced. Ru.
上記の如く、ポンプ台数の増減又は現状維持を決定する
と、フローはそれぞれに分岐し、ポンプ台数を増減する
場合は1台ずつ行うものとして、1台増又は1台減の指
令を発する。As described above, when it is decided to increase or decrease the number of pumps or to maintain the status quo, the flow branches to each direction, and when increasing or decreasing the number of pumps, it is assumed that it is done one by one, and a command to increase or decrease by one is issued.
本実施例では、流入水を排除するポンプの台数制御を示
したが、本発明の制御方式は、第8図に示す如く、浄水
池81から配水池82へ送水するポンプ83の台数制御
にも適用可能である。その場合は、HWLとLWLを替
え、流入予測を配水予測に替えればよい。本発明の制御
方式は、何らかの水量予測が行われ、かつその予測があ
る程度正確であることか萌提となるが、予測方法として
は、雨水の場合には雨量の流出解析モデルによる予測や
ポンプ井水位変化に基づく予測等があり、配水の場合に
は需要予測があって、これらの予測を組合わせることに
より効果は増大する。また、本発明の機能は監視制御装
置やローカル制御装置に組込むことも可能である。In this embodiment, control of the number of pumps to remove inflow water has been shown, but the control method of the present invention can also be applied to control of the number of pumps 83 that send water from a water purification reservoir 81 to a water distribution reservoir 82, as shown in FIG. Applicable. In that case, HWL and LWL may be changed, and inflow prediction may be replaced with water distribution prediction. The control method of the present invention relies on some type of water volume prediction and that the prediction is accurate to some extent. However, in the case of rainwater, prediction methods such as prediction using a rainwater runoff analysis model or pump well There are predictions based on water level changes, and in the case of water distribution there is demand forecasting, and by combining these predictions, the effectiveness will increase. Further, the functions of the present invention can be incorporated into a supervisory control device or a local control device.
本実施例は下記の効果が明らかである。This example clearly has the following effects.
(1)ベテラン操作員のポンプ操作のノウハウを、ルー
ルとメンバーシップ関数とで表現しているので、人間の
考え方に近いポンプ台数の設定が可能である。(1) Since the pump operation know-how of experienced operators is expressed by rules and membership functions, it is possible to set the number of pumps close to how humans think.
(2)流入水量の急激な増加、減少にポンプの始動/停
止を迅速に(最短の遅れで)操作することができる。(2) The pump can be started/stopped quickly (with the shortest delay) in response to a sudden increase or decrease in the amount of inflow water.
(3)ポツプ台数が多くてもHWLとLWLの間をそれ
ほど広くとらずに台数制御が可能である。(3) Even if there are a large number of pop-up devices, the number can be controlled without making the distance between HWL and LWL very wide.
(4)固定速ポンプでも可変速ポンプでも適用可能であ
り、また複数台のポンプの容量が、等容量であっても大
小異なる組合わせであって6制御可能である。(4) It is applicable to both fixed-speed pumps and variable-speed pumps, and even if the capacities of the plurality of pumps are the same, they can be controlled in six combinations with different sizes.
(5)ファジー推論ルールとメンバーシップ関数はCR
Tとキーボード、マウスを使用して容易に追加、変更で
き、To、S等の諸設定もCRTオペレーションで行う
ことができる。(5) Fuzzy inference rules and membership functions are CR
It can be easily added and changed using T, keyboard, and mouse, and various settings such as To and S can also be made using CRT operations.
(6)ポンプ井の容積、ポンプ容量と台数及び流入パタ
ーンの特長をファジー推論ルールとメンバーシップ関数
とで容易に表現することができ、自在なソステムメンテ
ナンスを可能にする汎用ソフトウェアとしてパッケージ
化できる。(6) The volume of pump wells, the capacity and number of pumps, and the characteristics of inflow patterns can be easily expressed using fuzzy inference rules and membership functions, and can be packaged as general-purpose software that enables flexible system maintenance. .
H1発明の効果
以上、説明したとおり、本発明によれば、ヘテラン操作
員を付ききりにしなくてもその考え方を具現でき、流入
水量の急激な増加、減少にポンプの始動/停止を迅速に
追従させることか可能で、ポンプ台数が多くても設定レ
ベル間隔をそれほど広くとらずに済むポンプ台数制御方
式を提供することができる。H1 Effects of the Invention As explained above, according to the present invention, the idea can be realized without requiring a full-time operator, and the start/stop of the pump can be quickly followed in response to a sudden increase or decrease in the amount of inflow water. Therefore, it is possible to provide a pump number control method that does not require setting level intervals to be so wide even if there are many pumps.
第1図は本発明の一実施例の構成図、第2図は本発明の
適用例の構成図、第3図は本発明の一実施例のフローチ
ャート、第4図は最適制御範囲の説明図、第5図はメン
バーシップ関数の説明図、第6図及び第7図は推論ルー
ルの説明図、第8図は本発明の別の適用例の構成図、第
9図は従来例の構成図、第10図はポンプ運転水位の説
明図である。
1・・工業用パソコン、2・・・ファノー推論コントロ
ーラ、3・・・マンマシン・インターフェイス、4・・
・プロセス個人出力装置、5・・・LAN、21−・ポ
ンプ井、22・・ポンプ、81・・・浄水池、82・・
・配水池、83・・・ポンプ、9I・・・ポンプ井、9
2・・水位計、93−・・変換器、94−・・警報設定
器、95・・・運転順序切換回路、96・・・ポンプ運
転回路。
以上。
外1名
(a)
(b)
(a)
(b)
(C)
(d)
(a)
(b)
(a>
(cl)
(b)
(e)
(c)
(f)Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a block diagram of an application example of the present invention, Fig. 3 is a flowchart of an embodiment of the present invention, and Fig. 4 is an explanatory diagram of the optimum control range. , FIG. 5 is an explanatory diagram of membership functions, FIGS. 6 and 7 are explanatory diagrams of inference rules, FIG. 8 is a configuration diagram of another application example of the present invention, and FIG. 9 is a configuration diagram of a conventional example. , FIG. 10 is an explanatory diagram of the pump operating water level. 1...Industrial PC, 2...Fano inference controller, 3...Man-machine interface, 4...
・Process personal output device, 5...LAN, 21-・Pump well, 22...Pump, 81...Water purification pond, 82...
・Water reservoir, 83...Pump, 9I...Pump well, 9
2... Water level gauge, 93-... Converter, 94-... Alarm setting device, 95... Operation order switching circuit, 96... Pump operation circuit. that's all. 1 other person (a) (b) (a) (b) (C) (d) (a) (b) (a> (cl) (b) (e) (c) (f)
Claims (1)
らポンプ運転台数の増減を指令するポンプ台数制御方式
において、 水位設定データ及び流入水量予測データを蓄積し、台数
制御演算処理を行う工業用パソコンと、ファジー推論に
基づくルール及びメンバーシップ関数を設定されるファ
ジー推論コントローラと、対人及び対システムの入出力
装置とを備え、予め運転順番を設定された複数台のポン
プを台数制御することを特徴とするファジー推論による
ポンプ台数制御方式。(1) In a pump number control method that commands an increase or decrease in the number of pumps in operation based on the water level of a water system's wells or distribution reservoirs and the amount of inflow water, industrial use that accumulates water level setting data and inflow water volume prediction data and performs calculation processing to control the number of pumps. It is equipped with a personal computer, a fuzzy inference controller in which rules and membership functions based on fuzzy inference are set, and input/output devices for humans and systems, and is capable of controlling the number of pumps whose operating order is set in advance. Pump number control method using fuzzy inference.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21731890A JP2867656B2 (en) | 1990-08-17 | 1990-08-17 | Pump number control method by fuzzy inference |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21731890A JP2867656B2 (en) | 1990-08-17 | 1990-08-17 | Pump number control method by fuzzy inference |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0498502A true JPH0498502A (en) | 1992-03-31 |
JP2867656B2 JP2867656B2 (en) | 1999-03-08 |
Family
ID=16702291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21731890A Expired - Lifetime JP2867656B2 (en) | 1990-08-17 | 1990-08-17 | Pump number control method by fuzzy inference |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2867656B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5812421A (en) * | 1995-04-20 | 1998-09-22 | Hitachi, Ltd. | System for cooperatively operating river management facilities |
CN113863980A (en) * | 2021-10-21 | 2021-12-31 | 山脉科技股份有限公司 | Safe, intelligent and energy-saving mine drainage method |
-
1990
- 1990-08-17 JP JP21731890A patent/JP2867656B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5812421A (en) * | 1995-04-20 | 1998-09-22 | Hitachi, Ltd. | System for cooperatively operating river management facilities |
CN113863980A (en) * | 2021-10-21 | 2021-12-31 | 山脉科技股份有限公司 | Safe, intelligent and energy-saving mine drainage method |
Also Published As
Publication number | Publication date |
---|---|
JP2867656B2 (en) | 1999-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sadigh et al. | A learning based approach to control synthesis of markov decision processes for linear temporal logic specifications | |
Fullér et al. | Fuzzy reasoning for solving fuzzy mathematical programming problems | |
Dean et al. | Coping with Uncertainty in a Control System for Navigation and Exploration. | |
Lin et al. | Temperature control with a neural fuzzy inference network | |
CN114490275B (en) | MCU-based host monitoring control method, system, electronic equipment and medium | |
Cherniy et al. | Fuzzy multi-cascade AC drive control system | |
Pettersson et al. | Exponential stability analysis of nonlinear systems using LMIs | |
JPH0498502A (en) | Control system for number of pumps with fuzzy inference | |
Faye et al. | An intelligent decision support system for irrigation system management | |
JPH03259302A (en) | Information processing system | |
CN113513001A (en) | Water quantity control method and device of measurement and control integrated gate and electronic equipment | |
Cordón et al. | A practical study on the implementation of fuzzy logic controllers | |
Jalilvand et al. | Integrating of event detection and mode recognition in hybrid systems by fuzzy petri net | |
CN105354232A (en) | Air condition energy saving diagnostic system and air condition energy saving diagnostic method based on ontology | |
JPH01246601A (en) | Controller for rain water drainage pumping place | |
JPH0362101A (en) | Plant operation assisting device | |
Артемова et al. | A FUZZY CONTROL MODEL OF AN INTELLIGENT INFORMATION-MEASURING AND CONTROL SYSTEM OF A DRUM DRYING UNIT | |
JP3647639B2 (en) | Dam water operation management system | |
Luo et al. | Unmanned Plant Control and Optimisation by Real-time Deep Neural Networks for Power Saving | |
CN117850217A (en) | Nonlinear model predictive control method, nonlinear model predictive control device, electronic equipment and storage medium | |
CN116949452A (en) | Glacial acetic acid, nitric acid and phosphoric acid ratio control system of aluminum etching solution | |
Buschermöhle et al. | Disturbance feedback-based model predictive control in uncertain dynamic environments | |
JPH0136015B2 (en) | ||
CN116255701A (en) | Fan filter unit control method and system | |
MAEDA et al. | A fuzzy decision making method for multi-objective problems with a preference structure representation by fuzzy connectives |