JPH0497973A - Neutron absorber - Google Patents

Neutron absorber

Info

Publication number
JPH0497973A
JPH0497973A JP2212074A JP21207490A JPH0497973A JP H0497973 A JPH0497973 A JP H0497973A JP 2212074 A JP2212074 A JP 2212074A JP 21207490 A JP21207490 A JP 21207490A JP H0497973 A JPH0497973 A JP H0497973A
Authority
JP
Japan
Prior art keywords
carbon
boron
composite material
pressure
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2212074A
Other languages
Japanese (ja)
Other versions
JP3034919B2 (en
Inventor
Osamu Okada
修 岡田
Hiroaki Ogura
浩昭 小倉
Toshiaki Sogabe
敏明 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2212074A priority Critical patent/JP3034919B2/en
Priority to EP19910306592 priority patent/EP0470717B1/en
Priority to DE69119158T priority patent/DE69119158T2/en
Publication of JPH0497973A publication Critical patent/JPH0497973A/en
Priority to US08/104,410 priority patent/US5449529A/en
Priority to US08/178,845 priority patent/US5468565A/en
Priority to US08/178,846 priority patent/US5436948A/en
Application granted granted Critical
Publication of JP3034919B2 publication Critical patent/JP3034919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To obtain this absorber contg. fine boron particles uniformly dispersed in carbon and having superior neutron absorbing performance by using a composite material based on carbon and boron and obtd. in specified conditions as the absorber. CONSTITUTION:Boron oxide and/or a hydrated compd. thereof, e.g. B2O3 is impregnated into a carbon material such as a fine-grained isotropic graphite material and they are sintered at >=1,500 deg.C under pressure applied with inert gas such as N2 to obtain a composite material based on carbon and boron. This composite material is used as the title absorber.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、炭素−ホウ素(以下C−Bということがある
)の複合材料、特にホウ素(以下Bということがある)
成分が炭素(以下Cということがある)成分中に超微粒
で均一に分散されている複合材料からなる中性子吸収材
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to carbon-boron (hereinafter sometimes referred to as C-B) composite materials, particularly boron (hereinafter sometimes referred to as B).
The present invention relates to a neutron absorbing material made of a composite material in which ultrafine particles are uniformly dispersed in a carbon (hereinafter sometimes referred to as C) component.

〔従来の技術〕[Conventional technology]

(、−B複合材料は、原子力産業に於いては中性子吸収
材として広く研究され、用いられている。
(, -B composite materials have been widely studied and used as neutron absorbers in the nuclear industry.

現在−船釣に知られているこのC−B複合材料の製造方
法としては、専ら別途に製造されたB、C(炭化ホウ素
)と、炭素材又は炭化し得る原料とを混合し、高温下で
焼成し、両者を固溶体化する方法が良く知られている。
Currently, the manufacturing method of this C-B composite material, which is known for boat fishing, is to mix separately manufactured B and C (boron carbide) with a carbon material or a raw material that can be carbonized, and then A well-known method is to calcinate the two to form a solid solution.

例えば、特開昭62108767号、特願昭62−29
7202号などが挙げられる。
For example, Japanese Patent Application Publication No. 62108767, Japanese Patent Application No. 62-29
No. 7202 is an example.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の製造方法により得られたC−B複合材料は、
粗大なるB、Cを粉砕して炭素と混合するものであるが
、粉砕が機械的粉砕であるため、その微粉化には限界が
あり、目的物C−B複合材としてはB、Cの部分、B、
Cと炭素が固溶化された部分及び炭素のみの部分が混在
し、微細に観察する時全体として完全均一とは言い難い
ものであった。
The C-B composite material obtained by the above conventional manufacturing method is
Coarse B and C are crushed and mixed with carbon, but since the crushing is mechanical crushing, there is a limit to the pulverization, and the target C-B composite material is the B and C parts. ,B,
There were parts where C and carbon were made into a solid solution, and parts where only carbon existed, and when closely observed, it was difficult to say that the whole was completely uniform.

また上記従来方法では、粉体同志を混合、成形、焼結す
るものであるため、焼結後の材料について、切削、成形
加工する際の不便さがあり、切削粉の排臭等により、高
価なり a Cの原料効率が低下する欠点があった。
In addition, in the conventional method described above, powders are mixed, molded, and sintered, so it is inconvenient to cut and mold the material after sintering, and it is expensive due to the odor of cutting powder. There was a drawback that the raw material efficiency of aC was lowered.

更に従来の方法で最も大きな問題点は、ホウ素以外の無
機質不純物を多く含む(通常的5000ppm )こと
である。この不純物は配合原料の粉砕、混合、成形、焼
成等の各工程で鋼鉄製機械類との接触等によって混入さ
れてくるものであり、従、来方法では避けることの極め
て難しいものである。B−C複合材料の用途によっては
、少量の無機質不純物の共存は大きな問題とならない場
合もあるが、原子力産業用材料としては混在する無機質
不純物が放射線の照射等により、同位体変換、分裂等の
反応を併発し、核融合材料に用いた場合にはこれら不純
物から発する高Z元素(高原子価元素)によリプラズマ
温度を著しく低下させる決定的な弊害を招く原因となる
。そこで原子力産業向は炭素材としては特に高純度化さ
れた材料、例えば無機質不純物が5 pptm以下、好
ましくは2 ppm以下、実質的にOppw+  (原
子吸光分析又は発光輝線スペクトル法による)に近い超
高純度炭素材を用いるのが常である。このような超高純
度炭素材の製法としては、例えば特願昭61−2241
31号に示されるように、無機質元素は揮発性の高いハ
ロゲン化処理によって除かれるが、84C−Cを原料と
する複合材料に於いては、炭素材中にホウ素が存在する
ために、複合化した後はこの方法を用いて不純物を除く
ことができない。
Furthermore, the biggest problem with the conventional method is that it contains a large amount of inorganic impurities other than boron (typically 5000 ppm). These impurities are introduced through contact with steel machinery during the grinding, mixing, molding, firing, and other processes of the blended raw materials, and are extremely difficult to avoid using conventional methods. Depending on the use of B-C composite materials, the coexistence of small amounts of inorganic impurities may not be a major problem, but as materials for the nuclear industry, inorganic impurities mixed in may cause isotope conversion, splitting, etc. due to radiation irradiation etc. Reactions occur simultaneously, and when used as a nuclear fusion material, high Z elements (high valence elements) emitted from these impurities cause a decisive adverse effect of significantly lowering the replasma temperature. Therefore, carbon materials for the nuclear power industry require particularly highly purified materials, such as ultra-high-purity materials with inorganic impurities of 5 pptm or less, preferably 2 ppm or less, substantially close to Oppw+ (by atomic absorption spectrometry or emission line spectroscopy). It is customary to use pure carbon material. As a manufacturing method for such ultra-high purity carbon material, for example, Japanese Patent Application No. 61-2241
As shown in No. 31, inorganic elements are removed by highly volatile halogenation treatment, but in composite materials made from 84C-C, due to the presence of boron in the carbon material, After that, the impurities cannot be removed using this method.

本発明は、従来法であるB、C−C粉を原料とする上記
の種々の欠点を解消し、更に優れたBC複合材を開発し
、これを中性子吸収材として利用することである。
The purpose of the present invention is to solve the above-mentioned various drawbacks of the conventional method using B, C-C powder as raw materials, develop an even better BC composite material, and utilize this as a neutron absorbing material.

〔課題を解決するための手段] 本発明者らは上記従来方法の欠点を解決し、より優れた
材料を開発するために研究を進め、先ずホウ素源として
従来方法の原料であるB、Cを使用せず、新しく酸化ホ
ウ素又はその水和化合物を溶融又は溶液の形で炭素材に
含浸せしめる方法を採用した。この方法によりホウ素成
分は分子状のレベルで微細な炭素粒表面又は炭素材中の
微細な細孔内に浸透し、84 Cの粉体使用の場合に比
し極めて微細に、且つ全体にわたって分散させることが
できる。
[Means for Solving the Problems] The present inventors have proceeded with research in order to solve the drawbacks of the above-mentioned conventional methods and develop better materials. First, B and C, which are the raw materials of the conventional method, are used as boron sources. Instead of using boron oxide or its hydrated compound, a new method was adopted in which the carbon material was impregnated with boron oxide or its hydrated compound in the form of melt or solution. By this method, the boron component penetrates into the surface of fine carbon grains or into the fine pores in the carbon material at a molecular level, and is dispersed much more finely and throughout the material than when using 84C powder. be able to.

更にこのようにホウ素を酸化物の形で使用するため、酸
化物と炭素との反応によってホウ素が炭素内に固定され
固溶体化するに適した反応方式、即ち炭素材へのホウ素
化合物の液状での含浸に引き続き、含浸されているホウ
素化合物が炭素材から揮散しない条件で、且つホウ素と
炭素が固溶化反応する条件として、高温、高圧下にて焼
成する製法を開発し、この新しい方法で得られたC−B
複合材料が中性子吸収材として極めて優れたものである
ことを更に見出し所期の目的に達した。
Furthermore, since boron is used in the form of an oxide, a reaction method suitable for fixing boron in carbon and turning it into a solid solution by the reaction between the oxide and carbon, that is, applying the boron compound to the carbon material in liquid form. Following impregnation, we developed a manufacturing method in which the impregnated boron compound is not volatilized from the carbon material, and the boron and carbon undergo a solid solution reaction, in which firing is performed at high temperature and high pressure. TA C-B
They further discovered that composite materials are extremely excellent neutron absorbers and achieved their desired goal.

〔発明の作用並びに構成〕[Function and structure of the invention]

本発明に於いて使用するC−B複合材料の製法について
説明する。
The manufacturing method of the C-B composite material used in the present invention will be explained.

(第一工程〉 耐圧容器内で炭素材、例えば等方性高密度炭素材(東洋
炭素■製 rIG−1ll)の切削成形体に、溶融酸化
ホウ素を600〜1400°C1好ましくは800〜1
200℃にて加圧含浸せしめる。この際耐圧容器内を一
旦減圧にして炭素材細孔内に含まれる空気を除いてから
含浸させることが望ましいが、必ずしも事前脱気しなく
ても良い。
(First step) Molten boron oxide is heated at 600 to 1400°C, preferably at 800 to 100°C, to a cut compact of a carbon material, for example, an isotropic high-density carbon material (rIG-1ll manufactured by Toyo Tanso ■) in a pressure-resistant container.
Impregnation under pressure at 200°C. At this time, it is desirable to once reduce the pressure in the pressure container to remove air contained in the pores of the carbon material before impregnation, but it is not always necessary to deaerate in advance.

炭素材に8203を含浸せしめるには数kg/Cdlの
加圧下でも良いが、深部まで完全に圧力浸透させるには
50〜100kg/C11lにすることが望ましい。
In order to impregnate the carbon material with 8203, a pressure of several kg/Cdl may be used, but in order to completely penetrate the pressure to the deep part, the pressure is preferably 50 to 100 kg/Cdl.

この加圧は、炭素材の空孔率、粒度、細孔分布、温度等
により適宜に決定される。
This pressure is appropriately determined depending on the porosity, particle size, pore distribution, temperature, etc. of the carbon material.

(第二工程〉 B、Oユを含浸せしめた炭素材は不活性気体を圧力媒体
として高温、高圧下にて加熱処理(以下HIPというこ
とがある)を行う。加熱処理により、例えばAr等の不
活性ガスを媒体として用いることにより恰も水圧で押す
ように炭素材及びB2O3液を各方面から均等に圧力を
かけ、B2O3の蒸散を防ぎつつ、炭素材内に閉し込め
、温度の効果により炭素とホウ素の化学反応が進行する
(Second step) The carbon material impregnated with B and O is subjected to heat treatment (hereinafter sometimes referred to as HIP) under high temperature and high pressure using an inert gas as a pressure medium. By using an inert gas as a medium, the carbon material and B2O3 liquid are evenly pressured from all directions, just like water pressure, and while preventing transpiration of B2O3, it is trapped inside the carbon material, and the carbon is released due to the effect of temperature. A chemical reaction between and boron proceeds.

加熱処理装置内の圧力及び温度は、50kg/cd以上
、1500°C以上の温度、望ましくは2000°C以
上、1500〜2000kg/cdが良い。この場合温
度が2300°Cを超えると、炭素とホウ素の固溶体の
分解反応が併発するので好ましくない。
The pressure and temperature in the heat treatment apparatus are preferably 50 kg/cd or higher and 1500°C or higher, preferably 2000°C or higher and 1500 to 2000 kg/cd. In this case, if the temperature exceeds 2300°C, decomposition reactions of the solid solution of carbon and boron occur simultaneously, which is not preferable.

以上第一、第二工程が必須であるが、製造条件によって
はほんの少量のB、O,が炭素材中に残る場合があり、
この複合材の使用場所、目的によってはこれを嫌うこと
がある。そこでこれを除くために次に第三工程を加える
こともできる。
Although the first and second steps are essential, depending on the manufacturing conditions, a small amount of B, O, may remain in the carbon material.
Depending on the location and purpose of this composite material, this may be disliked. Therefore, in order to eliminate this, a third step can be added next.

く第三工程〉 第二工程でHIP処理を終わった複合材を10T。Third step 10T of composite material that has undergone HIP treatment in the second step.

rr以下、好ましくは5 Torr以下の減圧下、10
00°C以上、好ましくは1500°C以上の高温、減
圧下処理により、複合材中のB z O3量は0.1%
以下に減少させることができる。このようにして得られ
たB−C複合材は従来法のようにB、C粉を用いた複合
材に比ベホウ素が微細に、且つ全体に均一に分散されて
いる。
Under reduced pressure of less than 5 Torr, preferably less than 5 Torr, 10
By treatment at a high temperature of 00°C or higher, preferably 1500°C or higher, and under reduced pressure, the amount of BzO3 in the composite material is reduced to 0.1%.
It can be reduced to: In the B-C composite material thus obtained, boron is dispersed finely and uniformly throughout the composite material compared to a composite material using B and C powders as in the conventional method.

本発明に於いて使用される炭素材は上記例示のように等
方性炭素材の他、一般炭素材、異方性炭素材(例えばパ
イロカーボン、パイログラファイトなと)、炭素−炭素
複合材(以下C/C材ということがある)等、炭素材の
種類を問わず適用可能である。本発明は炭素粉及びB、
C粉を用いず、別途製造された炭素材を切削等で成形さ
れた炭素材を用いるため、その形状、組織、骨格をその
ままの状態でホウ素化することができることが最大の特
徴として挙げられる。
The carbon materials used in the present invention include isotropic carbon materials as exemplified above, general carbon materials, anisotropic carbon materials (such as pyrocarbon and pyrographite), and carbon-carbon composite materials ( It can be applied regardless of the type of carbon material, such as C/C material (hereinafter sometimes referred to as C/C material). The present invention provides carbon powder and B,
Since the carbon material is formed by cutting a separately manufactured carbon material without using C powder, the biggest feature is that it can be boronized with its shape, structure, and skeleton intact.

例えば超高純度等方性高密度黒鉛材を基材として用いて
ホウ素化した場合には、ホウ素化合物の純度の良いもの
を使用すれば得られる複合材としては、炭素とホウ素以
外の元素の不純物は基材の純度とほぼ同じ5 ppm以
下と非常に小さいものが得られる。これは原料の粉砕、
混合、圧縮成形等機械的処理工程中の汚染が本発明の場
合皆無であることによるものと思われる。
For example, if ultra-high purity isotropic high-density graphite material is used as a base material and boronated, the composite material obtained by using a boron compound with good purity will contain impurities of elements other than carbon and boron. A very small purity of 5 ppm or less, which is almost the same as the purity of the base material, can be obtained. This is the grinding of raw materials,
This is believed to be due to the fact that there is no contamination during mechanical processing steps such as mixing and compression molding in the case of the present invention.

本発明方法の特徴を示す端的な例として、炭素/炭素複
合材のホウ素化の場合が挙げられる。従来法のようにB
、C粉を用いる場合、非常に細がく粉砕しても1μm以
下の粒径に粉砕することは特殊な設備と技術を要し、こ
の粒子を樹脂成分と混和し、炭素繊維に塗布し、プリプ
レグを作り、更に成形、加熱硬化、炭化し、その後切削
加工してホウ素化C/C材製品を作る方法が考えられる
が、この方法の最大の欠点は炭素材を完全に黒鉛化でき
ない点にある。何故ならば炭素の黒鉛化には2500〜
3000℃の高温焼成が必要であるにもかかわらず、B
、C成分は2300°C付近で分解を始めるからである
。また予め3000℃での高温焼成によって黒鉛化され
たC/C材の微細なる細孔内に後からB、C細粉を押し
込むことは不可能に近く、ましてホウ素成分をC/C材
の深部まで均一に分散させることはできない。このこと
は一般炭素材ブロックについても同様に言えることでは
あるが、C/C材については炭素繊維の強度を維持しつ
つホウ素化を計らねばならない点に特に困難があった。
A simple example showing the characteristics of the method of the present invention is the case of boronation of carbon/carbon composite materials. B like the conventional method
When using C powder, it requires special equipment and technology to grind it to a particle size of 1 μm or less even if it is very finely ground.The particles are mixed with a resin component, applied to carbon fiber, and prepreg. One possible method is to create a boronated C/C material product by forming, heat-hardening, carbonizing, and then cutting, but the biggest drawback of this method is that the carbon material cannot be completely graphitized. . This is because carbon graphitization requires 2500 ~
Despite the need for high-temperature firing at 3000°C, B
This is because the C component begins to decompose at around 2300°C. In addition, it is almost impossible to push the B and C fine powder into the fine pores of the C/C material, which has been graphitized by high-temperature firing at 3000°C. cannot be uniformly dispersed. Although the same can be said for general carbon material blocks, it is particularly difficult to prepare C/C materials for boronization while maintaining the strength of the carbon fibers.

この点本発明方法による場合、極めて容易にC/C材の
ホウ素化が可能である。即ち既に述べた如くホウ素成分
は溶融又は溶液の形で分子レベルの大きさで炭素材の細
孔内に圧力によって強制的に圧入され、深部まで均一に
分散させることができる。且つこのホウ素成分の強制圧
入作業及びその後の焼成作業によってC/C材としての
組織に変化はなく、炭素材は事前に3000℃での黒鉛
化処理を行っているので、ホウ素化反応を進めるために
2000°Cにて焼成しても、得られるホウ素化成形体
はC/C材としての充分の物性を有するものとなる。
In this respect, according to the method of the present invention, it is possible to boronize the C/C material very easily. That is, as described above, the boron component is forcibly injected into the pores of the carbon material at a molecular level in the form of a melt or solution, and can be uniformly dispersed deep into the pores of the carbon material. In addition, there is no change in the structure of the C/C material due to the forced injection of boron components and the subsequent firing work, and since the carbon material has been graphitized at 3000°C in advance, it is difficult to proceed with the boronization reaction. Even when fired at 2000°C, the resulting boronated molded product has sufficient physical properties as a C/C material.

一方決素材に含浸されるホウ素成分は、原理的には加熱
により溶融又は溶媒によって溶液になし得るホウ素化合
物が本目的に供し得るが、炭素材と共に加熱焼成して無
機質不純物を残すものは、炭素材の汚染を招来し、用途
に制約を生じるので好ましくない。従って焼成によって
熱的分解又は炭素との反応によってホウ素のみを残して
分解揮散する化合物が望ましい。この点からは、含ホウ
素有機化合物やホウ素のハロゲン化物等も試みられたが
、経済性及び取扱の容易性などの点から、本発明に於い
ては酸化ホウ素(B t Os )及びその水和化合物
、例えばH,BO,・オルトホウ酸が最適なものとして
例示できる。例えばB20゜と炭素との化学反応として
は、 2B、03+7C−+BJC+6CO がB a Cの焼成反応として知られているが、本発明
のように非常に多量の炭素の中に分子レベルの大きさの
8203が分散されて生成した(炭素−ホウ素)複合材
が上記の反応式通りに進んでいるかどうかは明確でない
。実施例1に示す方法で得られた複合材について種々の
分析を行った結果、化学分析によっては4重量%のホウ
素成分が測定され(遊#BgOs  O,02%)、且
つ中性子照射の結果からも明らかなホウ素成分による中
性子吸収の事実が観察されるにもかかわらず、X線回折
装置による観察では、B、Cの存在を示すピークは僅か
である。他の特定の結晶系を示すピークも少な(、ブロ
ードな部分が多いことから、不定形物又は固溶体の状態
をなすものと推考される。従って最終製品は、B、Cと
いう特定の化合物を示す明確な形態ではなく、(B、x
Cy+C)の形としての固溶体の形態であろうと推察さ
れるが、本発明はこのような固溶体の形態に拘束される
ものではない。
In principle, boron compounds that can be melted by heating or made into a solution with a solvent can be used as the boron component impregnated into the material. This is undesirable because it causes contamination of the material and limits its usage. Therefore, it is desirable to use a compound that decomposes and volatilizes by thermal decomposition or reaction with carbon during firing, leaving only boron. From this point of view, boron-containing organic compounds and boron halides have been tried, but from the viewpoint of economy and ease of handling, boron oxide (B t Os ) and its hydrate are used in the present invention. A compound such as H, BO, orthoboric acid can be exemplified as the most suitable one. For example, as a chemical reaction between B20° and carbon, 2B,03+7C-+BJC+6CO is known as the calcination reaction of B a C, but as in the present invention, molecular-level particles are present in a very large amount of carbon. It is not clear whether the (carbon-boron) composite material produced by dispersing 8203 proceeds according to the above reaction formula. As a result of performing various analyzes on the composite material obtained by the method shown in Example 1, a boron component of 4% by weight was determined by chemical analysis (free #BgOsO, 02%), and from the results of neutron irradiation. Despite the fact that neutron absorption by the boron component is clearly observed, there are only a few peaks indicating the presence of B and C when observed using an X-ray diffraction device. There are also few peaks indicating other specific crystal systems (and there are many broad parts, so it is assumed that the peaks are in the form of an amorphous substance or a solid solution. Therefore, the final product shows specific compounds B and C. Rather than a clear form, (B, x
It is presumed that the solid solution is in the form of Cy+C), but the present invention is not limited to such a solid solution form.

ホウ素成分としては酸化ホウ素(Bt○、)の他、それ
の水和化合物も同様に使用することができる。水和化合
物としては、例えばホウ酸(H3BO3、B (OH)
3)が挙げられる。
As the boron component, in addition to boron oxide (Bt◯), hydrated compounds thereof can also be used. Examples of hydrated compounds include boric acid (H3BO3, B (OH)
3).

これらホウ酸は、酸化ホウ素(B z O3)に比べ、
比較的低い融点(185°C)を有し、それ以上の温度
では水分を放ちながら分解し、(BzCh・”H3BO
3)固溶体的な形態となり、液状を保つ。
These boric acids, compared to boron oxide (B z O3),
It has a relatively low melting point (185°C), and at higher temperatures it decomposes while releasing moisture, forming (BzCh・"H3BO
3) Becomes a solid solution and remains liquid.

従ってホウ酸を原料に用いた場合には、容器内に適当な
粘度を保つ温度、即ち300〜500℃に保ちつつ、ホ
ウ酸を溶融し、これに炭素材を浸漬し、加圧含浸により
炭素材細孔内に強制的に圧入せしめる。以上の第一工程
(含浸)に引き続いて行う第二工程(HI P処理工程
)は、上記したB、O。
Therefore, when boric acid is used as a raw material, the boric acid is kept at a temperature that maintains an appropriate viscosity in the container, that is, 300 to 500°C, and the carbon material is immersed in the melted boric acid. Forcibly press into the pores of the material. The second step (HIP treatment step) performed subsequent to the above first step (impregnation) is the above-mentioned B and O.

の場合と同様に実施し得る。It can be implemented in the same way as in the case of .

次にこれらホウ素化合物と炭素材とを原料として本発明
方法を実施する際の態様について説明する。
Next, a mode of carrying out the method of the present invention using these boron compounds and carbon materials as raw materials will be described.

ホウ素化合物は加熱溶融し、液状になった状態又は適宜
な溶媒に溶解した溶液の状態で加圧含浸される。例えば
B20.の融点は常圧にて450’C1沸点は1500
°Cであり、この温度範囲で液状となるが、含浸操作は
600〜1400℃、好ましくは800〜1200°C
の温度範囲が適当である。
The boron compound is heated and melted and impregnated under pressure in a liquid state or in a solution state dissolved in an appropriate solvent. For example, B20. Melting point is 450'C1 boiling point is 1500 at normal pressure
°C, and becomes liquid in this temperature range, but the impregnation operation is carried out at 600 to 1400 °C, preferably 800 to 1200 °C.
A temperature range of

先ず第一工程として、耐圧容器内にてB z 03と炭
素材を入れ、真空、加熱、加圧法によって炭素形成体の
細孔空隙にB2O3を圧入する。この際B、O,圧入に
先立って容器内を一旦減圧にし、炭素材の細孔内に存在
する空気を除去してお(と、B20.の圧入が完全で、
容易であるが、圧入圧力が高いので、この−旦減圧操作
は必須ではない。
First, in the first step, B z 03 and a carbon material are placed in a pressure-resistant container, and B2O3 is pressurized into the pore spaces of the carbon formed body by vacuum, heating, and pressure methods. At this time, before press-fitting B, O, the inside of the container is once depressurized to remove the air present in the pores of the carbon material (and B20. is completely press-fitted.
Although it is easy, since the press-in pressure is high, this depressurization operation is not essential.

圧入圧力は、数kg/aiでも良いが、好ましくは50
〜100kg/cdである。
The press-in pressure may be several kg/ai, but is preferably 50 kg/ai.
~100 kg/cd.

次に第二工程としてHIP処理を行う。第一工程でホウ
素化合物を含浸させた炭素材を、常圧で2000”Cで
加熱しても、驚くことに炭素材は殆どホウ素化されない
。高温加熱によってホウ素成分が蒸散し、炭素材との反
応で固溶体化することがないからと思われる。第二工程
での加熱は、高い圧力下に於いて行うことが必要である
。高温・高圧で行う処理は例えばAr等の不活性ガスを
媒体として、100kg/cd以上、1500°C以上
の温度、望ましくは100〜2000kg/ ci、2
000℃以上の条件で行う。このHIP処理により炭素
材中へホウ素化合物を固溶拡散させ、化学的に定着させ
ることができる。
Next, HIP processing is performed as a second step. Surprisingly, even if the carbon material impregnated with a boron compound in the first step is heated at 2000"C under normal pressure, the carbon material is hardly boronized. The boron component evaporates due to high temperature heating, and the carbon material is separated from the carbon material. This seems to be because there is no solid solution formation in the reaction.Heating in the second step needs to be performed under high pressure.In the treatment carried out at high temperature and high pressure, for example, an inert gas such as Ar is used as a medium. 100 kg/cd or more, temperature of 1500°C or more, preferably 100 to 2000 kg/ci, 2
The test is carried out at a temperature of 000°C or higher. By this HIP treatment, the boron compound can be diffused into the carbon material as a solid solution and fixed chemically.

以上が第二工程で、第一工程と共に必須の操作であり、
通常の〔炭素−ホウ素]固溶体としての用途や目的のた
めには充分であり、更に必要に応じて切削成形加工処理
等の仕上げを行って市場に供される。
The above is the second step, which is an essential operation along with the first step.
It is sufficient for the purpose and use as a normal [carbon-boron] solid solution, and if necessary, it can be provided on the market after being subjected to finishing treatments such as cutting and forming processing.

しかし本発明の如く、原子炉用中性子吸収材の用途に用
いるためには残存B2O3量はできるだけ少ない方が良
い。このようなり203が残存する材料を若し原子炉内
に用い、高温条件下にて使用された場合、蒸発したBt
O3が比較的低温部に析出固結し、作動を阻害するトラ
ブルの原因となったり、金属製部品を腐食したり、保存
中固結したりするからである。
However, in order to use the material as a neutron absorber for nuclear reactors as in the present invention, it is preferable that the amount of residual B2O3 is as small as possible. If such a material in which 203 remains is used in a nuclear reactor under high temperature conditions, the evaporated Bt
This is because O3 precipitates and solidifies in relatively low-temperature areas, causing problems that inhibit operation, corroding metal parts, and solidifying during storage.

そのため原子炉用に供せられるためには残存するB20
.をできるだけ除くことが好ましく、この場合は必要に
応して次に記す第三工程を付は加えることができる。
Therefore, remaining B20 must be used for nuclear reactors.
.. It is preferable to remove as much as possible, and in this case, the following third step can be added as necessary.

〈第三工程) 第二工程で得られた固溶体を、耐圧容器に入れ、減圧下
、好ましくは10Torr以下、特に好ましくは5 T
orr以下の強減圧下、1500°C以上の熱処理を施
し、Bt○3を蒸発除去する工程が付は加えられる。
(Third step) The solid solution obtained in the second step is placed in a pressure-resistant container and heated under reduced pressure, preferably 10 Torr or less, particularly preferably 5 T.
A step of heat treatment at 1,500° C. or higher under strongly reduced pressure of orr or less to evaporate and remove Bt○3 is additionally added.

このような処理を行うことによって、B2O3残存量を
0.01重量%にまで少なくすることができる。
By performing such treatment, the residual amount of B2O3 can be reduced to 0.01% by weight.

本発明法によって得られる材料は極めて優れた中性子吸
収性能を存し、中性子吸収材として有効に使用され、実
用的には原子炉材料として、また核融合炉用プラズマ対
向壁、宇宙航空用材料等の分野に威力を発揮する。
The material obtained by the method of the present invention has extremely excellent neutron absorption performance and is effectively used as a neutron absorbing material, and is practically used as a nuclear reactor material, a plasma facing wall for nuclear fusion reactors, a material for aerospace, etc. Demonstrates its power in the field of

〔発明の効果〕〔Effect of the invention〕

本発明複合材料は、炭素中にホウ素が均質に、しかも微
粒で拡散している。このため中性子吸収材として極めて
優れたものであって、中性子を吸収するような用途に広
く利用され、産業上の効果は極めて大きい。
In the composite material of the present invention, boron is uniformly diffused in carbon in the form of fine particles. For this reason, it is extremely excellent as a neutron absorbing material, and is widely used in applications such as absorbing neutrons, and has extremely large industrial effects.

〔実 施 例〕〔Example〕

以下にC−B複合材料の製造例たる参考例及び実施例を
示して本発明の詳細な説明する。
The present invention will be described in detail below with reference to reference examples and examples of production of C-B composite materials.

参考例1 〈第一工程〉 微粒等方性黒鉛材(東洋炭素株製 rIG−11」)に
オートクレーブを用いて1200°Cで溶融したB2O
3に該黒鉛材を浸漬し、N2ガスにて150kg/c−
Jの圧力で1時間加圧し、B2O3を該黒鉛材の気孔中
に含浸した。
Reference Example 1 <First step> B2O melted at 1200°C using an autoclave in a fine-grained isotropic graphite material (rIG-11 manufactured by Toyo Tanso Co., Ltd.)
The graphite material was immersed in 3 and heated at 150 kg/c- with N2 gas.
The graphite material was pressurized for 1 hour at a pressure of 100 mL to impregnate B2O3 into the pores of the graphite material.

〈第二工程〉 含浸終了後更にHIP処理装置を用い、温度2000℃
12000kg/ciの圧力で1時間保持しく圧力媒体
Ar) 、ホウ素を該黒鉛材中へ拡散、固溶体化した。
〈Second step〉 After the impregnation is completed, a HIP treatment device is used and the temperature is 2000℃.
A pressure of 12000 kg/ci was maintained for 1 hour to diffuse boron into the graphite material and form a solid solution.

尚HIP処理の際、被処理品を黒鉛製の円筒型のサヤに
入れ、蓋をした。
During the HIP treatment, the product to be treated was placed in a cylindrical graphite sheath and covered with a lid.

〈第三工程〉 その後真空容器を用い、I Torr、2000°Cで
1時間の真空処理を行った。得られた複合材料のホウ素
濃度はマンニラトール法で測定し、4.0重量%(ホウ
素元素として)であった。その内B20゜は0.02重
量%であり、殆ど全ての未反応のB z Oxが蒸散、
除去されていた。
<Third Step> Thereafter, vacuum treatment was performed at I Torr and 2000° C. for 1 hour using a vacuum container. The boron concentration of the obtained composite material was measured by the mannilatol method and was 4.0% by weight (as elemental boron). Among them, B20° is 0.02% by weight, and almost all unreacted B z Ox transpires.
It had been removed.

参考例2 参考例1で得られた炭素−ホウ素複合材料を参考例1と
同様な処理を繰り返し行った。それによって得られたホ
ウ素複合材料のホウ素濃度は7重量%であった。その内
8.03は0.03重量%であった。
Reference Example 2 The carbon-boron composite material obtained in Reference Example 1 was repeatedly subjected to the same treatment as in Reference Example 1. The boron concentration of the boron composite material thus obtained was 7% by weight. Of these, 8.03 was 0.03% by weight.

上記から明らかな通り、参考例1に示す処理を繰り返す
ことによって、複合材料中のホウ素含量を高め得られる
ことが判った。
As is clear from the above, it was found that by repeating the treatment shown in Reference Example 1, it was possible to increase the boron content in the composite material.

参考例3 PAN系高先高強度炭素繊維000フイラメント、繊維
径7μm、引張強度300kg / mm ″)の平織
りクロスに、フェノール樹脂溶液(レゾール型フェノー
ル樹脂をメタノールで2〜3倍に希釈した溶′a、)を
含浸塗布し、24時間風乾を行いプリプレグシートを得
た。
Reference Example 3 A phenol resin solution (resol type phenol resin diluted 2 to 3 times with methanol) was applied to a plain weave cloth made of PAN-based high-end high-strength carbon fiber 000 filament, fiber diameter 7 μm, tensile strength 300 kg/mm''). A,) was applied by impregnation and air-dried for 24 hours to obtain a prepreg sheet.

このプリプレグシートを乾燥器中で積層、熱処理しく1
00°(xo、5時間)、その後金型に詰め、油圧プレ
スで140’c、50kg/dの条件で1時間保持して
2枚の積層体たる2D底成形を得た。
This prepreg sheet is laminated in a dryer and heat treated.
00° (xo, 5 hours), and then packed into a mold and held in a hydraulic press at 140'c and 50 kg/d for 1 hour to obtain a 2D bottom molded product consisting of two laminates.

得られた成形体をコークス粉体中に詰め、非酸化性雰囲
気でtooo’cまで昇温速度10’c/時間で処理し
、その後真空炉を用い5 Torrの減圧下で、200
0°Cまで100°C/時間の速度で高温処理を行った
The obtained compact was packed in coke powder and treated in a non-oxidizing atmosphere at a heating rate of 10'C/hour to too'C, and then heated to 200℃ under a reduced pressure of 5 Torr using a vacuum furnace.
High temperature treatment was carried out at a rate of 100°C/hour to 0°C.

クラックのない2DC/C複合材が得られた。A crack-free 2DC/C composite material was obtained.

上記2DC/C複合材に対して、オルトホウ酸(H3B
O,)1重量%に対して、水1重量%を加えて得られた
溶液を加え、浸漬、含浸させた。
Orthoboric acid (H3B
A solution obtained by adding 1% by weight of water to 1% by weight of O, ) was added and immersed for impregnation.

これを120°Cに保った乾燥器内にて水分を蒸発させ
た。その後水溶液含浸処理を更に1回実施した。
The water was evaporated in a dryer maintained at 120°C. After that, the aqueous solution impregnation treatment was performed one more time.

該水溶液は比較的粘度が低く、C/C複合材中の空隙や
細孔内に、深部まで容易に含浸されていることが確認さ
れた。
It was confirmed that the aqueous solution had a relatively low viscosity and was easily impregnated deep into the voids and pores in the C/C composite material.

以上を第一工程(含浸処理)とし、参考例1に示すのと
同様の条件下にて第二工程を実施して、C/C複合材を
基材とした炭素−ホウ素複合材を得た。得られた製品中
のホウ素濃度は3.7重量%(ホウ素元素換算値)であ
った。
The above was the first step (impregnation treatment), and the second step was carried out under the same conditions as shown in Reference Example 1 to obtain a carbon-boron composite material using the C/C composite material as a base material. . The boron concentration in the obtained product was 3.7% by weight (calculated as boron element).

参考例4 炭素基材として、メソフェーズ球晶炭素(川崎製鉄■ 
rKMFCJ )を平均粒径5μm以下に粉砕し、熱圧
成形後、再に2500〜3000°Cで焼成し、得られ
た高純度超微細等方性黒鉛材(以下■50880と略称
する)を使用し、参考例1と同様の方法でホウ素化反応
を行った。
Reference example 4 Mesophase spherulite carbon (Kawasaki Steel ■
rKMFCJ) is pulverized to an average particle size of 5 μm or less, hot-press molded, and fired again at 2500 to 3000°C, and the obtained high-purity ultrafine isotropic graphite material (hereinafter abbreviated as 50880) is used. Then, a boronation reaction was carried out in the same manner as in Reference Example 1.

この炭素基材は緻密、高強度の特性を有する炭素材で、
細孔容積の小さい材料であるが、参考例1に示す方法で
ホウ素化を行ったところ、得られたC−B複合材中のホ
ウ素濃度は2.6%(重量)であり、且つ第三工程の処
理を行った後の残存B20.量は0.01%以下と測定
された。
This carbon base material is a carbon material with dense and high strength properties.
Although it is a material with a small pore volume, when boronation was performed using the method shown in Reference Example 1, the boron concentration in the obtained C-B composite material was 2.6% (weight), and Remaining B20 after processing the process. The amount was determined to be less than 0.01%.

尚ホウ素化処理を行った前後、即ち130−880原材
と、本参考例によるホウ素化反応後に於けるホウ素元素
以外の元素の分析値は第1表の通りであった。
Table 1 shows the analytical values of elements other than boron before and after the boronization treatment, that is, for the 130-880 raw material and after the boronization reaction according to this reference example.

第  1  表(1) 第  1  表(2) 第  1  表 (3) 尚一般炭素材は通常400111)111前後の不純物
を含有するが、これを高温ハロゲン化処理(例えば特開
昭63−79759号)により10ρρm以下、目的に
より全灰分量を1〜2 ppm以下にすることができる
。本例に於ける130−880はr 5o−88をハロ
ゲン化処理によって不純物を事前に除去した材料である
0分析方法は原子吸光分析法及び発光輝線スペクトル法
等の併用による。また(−)は検出セずを示す。
Table 1 (1) Table 1 (2) Table 1 (3) General carbon materials usually contain impurities of around 400111)111, which can be treated by high-temperature halogenation treatment (for example, JP-A-63-79759). ), the total ash content can be reduced to 10 ppm or less, and depending on the purpose, the total ash content can be reduced to 1 to 2 ppm or less. In this example, 130-880 is a material obtained by removing impurities in advance by halogenation of r5o-88. The analysis method is a combination of atomic absorption spectrometry and emission line spectroscopy. Also, (-) indicates no detection.

第1表のホウ素化処理前後の不純物量の分析結果からも
明らかなように、ホウ素以外の元素は増加していないこ
とが判る。
As is clear from the analysis results of the amount of impurities before and after the boriding treatment shown in Table 1, it can be seen that elements other than boron have not increased.

実施例1.2及び比較例1 参考例1及び3にて調製した試料及び従来法にて調製し
た試料を用いて中性子照射試験を行った。
Example 1.2 and Comparative Example 1 A neutron irradiation test was conducted using the samples prepared in Reference Examples 1 and 3 and the samples prepared by the conventional method.

〈供試試料〉 試料−A(比較例1): 市販B、C粉を粉砕し、3〜7μm径の粒度を持つもの
を選び、用意した。別途、石炭コークス粉(平均粒径1
5μm以下)50重量部、人造黒鉛粉(平均粒径40a
m以下)10重量部及びピッチ40重量部を混和し、加
熱下(230°C12時間)混練後、成形粉砕する。こ
の粉砕品100に対して上記84C粒7.7重量部を添
加し、少量の粘結剤と共に、加熱、混練した。この混練
物を加圧成形し、2000℃にて焼成せしめ、原材を得
た。化学的分析の結果、ホウ素含有量は4.2重量%で
あった(純ホウ素換算値)。
<Test Samples> Sample-A (Comparative Example 1): Commercially available powders B and C were ground, and those having a particle size of 3 to 7 μm were selected and prepared. Separately, coal coke powder (average particle size 1
5 μm or less) 50 parts by weight, artificial graphite powder (average particle size 40a
m or less) and 40 parts by weight of pitch are mixed together, kneaded under heating (230° C. for 12 hours), and then molded and pulverized. 7.7 parts by weight of the above-mentioned 84C grains were added to 100 of the pulverized product, and the mixture was heated and kneaded together with a small amount of a binder. This kneaded material was pressure-molded and fired at 2000°C to obtain a raw material. As a result of chemical analysis, the boron content was 4.2% by weight (in terms of pure boron).

試料−B(実施例1): 前記参考例1に記載の方法により得られた原材。Sample-B (Example 1): Raw material obtained by the method described in Reference Example 1 above.

試料−C(実施例2): 前記参考例3に記載の方法により得られた原材。Sample-C (Example 2): Raw material obtained by the method described in Reference Example 3 above.

上試の方法によって得られた3種類の原材を、厚さ2m
nの薄い板状に切断し、中性子照射試験に供した。
The three types of raw materials obtained by the above method were 2m thick.
It was cut into a thin plate shape of n and subjected to a neutron irradiation test.

中性子照射試験袋W: 住重試験検査■製 中性子ラジオグラフィビーム照射量
: 34.4μA ・4653 sec (160,0m 
Cb )中性子照射方法: 乾板上に試料を置き、中性子を照射した。中性子が吸収
された部分は白く、吸収されなかった部分は黒く露光さ
れている。
Neutron irradiation test bag W: Manufactured by Sumiju Kenken Co., Ltd. Neutron radiography beam irradiation amount: 34.4 μA ・4653 sec (160,0 m
Cb) Neutron irradiation method: A sample was placed on a dry plate and neutron irradiation was performed. The areas where neutrons were absorbed are exposed in white, and the areas where neutrons were not absorbed are exposed in black.

試験結果: 試験結果を第1〜2図に示す。Test results: The test results are shown in Figures 1-2.

試料−Aの場合は第2図の通りホウ素成分はB、Cの粒
状として存在し、中性子が吸収された部分は、未露光状
態として白く斑点状として残る。
In the case of sample-A, the boron component exists as particles B and C as shown in FIG. 2, and the portions where neutrons have been absorbed remain unexposed as white spots.

ホウ素の無い部分、即ち中性子が照射された部分は黒く
露光されている。面この写真はこの斑点を明瞭に出すた
め、10倍に拡大したものを示す。
Areas without boron, ie areas irradiated with neutrons, are exposed black. This photo has been enlarged 10 times to show the spots clearly.

試料−Bの場合はホウ素成分が非常に微細に、且つ均一
に分散している。拡大しても白い斑点は認められない。
In the case of Sample-B, the boron component is very finely and uniformly dispersed. No white spots are visible even under magnification.

従って得られる写真は全面が自と黒の均一な中間色とし
て露光され、第1図のように白い斑点は観察されていな
い。
Therefore, the entire surface of the photograph obtained is exposed as a uniform neutral color between black and white, and no white spots are observed as shown in FIG.

参考例1に於いて示したように、ホウ素成分としては4
%存在しているにかかわらず、白い斑点として吸収点が
発現していないのは、ホウ素が非常に微細な状態で分散
された状態であること示している。
As shown in Reference Example 1, the boron component is 4
The fact that absorption points do not appear as white spots, regardless of the amount of boron present, indicates that boron is very finely dispersed.

尚試料−〇の場合は(炭素−炭素)複合材中にホウ素を
含浸したものであり、写真による分析結果はないが、試
料全体にわたって均一に超微分散状態で分布しているも
のである。
In the case of sample - (0), boron is impregnated into a (carbon-carbon) composite material, and although there are no photographic analysis results, the boron is uniformly distributed throughout the sample in an ultra-finely dispersed state.

以上従来品(試料−A)と本発明の品(試料B及びC)
の比較から、両者にはホウ素成分の分散状態に顕著な差
があり、本発明方法の場合ホウ素が全体にわたって均一
に、且つB、C粉状物とは比較にはならない程微細に分
散されていることが明らかである。
The above conventional product (sample-A) and the product of the present invention (sample B and C)
From the comparison, there is a noticeable difference in the dispersion state of the boron component between the two, and in the case of the method of the present invention, boron is dispersed uniformly throughout and in a finer manner than in powdered materials B and C. It is clear that there are

尚参考例2及び4についても上記と同様の試験を行った
ところほぼ同様の結果であった。
When the same test as above was conducted for Reference Examples 2 and 4, almost the same results were obtained.

また本発明に於いて使用するC−B複合材料は極めて優
れた耐酸化性を有する。この耐酸化性は中性子吸収材と
して使用する場合には共に具備することが好ましい特性
の一つであり、この耐酸化性が優れていることは中性子
吸収作用が優れていることとあいまって中性子吸収材と
しては好ましいことである。ここでその耐酸化性を測定
した実施例を示す。
Furthermore, the C-B composite material used in the present invention has extremely excellent oxidation resistance. This oxidation resistance is one of the characteristics that is desirable to have when used as a neutron absorbing material. This is preferable for the material. Here, an example in which the oxidation resistance was measured will be shown.

実施例3及び比較例2.3 参考例で製造した(ホウ素−炭素)複合材の耐酸化性を
調べた。
Example 3 and Comparative Example 2.3 The oxidation resistance of the (boron-carbon) composite material manufactured in Reference Example was investigated.

試料−D(比較例2): 比較例1にて用いた従来法(B、C粉使用)にて調製し
た試料(ホウ素含量4.2%)。
Sample-D (Comparative Example 2): A sample (boron content: 4.2%) prepared by the conventional method used in Comparative Example 1 (using powders B and C).

試料−E(実施例3): 参考例4にて用いた本発明方法によって調製した試料(
ホウ素含量4.0%)。
Sample-E (Example 3): Sample prepared by the method of the present invention used in Reference Example 4 (
boron content 4.0%).

試料−F(比較例3): 参考例2に用いた試料を調製時に使用した炭素原材(ホ
ウ素含量0.0%)。
Sample-F (Comparative Example 3): Carbon raw material (boron content 0.0%) used in preparing the sample used in Reference Example 2.

上記3つの試料(D−F)を(32x 20 x 12
.5圓)に裁断し、700°Cに保った空気浴加熱器中
にて放置、適宜の時間毎に重量残少を測定し、酸化損耗
率を測定した。測定結果を第3図に示す。
The above three samples (D-F) (32 x 20 x 12
.. The sample was cut into pieces (5 circles) and left in an air bath heater kept at 700°C, and the weight remaining was measured at appropriate intervals to measure the oxidation loss rate. The measurement results are shown in Figure 3.

この第3図から明らかな通り、本発明方法によって調製
した試料−Eはホウ素成分を含浸する前の原材(IC−
11)として用いたものである試料Fと比較すると(参
考例1参照)ホウ素成分を含浸することによって、著し
く耐酸化性が向上することが明らかである。且つ驚くべ
きことに、従来の方法であるB、C粉を添加した試料−
りに比べて、ホウ素含有量が同一レベルに揃えた場合、
著しく耐酸化性が高いことが判った。
As is clear from FIG. 3, Sample-E prepared by the method of the present invention is a raw material (IC-
When compared with Sample F, which was used as Example 11) (see Reference Example 1), it is clear that the oxidation resistance is significantly improved by impregnating with the boron component. Surprisingly, samples added with B and C powders using the conventional method -
When the boron content is kept at the same level, compared to
It was found that the oxidation resistance was extremely high.

この理由としては、従来方法の場合酸化抑制効果のある
B 4 C粉としてホウ素成分が、粒状として局部的に
偏在し、微視的にはホウ素成分が無い部分が多く、その
付近から酸化が始まるに対して、本発明方法による場合
には、全体にわたって均一に微分散されているので、酸
化反応が全体的に抑えられた結果と解される。
The reason for this is that in the conventional method, the boron component as B 4 C powder, which has an oxidation-inhibiting effect, is locally unevenly distributed in the form of granules, and microscopically there are many areas where there is no boron component, and oxidation starts from around these areas. On the other hand, in the case of the method of the present invention, the oxidation reaction is suppressed as a whole because it is finely dispersed uniformly throughout.

本発明のC−B複合材料を製造するに際し、その方法に
よる炭素材のホウ素化反応の特徴は、均一、超微分散が
可能であることと共に、任意の炭素材種、任意の形状の
炭素材に対してホウ素化を行い得て、しかも原材の性質
、物性を殆ど損なわないことも特長である。
When producing the C-B composite material of the present invention, the characteristics of the boronation reaction of carbon materials by this method are that uniform and ultrafine dispersion is possible, and carbon materials of any type and shape can be used. Another feature is that boronization can be carried out on materials without substantially impairing the properties and physical properties of the raw material.

第1表には本発明に於いて用いる炭素材の未つ素化反応
を行った処理前後に於ける物性、即ち参考例1及び参考
例4の実験に供した原材(比較例4及び5)の物性と、
ホウ素化反応を行った製品(参考例1及び4)の物性と
を対比したものである 第2表 上記第2表から明らかなようにホウ素化反応を施すこと
によって、原炭素材の組織及び骨格等は変わらず、物性
も変わらないことを示している。
Table 1 shows the physical properties of the carbon materials used in the present invention before and after the unrefining reaction, that is, the raw materials used in the experiments of Reference Examples 1 and 4 (Comparative Examples 4 and 5). ) and the physical properties of
Table 2 compares the physical properties of the products subjected to the boronation reaction (Reference Examples 1 and 4) As is clear from Table 2 above, the structure and skeleton of the raw carbon material are etc. do not change, indicating that the physical properties do not change either.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図はいずれも中性子照射による露光写真である
。第3図は各種炭素材の酸化消耗率を示すグラフである
。 (以 上) O 旧 第 1η (え) γ 平成2年12月25日
Figures 1 and 2 are all photographs exposed by neutron irradiation. FIG. 3 is a graph showing the oxidation consumption rate of various carbon materials. (That's all) O Former 1st η (E) γ December 25, 1990

Claims (4)

【特許請求の範囲】[Claims] (1)炭素材料に酸化ホウ素又は(及び)その水和化合
物を含浸せしめ、不活性ガスの加圧下、1500℃以上
の条件下で焼成を行って得られる炭素とホウ素を主成分
としてなる複合材料を中性子吸収材として使用した中性
子吸収材。
(1) A composite material whose main components are carbon and boron, obtained by impregnating a carbon material with boron oxide or (and) its hydrated compound and firing it under the pressure of an inert gas at a temperature of 1500°C or higher. A neutron absorbing material using as a neutron absorbing material.
(2)炭素材料が高密度等方性黒鉛材料である請求項(
1)に記載の中性子吸収材。
(2) Claim in which the carbon material is a high-density isotropic graphite material (
The neutron absorbing material described in 1).
(3)炭素材料が炭素繊維によって強化された、炭素−
炭素複合材料である請求項(1)に記載の中性子吸収材
(3) Carbon-carbon material reinforced with carbon fibers
The neutron absorbing material according to claim 1, which is a carbon composite material.
(4)遊離するB_2O_3の残存量が、0.1重量%
以下の複合材料である請求項(1)に記載の中性子吸収
材。
(4) The remaining amount of liberated B_2O_3 is 0.1% by weight
The neutron absorbing material according to claim (1), which is the following composite material.
JP2212074A 1990-07-30 1990-08-09 Neutron absorber Expired - Lifetime JP3034919B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2212074A JP3034919B2 (en) 1990-08-09 1990-08-09 Neutron absorber
EP19910306592 EP0470717B1 (en) 1990-07-30 1991-07-19 Method for producing composite material mainly composed of carbon and boron
DE69119158T DE69119158T2 (en) 1990-07-30 1991-07-19 Process for the production of a composite material, mainly of carbon and boron
US08/104,410 US5449529A (en) 1990-07-30 1993-08-10 Method for producing composite material mainly composed of carbon and boron
US08/178,845 US5468565A (en) 1990-07-30 1994-01-07 Method for producing composite material mainly composed of carbon and boron
US08/178,846 US5436948A (en) 1990-07-30 1994-01-07 Method for producing composite material mainly composed of carbon and boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212074A JP3034919B2 (en) 1990-08-09 1990-08-09 Neutron absorber

Publications (2)

Publication Number Publication Date
JPH0497973A true JPH0497973A (en) 1992-03-30
JP3034919B2 JP3034919B2 (en) 2000-04-17

Family

ID=16616435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212074A Expired - Lifetime JP3034919B2 (en) 1990-07-30 1990-08-09 Neutron absorber

Country Status (1)

Country Link
JP (1) JP3034919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139668A (en) * 2005-11-21 2007-06-07 Bussan Nanotech Research Institute Inc Control rod for reactor and manufacturing method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139668A (en) * 2005-11-21 2007-06-07 Bussan Nanotech Research Institute Inc Control rod for reactor and manufacturing method for the same

Also Published As

Publication number Publication date
JP3034919B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
Croft Lamellar compounds of graphite
US3035325A (en) Method of making silicon carbide bodies
US3517092A (en) Process for preparing high-density isotropic graphite structures
JP4696279B2 (en) High purity nuclear graphite
US2950238A (en) Silicon carbide bodies for use in nuclear reactors
US3179723A (en) Method of forming metal carbide spheroids with carbon coat
Scales et al. Hierarchically porous carbon–zirconium carbide spheres as potentially reusable transmutation targets
JPH0497973A (en) Neutron absorber
JP3135129B2 (en) Oxidation resistant carbon material
JPH0489355A (en) Production of composite material based on carbon and boron
US3994822A (en) Preparation for storage of fission products
US5468565A (en) Method for producing composite material mainly composed of carbon and boron
US3213032A (en) Process for sintering uranium nitride with a sintering aid depressant
US3856622A (en) High temperature nuclear reactor fuel
GB2038073A (en) Method for homogenizing mixed oxide nuclear fuels
Yamagishi et al. Preparation of high density (Th, U) O2 pellets by sol-gel microsphere pelletization and 1300° C air sintering
US3813344A (en) Nuclear fuel tablet containing uranium carbide,plutonium carbide and plutonium nitride,sulfide or phosphide
Jana et al. Synthesis, characterization and radionuclide (137Cs) trapping properties of a carbon foam
JP2010508228A (en) Semi-solid TiB2 precursor mixture
KR101546037B1 (en) Magnesium based hydrogen storage material and the fabrication method thereof
US3809565A (en) Method of forming micron-size,metal-carbide particle dispersions in carbon
CN106750820B (en) Low-density neutron shielding material and preparation method thereof
Propp Graphite oxidation thermodynamics/reactions
RU2244351C2 (en) Finely dispersed solid coolant and its production process
Maki et al. EFFECTIVE/RAPID IMMOBILIZATION OF RADIONUCLIDES FROM FUKUSHIMA DECOMMISSIONING BY SPARK PLASMA SINTERING PROCESS

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11