JPH049754A - Apparatus for continuously measuring concentration of gas - Google Patents

Apparatus for continuously measuring concentration of gas

Info

Publication number
JPH049754A
JPH049754A JP2112564A JP11256490A JPH049754A JP H049754 A JPH049754 A JP H049754A JP 2112564 A JP2112564 A JP 2112564A JP 11256490 A JP11256490 A JP 11256490A JP H049754 A JPH049754 A JP H049754A
Authority
JP
Japan
Prior art keywords
gas
zirconia
electrode
sensor
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2112564A
Other languages
Japanese (ja)
Inventor
Masato Maeda
眞人 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2112564A priority Critical patent/JPH049754A/en
Publication of JPH049754A publication Critical patent/JPH049754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To accurately measure the concn. of gas by using the gold paste film baked to the surface of a zirconia solid electrolyte as the electrode lead of the electrode on a measuring side mounted on a zirconia sensor. CONSTITUTION:The first and second inside leads 14a, 14b of a zirconia sensor constituted of a zirconia solid electrolyte composed of an oxygen ion conductive body are constituted of films formed by baking gold paste. Since gold has no catalytic action, the combustion gas (e.g., CO) in gas MG to be measured is not oxidized by the electrode leads 14a, 14b and the electromotive force of the sensor is not lowered. The MG is supplied into the electrolyte 6 by diffusion or convection and the flow rate of the supplied MG is little but the electromotive force of the sensor is not lowered by the reduction of the flow rate of the MG. That is, by using the gold paste films as the electrode leads, it can be avoided that a large error is generated by the oxidation of the combustion gas component in the MG.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ガス濃度の連続測定装置に関し、更に詳しく
は、ジルコニアセンサーの電極リード部分を改善して測
定ガス中に酸素と可燃ガスが共存する場合であっても該
測定ガスに含まれる所望ガスの温度を連続的かつ正確に
測定できるようにしたガス濃度の連続測定装置に関する
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a continuous measuring device for gas concentration, and more specifically, the present invention relates to a device for continuously measuring gas concentration. The present invention relates to a continuous gas concentration measuring device that is capable of continuously and accurately measuring the temperature of a desired gas contained in the measurement gas even when the gas concentration is measured.

〈従来の技術〉 一般に、燃焼プロセスにおいては省エネルギーや公害防
止の観点から煙道を流れる燃焼排ガスに含まれる可燃ガ
ス(Goなど)と酸素の濃度を常時監視し、燃焼炉が最
適状態で運転されるように燃焼制御される。このような
煙道を流れる燃焼排ガスに含まれる酸素と可燃ガスの濃
度を連続的に測定するには従来次のようにしていた。即
ち、測定ガス中の酸素はジルコニア式酸素計で測定し、
測定ガス中の可燃性ガスは赤外線式ガス分析計で分析す
るというように別々の分析計を用いて分析を行っていた
<Conventional technology> In general, in the combustion process, the concentration of combustible gases (such as Go) and oxygen contained in the flue gas flowing through the flue is constantly monitored to ensure that the combustion furnace is operated in an optimal state from the viewpoint of energy conservation and pollution prevention. Combustion is controlled so that Conventionally, the concentration of oxygen and combustible gas contained in the combustion exhaust gas flowing through the flue can be continuously measured in the following manner. That is, oxygen in the sample gas is measured with a zirconia oxygen meter,
The combustible gas in the measured gas was analyzed using a separate analyzer, such as an infrared gas analyzer.

然し、このような従来例(以下、「第1従来例」という
)においては、測定ポイントが別々となることを意味し
、1台の測定装置で同一の測定ポイントから測定ガスを
採取して測定する場合に比して測定精度が低くなるとい
う欠点があった。また、2台の測定装置を用いるため、
工事費や保守費が1台の測定装置を用いる場合に比して
約2倍になるという欠点もあった。
However, in such a conventional example (hereinafter referred to as the "first conventional example"), the measurement points are separate, and the measurement gas is sampled from the same measurement point with one measuring device. The disadvantage is that the measurement accuracy is lower than when the method is used. In addition, since two measuring devices are used,
Another drawback was that the construction and maintenance costs were approximately twice as high as those when using a single measuring device.

このような第1従来例の欠点を解消したガス濃度連続測
定装置を開発し、本出願の出願人は平成2年3月30日
に「ガス濃度の連続測定装置」という名称の特許出願(
出願番号も公開番号も未決定)を行なっている。この発
明に係わるガス濃度の連続測定装置(以下、「第2従来
例」という)は、酸素イオン伝導体からなるジルコニア
固体電解質で構成された試験管形のジルコニア固体電解
質と、該ジルコニア固体電解質の内部空間を工学に仕切
る仕切板と、非触媒性電極でなり測定ガス中の可燃性ガ
スを検出する第1内側電極と、触媒能の強い白金;椿で
なり前記測定ガス中の酸素を検出する第2内側電極と、
ジルコニア固体電解質の外側に装着された多孔質白金触
媒でなり基準ガスが供給される外側電極とを設け、第1
内側電極と外側電極の間に生ずる起電力がら測定ガス中
の可燃性ガスの濃度を求めると共に第2内側電椹と外側
電極の間に生する起電力がら測定ガス中の酸素ガス濃度
を求めることを特徴とするものである。
Having developed a continuous gas concentration measuring device that eliminates the drawbacks of the first conventional example, the applicant of the present application filed a patent application entitled "Continuous Gas Concentration Measuring Device" on March 30, 1990 (
(Application number and publication number have not yet been determined). The continuous gas concentration measuring device (hereinafter referred to as "second conventional example") according to the present invention includes a test tube-shaped zirconia solid electrolyte made of a zirconia solid electrolyte made of an oxygen ion conductor, and a test tube-shaped zirconia solid electrolyte made of a zirconia solid electrolyte. A partition plate that technically partitions the internal space, a first inner electrode that is a non-catalytic electrode that detects combustible gas in the measurement gas, and a platinum with strong catalytic ability; a camellia that detects oxygen in the measurement gas. a second inner electrode;
an outer electrode made of a porous platinum catalyst mounted on the outside of the zirconia solid electrolyte and to which a reference gas is supplied;
Determining the concentration of combustible gas in the measurement gas from the electromotive force generated between the inner electrode and the outer electrode, and determining the oxygen gas concentration in the measurement gas from the electromotive force generated between the second inner electrode and the outer electrode. It is characterized by:

然しなから、このような第2従来例においては、第1及
び第2内fIl!Is極の電極リードとして白金ベスト
を焼付けたものが使用されている。このため、該電極リ
ードが触媒となって測定ガス中の可燃ガスが酸化され、
結果的にジルコニアセンサの起電力が低下して大きな測
定誤差を生ずるという欠点があった。
However, in such a second conventional example, the first and second inner fIl! A baked platinum vest is used as the electrode lead of the Is electrode. Therefore, the electrode lead acts as a catalyst and the combustible gas in the measurement gas is oxidized.
As a result, the electromotive force of the zirconia sensor decreases, resulting in a large measurement error.

〈発明が解決しようとする問題点〉 本発明は、かかる第2従来例の欠点に鑑みてなされたも
のであり、その解決しようとする技術的課題は、ジルコ
ニアセンサーの電極リードが触媒となり測定ガス中の可
燃ガス成分か酸化されて究極的に大きな誤差が生ずるの
を回避するように構成したガス濃度の連続測定装置を提
供することにある。
<Problems to be Solved by the Invention> The present invention has been made in view of the drawbacks of the second conventional example, and the technical problem to be solved is that the electrode lead of the zirconia sensor acts as a catalyst and the measurement gas It is an object of the present invention to provide a continuous gas concentration measuring device configured to avoid the occurrence of large errors due to oxidation of combustible gas components therein.

く問題点を解決するだめの手段〉 上述のような問題点(技術的課題)を解決する本発明の
特徴は、酸素イオン伝導体からなるジルご2ニア固体電
解質で構成されたジルコニアセンサの起電力から前記測
定ガス中の可燃ガス濃度を求めるガス濃度の連続測定装
置において、前記ジルコニア固体電解質の表面に焼付け
された金ペースト膜を前記ジルコニアセンサに装着され
た測定側電極のS’[iリードとしたことにある。
A feature of the present invention that solves the above-mentioned problems (technical problems) is the origin of a zirconia sensor composed of a zirconia solid electrolyte made of an oxygen ion conductor. In a continuous gas concentration measuring device that determines the combustible gas concentration in the measurement gas from electric power, a gold paste film baked on the surface of the zirconia solid electrolyte is attached to the S' [i-lead] of the measurement electrode attached to the zirconia sensor. The reason is that

く実施例〉 以下、図面を用いて本発明実施例について詳しく説明す
る。第1図は本発明実施例の構成断面図であり、図中、
1は燃焼排ガスなどでなる測定ガスMGが流れる煙道の
壁、2はケーシング、3はケーシング2に後述のジルコ
ニア固体電解質6を固定するフランジ、4は0−リング
、5は絶縁用のセラミック接着剤、6は安定化ジルコニ
アなどのO′2伝導体でなる試験管形のジルコニア固体
電解質、7は仕切板、8aは後述の第1内側電極10a
の電極リードと接触するリング状の第1コンタクI・、
8bは後述の第2内ry!J電極10bの電極リードと
接触するリンク状の第2コンタクト、9はジルコニア固
体電解質6を加熱するためのヒタ、10aは非触媒性(
触媒能が極めて少ない)物質であるZ)’MO208(
モリブデンジルコニウムオキサイド)のような非触媒性
電極でなり可燃性ガスを検出する第1内側電極、]Ob
は酸素を検出する触媒能の強い電極でなる第2内II!
II電極、11はジルコニア固体電解質6が基準ガスR
Gと接触する面(外側面)に装着され白金粉末などを焼
結した多孔質白金触媒でなる外1III電極、12は基
準ガス導入管、】3は第2内側電椿10bのリド線をフ
ランジ3に接続させる白金ワイヤである。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of the configuration of an embodiment of the present invention, and in the figure,
1 is the wall of the flue through which the measurement gas MG such as combustion exhaust gas flows, 2 is the casing, 3 is a flange for fixing the zirconia solid electrolyte 6, which will be described later, to the casing 2, 4 is the O-ring, and 5 is the ceramic adhesive for insulation. 6 is a test tube-shaped zirconia solid electrolyte made of an O'2 conductor such as stabilized zirconia, 7 is a partition plate, and 8a is a first inner electrode 10a to be described later.
a ring-shaped first contact I, which contacts the electrode lead of
8b is the second inner ry! A link-shaped second contact contacts the electrode lead of the J electrode 10b, 9 is a heater for heating the zirconia solid electrolyte 6, and 10a is a non-catalytic (
Z)'MO208(
a first inner electrode, which is a non-catalytic electrode such as molybdenum zirconium oxide) and detects a combustible gas;
The second inner II is made of an electrode with strong catalytic ability to detect oxygen!
II electrode, 11 is a zirconia solid electrolyte 6 is a reference gas R
The outer 1III electrode is attached to the surface (outer surface) in contact with G and is made of a porous platinum catalyst made by sintering platinum powder, etc., 12 is a reference gas introduction tube, ] 3 is a lid wire of the second inner electric camellia 10b, which is attached to the flange. This is a platinum wire connected to 3.

また、第2図はジルコニアセンサーの要部拡大断面図で
あり、図中、第1図と同一記号は同一意味をもたせて使
用しここでの重複説明は省略する。
Further, FIG. 2 is an enlarged cross-sectional view of the essential parts of the zirconia sensor, and in the figure, the same symbols as in FIG. 1 are used with the same meanings, and repeated explanations will be omitted here.

また、1.4 a、14bは金ペーストを室温で塗り付
けた後750〜900°C程度の温度で焼付けて形成さ
れた膜でなる第1及び第2の内側リード、15は白金ベ
ースI・を焼付けた膜でなる外側リドである。
In addition, 1.4a and 14b are first and second inner leads made of a film formed by applying gold paste at room temperature and baking it at a temperature of about 750 to 900°C, and 15 is a platinum base I. The outer lid is made of a film that has been baked with.

このような構成からなる本発明の実施例おいて、測定ガ
スMGはジルコニア固体電解質−6の内側に導かれ、仕
切板7によって隔てられた第1内側電極10aと第2内
IIl!11電極1. Obに供給されている。また、
基準ガス導入管12から導入された基準ガスRGかジル
コニア固体電解質6の外側に供給されている。この状態
で、ヒータ9によりジルコニア固体電解質6を酸素イオ
ン誘導体となる温度まで(通常、500” C)加熱す
ると、測定ガスMGに含まれる例えばCOのような可燃
ガス成分は第1内側電極10aに接触し下式(1)のよ
うな触媒反応を起こす。
In the embodiment of the present invention having such a configuration, the measurement gas MG is guided inside the zirconia solid electrolyte-6, and the first inner electrode 10a and the second inner electrode 11! are separated by the partition plate 7. 11 electrodes 1. It is supplied to Ob. Also,
A reference gas RG introduced from a reference gas introduction pipe 12 is supplied to the outside of the zirconia solid electrolyte 6. In this state, when the zirconia solid electrolyte 6 is heated by the heater 9 to a temperature at which it becomes an oxygen ion derivative (usually 500" C), combustible gas components such as CO contained in the measurement gas MG are transferred to the first inner electrode 10a. Upon contact, a catalytic reaction as shown in the following formula (1) occurs.

CO+(1,/2)02−CO2−−< 1 )この結
果、ジルコニアセンサーの第2内a1= 極]Obと第
2コンタクト8bとの間には、反応によって消費される
酸素を差し引いた残存酸素量に対応する起電力が発生す
る。また、該起電力に対応した検出信号が端子E2.E
’x間にあられれる。
CO+(1,/2)02-CO2--<1) As a result, there is a residual amount between the second inner a1=pole of the zirconia sensor and the second contact 8b after subtracting the oxygen consumed by the reaction. An electromotive force is generated corresponding to the amount of oxygen. Further, a detection signal corresponding to the electromotive force is sent to terminal E2. E
'It will rain between x.

一方、測定ガスMGの02A度をχ%、可燃ガス濃度を
y%、基準ガスRGの02濃度を20゜6%とした場合
、起電力EAはネルンストの式に従い下式(2)のよう
に表すことができる。
On the other hand, when the 02A degree of the measurement gas MG is χ%, the combustible gas concentration is y%, and the 02 concentration of the reference gas RG is 20°6%, the electromotive force EA is calculated as shown in the following equation (2) according to Nernst's formula. can be expressed.

EA=Ka ・(RTA/4F)・lx  [20゜6
/fl’  (1/2>・&l]+CA−−−(2)但
し、F:ファラデ一定数、R:ガス定数、1゛A:動作
温度、KA、CA :定数。
EA=Ka・(RTA/4F)・lx [20°6
/fl'(1/2>・&l]+CA---(2) However, F: Faraday constant, R: gas constant, 1゛A: operating temperature, KA, CA: constant.

また、第1内側電極10aは触媒能が極めて少ない電極
膜で構成されているため、測定ガスMG中の酸素ガスと
可燃ガスが一緒に到達しても、該可燃ガスだけか、上記
ネルンスl〜の式に従い、測定ガスMG中の酸素分圧(
20,6%)と基準ガスRGの酸素分圧との比に関連し
た起電力を発生させる。即ち、可燃ガス(例えば、CO
)はジルコニア固体電解質内部の0−2イオンと、Co
   十  〇’    →CO2+ 2 e−・−−
−(:3)の如く反応し、起電力を発生ずる。また、こ
の起電力に対応した検出信号が端子E+、E’:a間に
あられれる。
Moreover, since the first inner electrode 10a is constituted by an electrode film with extremely low catalytic ability, even if the oxygen gas and combustible gas in the measurement gas MG arrive together, the combustible gas alone or the According to the formula, the oxygen partial pressure in the measurement gas MG (
20.6%) and the oxygen partial pressure of the reference gas RG. That is, combustible gases (e.g. CO
) is the 0-2 ion inside the zirconia solid electrolyte and Co
10' →CO2+ 2 e-・--
-(:3) It reacts and generates an electromotive force. Further, a detection signal corresponding to this electromotive force is applied between terminals E+ and E':a.

従って、端子El、E3間から検出される検出信号と端
子E2.E3間から検出される検出信号を図示しない信
号処理器で信号処理することにより、測定ガス中の酸素
と可燃性ガスを連続かつ正確に測定できるようになる。
Therefore, the detection signal detected between the terminals El and E3 and the terminal E2. By processing the detection signal detected between E3 with a signal processor (not shown), it becomes possible to continuously and accurately measure oxygen and combustible gas in the measurement gas.

一方、第3図は上記第1及び第2の内側リード1.4a
、14bが金ペーストを焼付けた膜で構成されている所
謂金リードの場合と白金ペーストを焼付けた膜で構成さ
れている所謂白金リードの場合についてジルコニアセン
サから生ずるセル起電力を比較した実験結果を示すセル
起電力の特性曲紙1図である。この図において、横軸は
第1図の第1第2内側リード14a、14bに供給され
る可燃ガス濃度と酸素ガス濃度が一定の校正ガスの流J
i (m l/m i n 、 )を示し、縦軸はジル
コニアセンサの電極間に発生する起電力(mV)を示し
ている。また、第3図から明らかなように、白金リード
の場合は校正ガス流量の減少に伴なってセル起電力か新
派しているか金リードの場合は校正ガス流星の変化に係
わらずセル起電力が一定となっている。これは次のよう
な理由によるものである。
On the other hand, FIG. 3 shows the first and second inner leads 1.4a.
, 14b is an experimental result comparing the cell electromotive force generated from a zirconia sensor in the case of a so-called gold lead made of a film with baked gold paste and the case of a so-called platinum lead made of a film with baked platinum paste. FIG. 1 is a chart showing characteristics of cell electromotive force. In this figure, the horizontal axis indicates the flow J of the calibration gas whose combustible gas concentration and oxygen gas concentration are constant, which is supplied to the first and second inner leads 14a and 14b in FIG.
i (ml/min, ), and the vertical axis represents the electromotive force (mV) generated between the electrodes of the zirconia sensor. Also, as is clear from Figure 3, in the case of platinum leads, the cell electromotive force changes as the calibration gas flow rate decreases, and in the case of gold leads, the cell electromotive force increases regardless of changes in the calibration gas meteor. It remains constant. This is due to the following reasons.

即ち、前記第2従来例のように第1図の第1及び第2の
内側リード14a、’14bが白金ペース1−を焼付け
た膜で構成されている白金リードの場合には、該電極リ
ードが触媒となって測定ガス中の可燃ガス(例えば、C
O)が酸化されて過酸化!t!l (例えば、C02)
となり、その結果、ジルコニアセンサの起電力が低下す
るようになる。これに対し、本発明実施例のように第1
図の第1及び第2の内側リード14a、14bが金ペー
ストを焼付けた膜で構成されている金リードの場合には
、金に白金のような触媒作用かないため、該電極リード
によって測定ガス中の可燃ガスが酸化されることはなく
ジルコニアセンサの起電力が低下するようなこともない
。。
That is, when the first and second inner leads 14a and '14b of FIG. 1 are platinum leads made of a film baked with platinum paste 1- as in the second conventional example, the electrode leads acts as a catalyst to reduce combustible gas (e.g. C) in the measurement gas.
O) is oxidized and becomes peroxidized! T! l (e.g. C02)
As a result, the electromotive force of the zirconia sensor decreases. On the other hand, as in the embodiment of the present invention, the first
In the case where the first and second inner leads 14a and 14b in the figure are gold leads made of a film of baked gold paste, gold does not have a catalytic effect like platinum, so the electrode leads can The combustible gas is not oxidized and the electromotive force of the zirconia sensor is not reduced. .

尚、測定ガスを実際に測定する場合には、測定ガスが第
1図のジルコニア囲体電解質6内に拡散や対流で供給さ
れ該供給ガス流量が少ないため、第3図の特性曲線図で
示した現象が顕著に現われるようになる。
In addition, when actually measuring the measurement gas, the measurement gas is supplied by diffusion or convection into the zirconia surrounding electrolyte 6 shown in Fig. 1, and the flow rate of the supplied gas is small. This phenomenon becomes more noticeable.

尚、本発明は上述の実施例に限定されることなく種々の
変形が可能であり、例えば、リード14a、14bを先
にジルコニア固体電解質14に付着しこれらリードの一
部に重ねるようにして第1及び第2電極10a、10.
bをジルコニア固体電解質14に付着しても良い。また
、ジルコニアセンサーが2つ別々にあって第1ジルコニ
アセンサは従来の酸素センサであり、第2ジルコニアセ
ンサが非触媒性電極を持ち該電極リードとして金ベース
トを焼付けた膜を用いた形としても良い。
Note that the present invention is not limited to the above-described embodiments, and can be modified in various ways. For example, the leads 14a and 14b may be attached to the zirconia solid electrolyte 14 first and then overlapped with a portion of these leads. 1 and the second electrode 10a, 10.
b may be attached to the zirconia solid electrolyte 14. Alternatively, there may be two separate zirconia sensors, the first zirconia sensor being a conventional oxygen sensor, and the second zirconia sensor having a non-catalytic electrode and using a film of baked gold base as the electrode lead. good.

〈発明の効果〉 以上詳しく説明したような本発明によれは、酸素イオン
伝導体からなるジルコニア固体電解質で構成されたジル
コニアセンサの起電力から前記測定ガス中の可燃ガス濃
度を求めるガス濃度の連続測定装置において、前記ジル
コニア固体電解質の表面に焼付けされた金ベースl−1
10を前記ジルコニアセンサに装着された測定側電極の
電極リードとなるように構成した。金は耐蝕性に優れて
いるうえ白金のような触媒性かないため、ジルコニアセ
ンサーの電極リードが触媒となり測定ガス中の可燃ガス
成分が酸化されて究極的に大きな誤差が生ずるのを回避
できるようになる。また、可燃性ガス共存下で02a度
や可燃ガス濃度を正確に測定できるため、自動車や航空
機のエンジンコントロールなどの広範な燃焼機器への応
用、更にはCOガスセンサーなどの生活環境用センサへ
の応用し可能となる。
<Effects of the Invention> According to the present invention as described in detail above, the combustible gas concentration in the measurement gas is determined from the electromotive force of a zirconia sensor made of a zirconia solid electrolyte made of an oxygen ion conductor. In the measuring device, a gold base l-1 baked on the surface of the zirconia solid electrolyte
10 was configured to serve as an electrode lead of a measurement side electrode attached to the zirconia sensor. Gold has excellent corrosion resistance and does not have catalytic properties like platinum, so the electrode lead of the zirconia sensor acts as a catalyst to avoid oxidation of combustible gas components in the measurement gas, which ultimately causes large errors. Become. In addition, since it is possible to accurately measure 02a degrees and combustible gas concentration in the presence of flammable gases, it can be applied to a wide range of combustion equipment such as engine controls for automobiles and aircraft, and furthermore to sensors for living environments such as CO gas sensors. It becomes possible to apply it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成断面図、第2図Cまジルニ
アセンサーの拡大断面図、第3図はジルコニアのセル起
電力特性曲線図である。 1・・・煙道の壁、2・・・ケーシング、3・・・フラ
ンジ、4・・・0−リング、5・・・セラミ・ンク接着
剤、6・・・ジルコニア固体電解質、7・・・仕切板、
8a8b・・・コンタクト、9・・・ヒータ、1、0 
a−・・第1内側@ g;、、10 b−・・第2内a
+ t i、11・・・外側電極、12・・・基準ガス
導入管、13・・・白金ワイヤ、14a、14b・・・
内側り−I4.15・・・外側リード 第1図 第3図
FIG. 1 is a cross-sectional view of the configuration of an embodiment of the present invention, FIG. 2C is an enlarged cross-sectional view of a Zirnia sensor, and FIG. 3 is a zirconia cell electromotive force characteristic curve. DESCRIPTION OF SYMBOLS 1... Flue wall, 2... Casing, 3... Flange, 4... O-ring, 5... Ceramic adhesive, 6... Zirconia solid electrolyte, 7...・Partition plate,
8a8b... Contact, 9... Heater, 1, 0
a-...First inner side @g;,,10 b-...Second inner side a
+ t i, 11...Outer electrode, 12...Reference gas introduction tube, 13...Platinum wire, 14a, 14b...
Inner lead-I4.15...Outer lead Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1)酸素イオン伝導体からなるジルコニア固体電解質で
構成されたジルコニアセンサの起電力から前記測定ガス
中の可燃ガス濃度を求めるガス濃度の連続測定装置にお
いて、前記ジルコニア固体電解質の表面に焼付けされた
金ペースト膜を前記ジルコニアセンサに装着された測定
側電極の電極リードとしたことを特徴とするガス濃度の
連続測定装置。 2)酸素イオン伝導体からなるジルコニア固体電解質で
構成された試験管形のジルコニア固体電解質によって2
つのジルコニアが形成され、第1ジルコニアセンサの測
定側電極は触媒能の強い電極で構成されて測定ガス中の
酸素を検出するとともに、第2ジルコニアセンサの測定
側電極は非触媒性電極であり、前記第1ジルコニアセン
サの起電力から前記測定ガス中の酸素ガスの濃度を求め
ると共に前記第1及び第2ジルコニアセンサの起電力か
ら前記測定ガス中の可燃ガス濃度を求めるガス濃度の連
続測定装置において、金ペーストを焼付けた膜を前記第
2ジルコニアセンサに装着された測定側電極の電極リー
ドとしたことを特徴とするガス濃度の連続測定装置。
[Scope of Claims] 1) A continuous gas concentration measuring device that determines the combustible gas concentration in the measurement gas from the electromotive force of a zirconia sensor made of a zirconia solid electrolyte made of an oxygen ion conductor. A continuous measuring device for gas concentration, characterized in that a gold paste film baked on the surface is used as an electrode lead of a measuring electrode attached to the zirconia sensor. 2) A test tube-shaped zirconia solid electrolyte composed of a zirconia solid electrolyte made of an oxygen ion conductor
The measurement side electrode of the first zirconia sensor is composed of an electrode with strong catalytic ability to detect oxygen in the measurement gas, and the measurement side electrode of the second zirconia sensor is a non-catalytic electrode, In a continuous gas concentration measuring device, the concentration of oxygen gas in the measurement gas is determined from the electromotive force of the first zirconia sensor, and the combustible gas concentration in the measurement gas is determined from the electromotive force of the first and second zirconia sensors. . A continuous gas concentration measuring device, characterized in that a film on which gold paste is baked is used as an electrode lead of a measuring electrode attached to the second zirconia sensor.
JP2112564A 1990-04-27 1990-04-27 Apparatus for continuously measuring concentration of gas Pending JPH049754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112564A JPH049754A (en) 1990-04-27 1990-04-27 Apparatus for continuously measuring concentration of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112564A JPH049754A (en) 1990-04-27 1990-04-27 Apparatus for continuously measuring concentration of gas

Publications (1)

Publication Number Publication Date
JPH049754A true JPH049754A (en) 1992-01-14

Family

ID=14589843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112564A Pending JPH049754A (en) 1990-04-27 1990-04-27 Apparatus for continuously measuring concentration of gas

Country Status (1)

Country Link
JP (1) JPH049754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267232B2 (en) 2005-03-24 2016-02-23 Tarkett Inc. Synthetic turf system having an infill trapping structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267232B2 (en) 2005-03-24 2016-02-23 Tarkett Inc. Synthetic turf system having an infill trapping structure

Similar Documents

Publication Publication Date Title
JPH11223617A (en) Sulfur dioxide gas sensor
JP2009507225A (en) Nitrogen oxide gas sensor and method
US4784728A (en) Oxygen measuring apparatus and method with automatic temperature compensation
JPS63218852A (en) Apparatus for measuring concentrations of o2 and combustible gas in exhaust gas
US5439580A (en) Solid-state gas sensor for carbon monoxide and hydrogen
JP3775704B2 (en) Solid electrolyte hydrogen sensor
JPH0414302B2 (en)
JPH049754A (en) Apparatus for continuously measuring concentration of gas
JPS6133132B2 (en)
JP3965403B2 (en) Gas sensor and gas concentration measuring method
JPS5991358A (en) Nitrous gas sensor
JPH04320956A (en) Connection-type gas sensor consisting of beta alumina and zirconia solid electrolyte
JPH0128338B2 (en)
JPH03282360A (en) Continuous measuring instrument for gas concentration
JP3649544B2 (en) Gas analyzer
JP2881947B2 (en) Zirconia sensor
JPH0462463A (en) Sensor probe having solid reference material
JPH0552802A (en) Continuously measuring apparatus for co gas
US20070045113A1 (en) Solid electrolyte gas sensor
JP2836184B2 (en) Combustible gas measuring device
TW200525146A (en) Electrochemical sensor
JP3912243B2 (en) Gas sensor
JPH07167829A (en) Gas sensor
JPH03249556A (en) Inflammable gas measuring instrument
JP2024009600A (en) gas sensor