JPH0498211A - Method for adjusting parallelism of fabry-perot resonator - Google Patents

Method for adjusting parallelism of fabry-perot resonator

Info

Publication number
JPH0498211A
JPH0498211A JP21657890A JP21657890A JPH0498211A JP H0498211 A JPH0498211 A JP H0498211A JP 21657890 A JP21657890 A JP 21657890A JP 21657890 A JP21657890 A JP 21657890A JP H0498211 A JPH0498211 A JP H0498211A
Authority
JP
Japan
Prior art keywords
mirror
axis
semi
piezo
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21657890A
Other languages
Japanese (ja)
Other versions
JP3039969B2 (en
Inventor
Takashi Iwasaki
隆志 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP21657890A priority Critical patent/JP3039969B2/en
Publication of JPH0498211A publication Critical patent/JPH0498211A/en
Application granted granted Critical
Publication of JP3039969B2 publication Critical patent/JP3039969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Optical Filters (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To execute adjusting rotation twice and to shorten time required for adjustment by simultaneously controlling plural piezo-elements about two reference axes parallel with a semitranslucent mirror and intersecting with each other at right angles. CONSTITUTION:A Y axis is set up as the 1st reference axis parallel with the semitranslucent mirror 2 and passing the center of the mirror 2 and the fixing position of a piezo-element 3 and an X axis is set up as the 2nd reference axis parallel with the mirror 2, passing the center of the mirror 2 and rectangular to the Y axis. In order to adjust the parallelism of a Fabry-Perot resonator, the offset voltages of the piezo-elements 3 to 5 are changed, and while rotating the mirror 2 in a direction along the X axis, an angle capable of obtaining the highest resolution is detected and respective offset voltages are held at the state. Then, the offset voltages of the elements 3 to 5 are changed, and while rotating the mirror in a direction along the Y axis, an angle capable of obtaining the highest resolution is detected and respective offset voltages are held at the sate. Since the X and Y axes intersect with each other at right angles, the optimum angle in the X axis direction is not almost changed even if the mirror 2 is rotated along the Y axis. Thereby, it is unnecessary to adjust the X axis direction again after executing adjustment along the Y axis.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、フアブリ・ペロー共振器(以下、単に共振
器という。)の′X11行度調整方法についてのもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for adjusting the 'X11 degree of a Fabry-Perot resonator (hereinafter simply referred to as a resonator).

[従来の技術] 次に、共振器の構成を第2図により説明する。[Conventional technology] Next, the structure of the resonator will be explained with reference to FIG.

第2図の1と2は半透過鏡、3〜5はピエゾ素子、11
は光である。1〜5で共振器10を構成する。
1 and 2 in Figure 2 are semi-transparent mirrors, 3 to 5 are piezo elements, 11
is light. 1 to 5 constitute a resonator 10.

半透過鏡1は光11に直角に配置される。半透過鏡2は
、半透過鏡1と平行に配置される。ピエゾ素子3〜5は
、半透過鏡2に接続され、電圧を加えることにより、半
透過鏡2の位置を移動させ、半透過鏡1と半透過鏡2の
距離を変化させる。
The semi-transparent mirror 1 is arranged at right angles to the light 11. The semi-transmissive mirror 2 is arranged parallel to the semi-transmissive mirror 1. The piezo elements 3 to 5 are connected to the semi-transmissive mirror 2, and by applying a voltage, the position of the semi-transmissive mirror 2 is moved and the distance between the semi-transmissive mirror 1 and the semi-transmissive mirror 2 is changed.

半透過鏡1に入射した光11は、半透過鏡1と半透過鏡
2の間で多重反射を起こし、反射のたびに、光1.1の
一部は反射しないで、半透過鏡2を透過する。光11の
透過成分の位相が一致すると、透過成分を合計した光強
度が最大となる。それ以外の波長をもつ光の場合は、透
過成分の位相が一致しないので、透過成分を合計した光
強度は小さい。いいかえると、特定の波長成分だけが高
い透過率をもつことになる。
The light 11 incident on the semi-transmissive mirror 1 causes multiple reflections between the semi-transmissive mirror 1 and the semi-transmissive mirror 2, and at each reflection, a part of the light 1.1 is not reflected and passes through the semi-transmissive mirror 2. To Penetrate. When the phases of the transmitted components of the light 11 match, the total light intensity of the transmitted components becomes maximum. In the case of light having other wavelengths, the phases of the transmitted components do not match, so the total light intensity of the transmitted components is small. In other words, only specific wavelength components have high transmittance.

ピエゾ素子3〜5は、印加電圧に比例して全長が増減す
る素子である。ピエゾ素子3〜5に電圧を加えると、電
圧に比例した伸縮がピエゾ素子3〜5に生じ、半透過鏡
1・2の間の距離が変化する。その結果、透過率が最大
になる波長を変えることができる。
The piezo elements 3 to 5 are elements whose total length increases or decreases in proportion to the applied voltage. When a voltage is applied to the piezo elements 3 to 5, the piezo elements 3 to 5 expand and contract in proportion to the voltage, and the distance between the semi-transparent mirrors 1 and 2 changes. As a result, the wavelength at which the transmittance is maximum can be changed.

次に、第2図の共振器10を使用した装置の構成を第3
図より説明する。第3図の6は駆動回路、7は制御回路
、8は光検出器、9は波形表示器である。
Next, the configuration of the device using the resonator 10 shown in FIG.
This will be explained from the diagram. In FIG. 3, 6 is a drive circuit, 7 is a control circuit, 8 is a photodetector, and 9 is a waveform display.

共振器」0を透過した光11は、光検出器8によって、
光の強さに比例した電圧に変換される。
The light 11 transmitted through the resonator 0 is detected by the photodetector 8,
It is converted into a voltage proportional to the intensity of light.

光検出器8の出力は、波形表示器9のY軸入力に接続さ
れる。また、制御回路7の出力は波形表示器9のX軸入
力に接続される。
The output of photodetector 8 is connected to the Y-axis input of waveform display 9. Further, the output of the control circuit 7 is connected to the X-axis input of the waveform display 9.

制御回路7は駆動回路6を制御し、ピエゾ素子3〜5に
繰り返し掃引するのこぎり波を加えれば、半透過鏡2が
半透過鏡1に対し平行なままでJii)弓電圧にしたが
って移動するので、共振器10の透過率が最大になる波
長が連続的に変化し、各波長に対応する透過光の強さが
光検出器8によって電気信号に変換される。したがって
、光11の波長対レベル特性が波形表示器9上に描き出
される。
The control circuit 7 controls the drive circuit 6 and applies a repetitively sweeping sawtooth wave to the piezo elements 3 to 5, so that the semi-transparent mirror 2 remains parallel to the semi-transparent mirror 1 and moves according to the bow voltage. , the wavelength at which the transmittance of the resonator 10 is maximum changes continuously, and the intensity of transmitted light corresponding to each wavelength is converted into an electrical signal by the photodetector 8. Therefore, the wavelength versus level characteristic of the light 11 is depicted on the waveform display 9.

[発明が解決しようとする課題] 共振器10は、2個の半透過鏡1・2の間で起こる多重
反射を利用したものであり、2個の半透過鏡]・2が完
全に平行に対向していないと、十分な分yt、特性を得
ることができない。
[Problem to be solved by the invention] The resonator 10 utilizes multiple reflections that occur between two semi-transmissive mirrors 1 and 2, and the two semi-transmissive mirrors] and 2 are completely parallel to each other. If they are not opposed, sufficient characteristics cannot be obtained.

次に、共振器10を透過した光11の波長特性を第4図
により説明する。
Next, the wavelength characteristics of the light 11 transmitted through the resonator 10 will be explained with reference to FIG.

第4図の実線で示す]、IAは半透過鏡1・2が完全に
平行に対向しているときの透過特性であり、点線で示す
ilBは2個の半透過鏡1・2が平行でないどきの透過
特性である。11Bのように、半透過鏡1・2の平行度
が十分でないときは、十分な分解能が得られない。そこ
で、半透過鏡1・2の平行度MOWが不可欠なものとな
っている。
[shown by the solid line in Figure 4], IA is the transmission characteristic when the semi-transmissive mirrors 1 and 2 are completely parallel to each other, and ilB, shown by the dotted line, is the transmission characteristic when the two semi-transmissive mirrors 1 and 2 are not parallel. This is an amazing transmission characteristic. When the parallelism of the semi-transmissive mirrors 1 and 2 is insufficient, as in 11B, sufficient resolution cannot be obtained. Therefore, the parallelism MOW of the semi-transparent mirrors 1 and 2 is essential.

次に、従来技術による平行度調整の方法を説明する。1
分スペクトル線幅の細い基準光を入射しておいて、制御
回路7により繰り返し掃引するのこぎり波を発生し、波
形表示器9に基準光の波長対レベル特性を表示させる。
Next, a method of parallelism adjustment according to the prior art will be explained. 1
A reference light having a narrow spectral linewidth is input, and a control circuit 7 generates a sawtooth wave that repeatedly sweeps, causing a waveform display 9 to display the wavelength versus level characteristics of the reference light.

このとき基準光源の線幅が十分細ければ、観測されるス
ペクトルの線幅はそのまま共振器1.0の分解能を示す
。そこで、まずピエゾ素子3に加える電圧にオフセット
電圧Vを加える。オフセット電圧■を変えると、ピエゾ
素子コ3はピエゾ素子4・5に対し相対的な長さが変わ
るので、半透過鏡1に対する半透過鏡2の角度を変える
ことができる。波形を観測しながら、最もよい分解能が
得られる値にオフセット電圧Vを設定する。次に、ピエ
ゾ素子4・5に対しても順次同じJ、うにオフセット電
圧を加え、分解能が最もよくなった状態に各オフセット
電圧を保持し、調整を完了する。
At this time, if the line width of the reference light source is sufficiently thin, the line width of the observed spectrum directly indicates the resolution of the resonator 1.0. Therefore, first, an offset voltage V is added to the voltage applied to the piezo element 3. By changing the offset voltage (2), the relative length of the piezo element 3 to the piezo elements 4 and 5 changes, so the angle of the semi-transmitting mirror 2 with respect to the semi-transmitting mirror 1 can be changed. While observing the waveform, set the offset voltage V to a value that provides the best resolution. Next, the same offset voltages are sequentially applied to the piezo elements 4 and 5, and each offset voltage is maintained in the state where the resolution is the best, completing the adjustment.

次に、従来技術のオフセット電圧による調整方法を第5
図により説明する。
Next, the adjustment method using the offset voltage of the prior art will be explained in the fifth section.
This will be explained using figures.

第5図のように、ピエゾ素子3〜5は、半透過ll1I
!2に対して120°聞隔で配置されている。したがっ
て、ピエゾ素子;3のオフセット電圧を変えると、!1
′、透過鏡2はA軸に対して回転する。また、ピエゾ素
子4のオフセット電圧を変えると、半透過鏡2はB軸に
対して回転する。ピエゾ素子5のオフセット電圧を変え
ると、半透過鏡はC軸に対して回転する。A軸・B軸・
C軸は、互いに直行しておらず、120°の角で交わっ
ているので、1個のピエゾ素子を動かすと、対応する軸
方向に回転するが、その中には他の2個の軸に沿った目
脂成分が含ま扛ていることになる。したがって、1個の
ピエゾ素子を調整すると、他のピエゾ素子の最適点が変
化してしまうので、3個のピエゾ素子3〜5をそれぞれ
1回ずつ調整しただけでは、十分な平行度が得られず、
分解能が最適にならない。1・分な調整をするためには
、3個のピエゾ素子の調整を、1本ずつ順番に、何回も
行わなければならない。このため、調整に時間がかかる
という問題がある。
As shown in FIG. 5, the piezo elements 3 to 5 are semi-transparent
! They are arranged at 120° intervals relative to 2. Therefore, if you change the offset voltage of piezo element 3, ! 1
', the transmitting mirror 2 rotates about the A axis. Furthermore, when the offset voltage of the piezo element 4 is changed, the semi-transmissive mirror 2 rotates about the B axis. When the offset voltage of the piezo element 5 is changed, the semi-transparent mirror rotates about the C-axis. A-axis, B-axis,
The C-axes are not perpendicular to each other, but intersect at an angle of 120°, so when one piezo element is moved, it rotates in the corresponding axis direction, but some of the C-axes are not perpendicular to each other. This means that it contains eye oil components. Therefore, adjusting one piezo element will change the optimum point of the other piezo elements, so adjusting each of the three piezo elements 3 to 5 once will not provide sufficient parallelism. figure,
Resolution is not optimal. In order to make a one-minute adjustment, the three piezo elements must be adjusted one by one several times. Therefore, there is a problem that adjustment takes time.

この発明は、[整回数が2回ですみ、調整に要する時間
を短くすることができる共振器の平行度調整方法の提供
を目的とする。
An object of the present invention is to provide a method for adjusting the parallelism of a resonator, which requires only two integers and can shorten the time required for adjustment.

[課題を解決するための手段] この目的を達成するため、この発明では、光11に直角
に配置される第1の半透過鏡1と、第1の半透過鏡1.
と平行に配置される第2の半透過鏡2と、第2の半透過
鏡2に接続され、電圧を加えることにより、第2の半透
過鏡2の位置を移動させ、第、lの半透過鏡1と第2の
半透過鏡2の距離を変化させる複数のピエゾ素子とを備
えるファブリ・ベロー共振器に対し、前記複数のピエゾ
素子に同時に制御電圧を加え、第2の半透過鏡2に平行
な第1の基準軸に沿って回転させ、分解能が最もよくな
る角度に設定し、次に第2の半透過鏡2に平行で第1.
の基準軸に対し直交する第2の基準軸に沿って回転をさ
せ、分解能が最もよくなる角度に設定する。
[Means for Solving the Problems] In order to achieve this object, the present invention includes a first semi-transmitting mirror 1 disposed perpendicular to the light 11, a first semi-transmitting mirror 1.
A second half-transmitting mirror 2 is connected to the second half-transmitting mirror 2, which is arranged in parallel with For a Fabry-Bello resonator that includes a plurality of piezo elements that change the distance between the transmitting mirror 1 and the second semi-transmitting mirror 2, a control voltage is simultaneously applied to the plurality of piezo elements to change the distance between the second semi-transmitting mirror 2. The first reference axis is rotated along the first reference axis parallel to the mirror 2 and set at an angle that provides the best resolution, and then the second semi-transparent mirror 2 is rotated along the first reference axis.
The rotation is performed along a second reference axis perpendicular to the reference axis of , and the angle is set at an angle that provides the best resolution.

[作用] 欣に、この発明による共振器の平行度調整方法を第1図
により説明する。
[Function] The method for adjusting the parallelism of a resonator according to the present invention will now be explained with reference to FIG.

第1図のY軸は半透過鏡2に平行で半透過鏡2の中心と
ピエゾ素子3の取付位置を通る第1.の基準軸であり、
X軸は半透過鏡2に平行で半透過鏡2の中心を通り、Y
軸に直角な第2の基準軸である。
The Y axis in FIG. 1 is parallel to the semi-transmissive mirror 2 and passes through the center of the semi-transmissive mirror 2 and the mounting position of the piezo element 3. is the reference axis of
The X axis is parallel to the semi-transparent mirror 2 and passes through the center of the semi-transparent mirror 2, and the Y axis
A second reference axis perpendicular to the axis.

第1図のピエゾ素子4・5に加えている電圧に、オフセ
ット電圧■8を加え、同時に、ピエゾ素子3に、オフセ
ット電圧−2xVxを加えると、半透過鏡2は、X軸に
沿って一定角度だけ回転するが、Y軸に沿った方向に対
してはほとんど回転しない。また、ピエゾ素子4にオフ
セット電圧■7を加え、同時にピエゾ素子5にオフセッ
ト電圧−vYを加え、ピエゾ素子3の電圧はそのままに
しておくと、半透過鏡2は、Y軸に沿って一定角度だけ
回転するが、X軸に沿った方向に対してはほとんど回1
転しない。
When an offset voltage (8) is added to the voltage applied to the piezo elements 4 and 5 in Fig. 1, and at the same time an offset voltage of -2xVx is applied to the piezo element 3, the semi-transparent mirror 2 becomes constant along the X axis. It rotates by an angle, but hardly rotates in the direction along the Y axis. Also, if an offset voltage 7 is applied to the piezo element 4, and an offset voltage -vY is simultaneously applied to the piezo element 5, and the voltage of the piezo element 3 is left as is, the semi-transparent mirror 2 will move at a constant angle along the Y axis. , but almost 1 rotation in the direction along the X axis.
Doesn't roll.

そこで、平行度を調整するときは、ピエゾ素子3〜5の
オフセット電圧を変化させることにより半透過鏡2をX
軸に沿った方向に対して回転させながら、分解能が最も
よくなる角度を検出し、その状態に各オフセット電圧を
保持する。この状態の掃引電圧をVとすると、ピエゾ素
子3に加えられる電圧はV−2XV、、ピエゾ素子4・
5に加えられる電圧はV 十Vxである。
Therefore, when adjusting the parallelism, by changing the offset voltage of the piezo elements 3 to 5, the semi-transparent mirror 2 is
While rotating in the direction along the axis, the angle that provides the best resolution is detected, and each offset voltage is maintained at that state. If the sweep voltage in this state is V, then the voltage applied to the piezo element 3 is V-2XV, and the piezo element 4.
The voltage applied to 5 is V + Vx.

次に、ピエゾ素子3〜5のオフセット電圧を変化させる
ことにより半透過鏡2をY軸に沿った方向に対して回転
させながら、分解能が最もよくなる角度を検出し、その
状態に各オフセット電圧を保持する。
Next, while rotating the semi-transmissive mirror 2 in the direction along the Y-axis by changing the offset voltages of the piezo elements 3 to 5, the angle at which the resolution is the best is detected, and each offset voltage is applied to that state. Hold.

ピエゾ素子3の印加電圧はV−2XVケ、ピエゾ素子4
の印加電圧はV+Vx +VY、ピエゾ素子5の印加電
圧はV+Vx  Vyになる。
The voltage applied to piezo element 3 is V-2XV, piezo element 4
The voltage applied to the piezo element 5 is V+Vx +VY, and the voltage applied to the piezo element 5 is V+Vx Vy.

X軸とY軸は互いに直角なので、Y軸に沿って回転さぜ
るとき、X軸に沿った方向の回転成分はほとんど発生せ
ず、X軸方向の最適角度はほとんど変化しない。したが
って、Y軸に沿って調整をした後で、X軸方向の調整を
再度行う必要がない。
Since the X-axis and the Y-axis are perpendicular to each other, when rotating along the Y-axis, almost no rotation component occurs along the X-axis, and the optimum angle in the X-axis direction hardly changes. Therefore, after adjusting along the Y-axis, there is no need to perform adjustment in the X-axis direction again.

したがって調整の回数が2回ですみ、調整に要する時間
が短< ”(すむ。
Therefore, the number of adjustments is only two, and the time required for adjustment is short.

第1図では、ピエゾ素子が3個の場合を説明しているが
、ピエゾ素子の数が3個でなくても、複数のピエゾ素子
を同時に制御することによりX軸とY軸に沿った方向に
回転させることにより、この発明を適用することができ
る。
Fig. 1 explains the case where there are three piezo elements, but even if the number of piezo elements is not three, it is possible to control multiple piezo elements at the same time in the direction along the X and Y axes. This invention can be applied by rotating it.

[発明の効果] この発明によれば、共振器の平行度を調整をするときに
、複数のピエゾ素子を同時に制御することにより、半透
過鏡に平行な第1の基準軸に沿って回転をさせながら分
解能が最もよくなる角度に設定し、次に半透過鏡に平行
で第1の基準軸に対し直交する第2の基準軸に沿って回
転をさせながら分解能が最もよくなる角度に設定するの
で、調整回数が2回ですみ、調整に要する時間を短くす
ることができる。
[Effects of the Invention] According to the present invention, when adjusting the parallelism of the resonator, by controlling a plurality of piezo elements at the same time, rotation is performed along the first reference axis parallel to the semi-transparent mirror. The angle that gives the best resolution is set while rotating, and then the angle that gives the best resolution is set while rotating along the second reference axis that is parallel to the semi-transmissive mirror and orthogonal to the first reference axis. The number of adjustments required is only two, and the time required for adjustment can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による共振器の平行度調整方法の説明
図、第2図は共振器の構成図、第3図は一 第2図の共振器10を使用した装置の構成図、第4図は
共振器10を透過した光11の波長特性図、第5図は従
来技術のオフセット電圧による調整方法の説明図である
。 1・2・・・・・・半透過鏡、3〜5・・・・・・ピエ
ゾ素子、6・・・・・・駆動回路、7・・・・・・制御
回路、8・・・・・・光検出器、9・・・・・・波形表
示器、10・・・・・・共振器、11・・・・・・光。 代理人  弁理士  小 俣 欽 司
FIG. 1 is an explanatory diagram of a method for adjusting the parallelism of a resonator according to the present invention, FIG. 2 is a configuration diagram of the resonator, FIG. 3 is a configuration diagram of a device using the resonator 10 shown in FIGS. The figure is a wavelength characteristic diagram of the light 11 transmitted through the resonator 10, and FIG. 5 is an explanatory diagram of a conventional adjustment method using an offset voltage. 1, 2...Semi-transparent mirror, 3-5...Piezo element, 6...Drive circuit, 7...Control circuit, 8... ...Photodetector, 9...Waveform display, 10...Resonator, 11...Light. Agent Patent Attorney Kinji Komata

Claims (1)

【特許請求の範囲】 1、光(11)に直角に配置される第1の半透過鏡(1
)と、 第1の半透過鏡(1)と平行に配置される第2の半透過
鏡(2)と、 第2の半透過鏡(2)に接続され、電圧を加えることに
より、第2の半透過鏡(2)の位置を移動させ、第1の
半透過鏡(1)と第2の半透過鏡(2)の距離を変化さ
せる複数のピエゾ素子とを備えるフアブリ・ペロー共振
器に対し、 前記複数のピエゾ素子を同時に制御電圧を 加え、第2の半透過鏡(2)に平行な第1の基準軸に沿
って回転をさせ、分解能が最もよくなる角度に設定し、
次に第2の半透過鏡(2)に平行で第1の基準軸に対し
直交する第2の基準軸に沿って回転をさせ、分解能が最
もよくなる角度に設定することを特徴とするフアブリ・
ペロー共振器の平行度調整方法。
[Claims] 1. A first semi-transparent mirror (11) disposed at right angles to the light (11);
), a second semi-transmissive mirror (2) arranged parallel to the first semi-transmissive mirror (1), and a second semi-transmissive mirror (2) connected to the second semi-transparent mirror (2), A Fabry-Perot resonator comprising a plurality of piezo elements for moving the position of the semi-transmitting mirror (2) and changing the distance between the first semi-transmitting mirror (1) and the second semi-transmitting mirror (2). On the other hand, applying a control voltage to the plurality of piezo elements at the same time, rotating them along the first reference axis parallel to the second semi-transmissive mirror (2), and setting the angle at which the resolution is the best;
The Fabry mirror is then rotated along a second reference axis that is parallel to the second semi-transparent mirror (2) and perpendicular to the first reference axis, and is set at an angle that provides the best resolution.
How to adjust the parallelism of a Perot resonator.
JP21657890A 1990-08-17 1990-08-17 Parallelism adjustment method of Fabry-Perot resonator Expired - Lifetime JP3039969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21657890A JP3039969B2 (en) 1990-08-17 1990-08-17 Parallelism adjustment method of Fabry-Perot resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21657890A JP3039969B2 (en) 1990-08-17 1990-08-17 Parallelism adjustment method of Fabry-Perot resonator

Publications (2)

Publication Number Publication Date
JPH0498211A true JPH0498211A (en) 1992-03-30
JP3039969B2 JP3039969B2 (en) 2000-05-08

Family

ID=16690615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21657890A Expired - Lifetime JP3039969B2 (en) 1990-08-17 1990-08-17 Parallelism adjustment method of Fabry-Perot resonator

Country Status (1)

Country Link
JP (1) JP3039969B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047773A1 (en) * 2006-10-18 2008-04-24 Olympus Corporation Variable spectral element and endoscope system using the same
JP2010224265A (en) * 2009-03-24 2010-10-07 Olympus Corp Inclination angle control method for fabry-perot variable interference filter
JP2012187242A (en) * 2011-03-10 2012-10-04 Hoya Corp Filter calibration device and electronic endoscope system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047773A1 (en) * 2006-10-18 2008-04-24 Olympus Corporation Variable spectral element and endoscope system using the same
JP2008102269A (en) * 2006-10-18 2008-05-01 Olympus Corp Variable spectroscopic element and endoscope system equipped with the same
US8194252B2 (en) 2006-10-18 2012-06-05 Olympus Corporation Variable spectroscopic element and endoscope system having the same
JP2010224265A (en) * 2009-03-24 2010-10-07 Olympus Corp Inclination angle control method for fabry-perot variable interference filter
US8649097B2 (en) 2009-03-24 2014-02-11 Olympus Corporation Method of controlling inclination angle of Fabry-Perot tunable filters
JP2012187242A (en) * 2011-03-10 2012-10-04 Hoya Corp Filter calibration device and electronic endoscope system

Also Published As

Publication number Publication date
JP3039969B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
AU2009307933B2 (en) Fourier domain mode locking
JPS63229888A (en) Laser wavelength controlling device
EP1240476A1 (en) Optical mapping apparatus with adjustable depth resolution
US4660978A (en) Direct slope measurement shearing interferometer
DE112017006183T5 (en) LASER RADAR DEVICE
EP3640690A2 (en) Optical device and electronic apparatus
US10502546B2 (en) Systems and methods for variable-range fourier domain imaging
EP1148373A2 (en) Method and device for controlling the polarization of a Beam of Light
EP0726627B1 (en) Laser device
US5003268A (en) Optical signal sampling apparatus
JPH0498211A (en) Method for adjusting parallelism of fabry-perot resonator
US20220196799A1 (en) Tunable optical filter laser source feedback
CN217181274U (en) Digital adjustable multi-channel light path control system
US20220206285A1 (en) Thermal control of mems mirrors to limit resonant frequency shift
US20220204339A1 (en) Array of heating resistors for mems mirrors
CA2293029C (en) Method and device for controlling the polarization of a beam of light
JPH09184987A (en) Optical delay device
AU2015201039B2 (en) Fourier domain mode locking
RU2811388C1 (en) Method for stabilizing narrow-band sources of non-classical states of light obtained by intra-cavity generation of spontaneous parametric light scattering, and device for its implementation
CN114690328B (en) Digital adjustable multichannel light path control method
CN103337784B (en) A kind of laser polarization state control method based on polarized light feedback
JP3270169B2 (en) Laser oscillation device
JPH0458576A (en) Sweeping method for applied voltage onto piezoelectric element
JPH095812A (en) Optical logic element and optical logic circuit using the optical logic element
JPH05188421A (en) Optical wavelength converting device