JPH049725B2 - - Google Patents

Info

Publication number
JPH049725B2
JPH049725B2 JP59239396A JP23939684A JPH049725B2 JP H049725 B2 JPH049725 B2 JP H049725B2 JP 59239396 A JP59239396 A JP 59239396A JP 23939684 A JP23939684 A JP 23939684A JP H049725 B2 JPH049725 B2 JP H049725B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
gas
pressure
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59239396A
Other languages
Japanese (ja)
Other versions
JPS61122103A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59239396A priority Critical patent/JPS61122103A/en
Publication of JPS61122103A publication Critical patent/JPS61122103A/en
Publication of JPH049725B2 publication Critical patent/JPH049725B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水素及びその他のガス(窒素、炭化
水素、アンモニア等)からなる低圧水素混合ガス
から、水素貯蔵合金を用いて水素を分離回収する
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses a hydrogen storage alloy to separate and recover hydrogen from a low-pressure hydrogen mixed gas consisting of hydrogen and other gases (nitrogen, hydrocarbons, ammonia, etc.). Regarding how to.

[従来の技術] 化学工業、電子工業等においては、多量の水素
ガスが使用されている。特に半導体工場において
は、シリコンの雰囲気ガスとして多量の高純度ガ
スを使用している。その各工程では水素ガスを窒
素等の不活性ガスで置換する操作を行なうため、
使用済みの水素は窒素等の不活性ガスと混合され
た状態で放出される。また、化学プラント等にお
いては副産物として水素ガスが発生する場合があ
り、これらは炭化水素、アンモニア等のガスとの
混合物として放出される。これら混合ガスの大部
分は工場排気として大気中へ放棄される。しかし
水素ガスを大気中へ放棄するということは、資源
を無駄に消費して不経済であるとともに、水素濃
度によつては爆発の危険性もある。
[Prior Art] A large amount of hydrogen gas is used in the chemical industry, electronic industry, etc. Particularly in semiconductor factories, a large amount of high-purity gas is used as an atmospheric gas for silicon. In each process, hydrogen gas is replaced with inert gas such as nitrogen, so
The used hydrogen is released mixed with an inert gas such as nitrogen. Further, in chemical plants and the like, hydrogen gas may be generated as a byproduct, and these gases are released as a mixture with gases such as hydrocarbons and ammonia. Most of these mixed gases are discarded into the atmosphere as factory exhaust. However, releasing hydrogen gas into the atmosphere wastes resources and is uneconomical, and depending on the hydrogen concentration, there is a risk of explosion.

[発明が解決しようとする問題点] 水素を含む混合ガスから水素ガスを分離する方
法としては、従来より膜分離法、圧力サイクル式
吸着精製法、サイロジエニツク法等があるが、こ
れらの方法は工場排気を処理する大規模な設備と
して実施することは不適切なものであり、経済的
にも実際的でない。特に水素が他の窒素ガス、そ
の他のガスにより希釈された混合水素ガスの場合
には、希釈ガスが水素の吸蔵を妨げるため低圧で
は簡単に水素の回収が行なわれない。しかし、こ
のような希釈された水素の混合ガスからの回収に
対する強い要望がある。
[Problems to be Solved by the Invention] Conventional methods for separating hydrogen gas from a hydrogen-containing gas mixture include membrane separation methods, pressure cycle adsorption purification methods, and cylogenetic methods. Implementation as a large-scale facility for treating exhaust gas is inappropriate and economically impractical. Particularly in the case of mixed hydrogen gas in which hydrogen is diluted with other nitrogen gas or other gas, hydrogen cannot be easily recovered at low pressure because the diluted gas prevents hydrogen storage. However, there is a strong desire to recover such diluted hydrogen from gas mixtures.

本発明は上記のような問題点を解決し、窒素、
炭化水素又はアンモニアと水素との混合ガスから
低圧で水素を回収することを目的とする。
The present invention solves the above problems and
The purpose is to recover hydrogen at low pressure from a mixed gas of hydrocarbons or ammonia and hydrogen.

[問題点を解決するための手段] 即ち本発明は、水素貯蔵合金の平衡圧が混合ガ
ス中の水素ガスの圧力以下になるように水素貯蔵
合金を冷却保持した状態の水素貯蔵合金を充填し
た容器の水素取り出し口を閉じて該容器内に水素
を含む低圧混合ガスを導入し、混合ガス中の水素
を該水素貯蔵合金に吸蔵させた後、該容器中の残
留ガスを該水素取り出し口より該合金の水素吸蔵
平衡圧付近の圧力まで放出し、以後、前記混合ガ
スの容器内への導入・混合ガス中の水素貯蔵合金
への吸蔵・平衡圧付近までの圧力への残留ガスの
放出からなる操作を複数回繰り返すことを特徴と
する水素貯蔵合金による低圧水素混合ガスからの
水素吸蔵回収方法である。
[Means for Solving the Problems] That is, the present invention provides a hydrogen storage alloy filled with a hydrogen storage alloy that is cooled and maintained so that the equilibrium pressure of the hydrogen storage alloy is equal to or less than the pressure of hydrogen gas in the mixed gas. After closing the hydrogen outlet of the container and introducing a low-pressure mixed gas containing hydrogen into the container and allowing the hydrogen in the mixed gas to be stored in the hydrogen storage alloy, the remaining gas in the container is removed from the hydrogen outlet. Release the hydrogen to a pressure close to the hydrogen storage equilibrium pressure of the alloy, and then introduce the mixed gas into the container, store the hydrogen in the mixed gas in the hydrogen storage alloy, and release the residual gas to a pressure close to the equilibrium pressure. This is a hydrogen storage and recovery method from a low-pressure hydrogen mixed gas using a hydrogen storage alloy, which is characterized by repeating the following operations multiple times.

[作 用] 水素貯蔵合金は水素を選択的に吸蔵する性質を
持ち、低温では水素を多量に吸蔵し、同時に熱を
発生する。水素貯蔵合金を高温にした場合、水素
を放出して熱を奪う。即ち、水素貯蔵合金は所定
温度において混合ガス中の水素分圧に対応した水
素吸蔵平衡圧以上の圧力で水素を吸蔵するので、
水素圧力を水素吸蔵平衡圧以上とするか、又は水
素貯蔵合金の平衡圧を回収すべき水素ガスの圧力
以下になるように水素貯蔵合金の温度を冷却保持
することによつて、混合ガス中の水素を金属水素
化物として分離回収することができる。
[Function] Hydrogen storage alloys have the property of selectively absorbing hydrogen, and at low temperatures they absorb a large amount of hydrogen and at the same time generate heat. When a hydrogen storage alloy is heated to high temperatures, it releases hydrogen and takes away heat. In other words, the hydrogen storage alloy stores hydrogen at a pressure higher than the hydrogen storage equilibrium pressure corresponding to the hydrogen partial pressure in the mixed gas at a given temperature.
The hydrogen storage alloy is cooled and maintained so that the hydrogen pressure is equal to or higher than the hydrogen storage equilibrium pressure, or the hydrogen storage alloy's equilibrium pressure is lower than the pressure of the hydrogen gas to be recovered. Hydrogen can be separated and recovered as a metal hydride.

本発明の実施には、まず水素貯蔵合金が充填さ
れた容器の水素取り出し口を閉じて容器内に水素
を含む混合ガスを導入する。この時発熱反応によ
り合金が所定の温度以上に上昇することもあり、
この場合にはその後の水素と合金の反応が抑制さ
れる。従つて、反応を促進させるために所定の温
度以下に保持する必要があり、場合によつては水
冷を行なう。水素は水素貯蔵合金に吸蔵される
が、窒素等の成分はガス状態のまま及び水素貯蔵
合金の吸着分子(原子)として存在する。
To carry out the present invention, first, the hydrogen outlet of a container filled with a hydrogen storage alloy is closed, and a mixed gas containing hydrogen is introduced into the container. At this time, the alloy may rise above a predetermined temperature due to an exothermic reaction.
In this case, the subsequent reaction between hydrogen and the alloy is suppressed. Therefore, in order to promote the reaction, it is necessary to maintain the temperature below a predetermined temperature, and in some cases, water cooling is performed. Hydrogen is stored in the hydrogen storage alloy, but components such as nitrogen remain in a gaseous state and exist as adsorbed molecules (atoms) in the hydrogen storage alloy.

次いで、この水素濃度が低下した残留ガスを容
器の水素取り出し口から放出(パージ)させる。
その際、かなりの量の水素以外の吸着分子(原
子)が初期のうちに脱離して放出されるので、放
出されるガス中の水素濃度は放出の時間とともに
次第に高くなつていく。パージは水素貯蔵合金の
水素吸蔵平衡圧付近の圧力まで行なう。
Next, the residual gas whose hydrogen concentration has decreased is released (purged) from the hydrogen outlet of the container.
At this time, since a considerable amount of adsorbed molecules (atoms) other than hydrogen are initially desorbed and released, the hydrogen concentration in the released gas gradually increases as time passes. Purging is performed to a pressure close to the hydrogen storage equilibrium pressure of the hydrogen storage alloy.

混合ガスを容器からパージした後、再び新たな
混合ガスを上記容器に導入し、水素貯蔵合金に水
素を吸蔵させる。次いで水素濃度が低下した残留
ガスを容器の水素取り出し口からパージさせる。
以上の混合ガスの導入−パージ操作を繰り返すこ
とにより、混合ガス中の水素を金属水素化物とし
て水素貯蔵合金により水素を効率よく貯蔵・回収
することができる。
After the mixed gas is purged from the container, a new mixed gas is introduced into the container again to cause the hydrogen storage alloy to store hydrogen. Then, the residual gas whose hydrogen concentration has decreased is purged from the hydrogen outlet of the container.
By repeating the above-described mixed gas introduction-purging operation, hydrogen in the mixed gas can be converted into metal hydride and hydrogen can be efficiently stored and recovered by the hydrogen storage alloy.

原料混合ガス濃度が低い場合、水素貯蔵合金に
水素が吸蔵されることにより一層水素分圧が低く
なるため、所定の温度以下に水素貯蔵合金を保持
しても水素と合金との反応速度が遅くなり、また
合金表面に吸着する水素以外の混合ガス成分が多
くなり、水素と合金の反応が抑制されるために閉
じた容器にガスを導入するだけでは充分な水素吸
蔵量を得られない。しかし、上記操作を数回繰り
返すことによつて、水素を回収することが可能で
ある。すなわち第2図に示すように、混合ガスの
導入−パージを繰り返すことにより、水素吸蔵量
が増大することがわかる。
When the raw material mixed gas concentration is low, hydrogen is stored in the hydrogen storage alloy and the hydrogen partial pressure becomes even lower, so even if the hydrogen storage alloy is kept below a certain temperature, the reaction rate between hydrogen and the alloy is slow. In addition, the amount of mixed gas components other than hydrogen adsorbed on the alloy surface increases, and the reaction between hydrogen and the alloy is suppressed, so it is not possible to obtain a sufficient amount of hydrogen storage simply by introducing the gas into a closed container. However, by repeating the above operation several times, it is possible to recover hydrogen. That is, as shown in FIG. 2, it can be seen that by repeating the introduction and purging of the mixed gas, the amount of hydrogen storage increases.

なお、パージした残留ガス中の水素濃度をさら
に下げる場合は、水素吸蔵平衡圧の低い水素貯蔵
合金を充填した容器に導入することにより、混合
ガス中の水素をほとんど回収することが可能であ
る。
Note that if the hydrogen concentration in the purged residual gas is to be further reduced, most of the hydrogen in the mixed gas can be recovered by introducing it into a container filled with a hydrogen storage alloy having a low hydrogen storage equilibrium pressure.

このようにして回収された水素を再利用する場
合には、容器内部の水素貯蔵合金を加熱すること
により、水素を放出させることができる。
When the hydrogen thus recovered is to be reused, hydrogen can be released by heating the hydrogen storage alloy inside the container.

本発明においては、水素吸蔵平衡圧が数気圧の
ものであればいずれの水素貯蔵合金も使用するこ
とができる。
In the present invention, any hydrogen storage alloy having a hydrogen storage equilibrium pressure of several atmospheres can be used.

以下実施例に基づき本発明を説明する。 The present invention will be explained below based on Examples.

[実施例] 第1図に示す小型の試験容器(SUS304製、試
料室容積約2.7c.c.)に水素貯蔵合金としてCa−Ni
−Am−Al系合金6gを充填し、水素濃度がそれ
ぞれ100%、90%、70%及び50%の水素と窒素の
混合ガスを用いて、水素ガスの吸蔵試験を行なつ
た。すなわち、上記水素貯蔵合金を平衡圧が大気
圧以下となる温度(20℃)に冷却保持し、各組成
の水素と窒素の混合ガスを試験容器に導入する。
次いで試験容器中の水素濃度の低下した混合ガス
を合金の水素吸蔵平衡圧付近の圧力までパージす
る。次に、再び新たな残留ガスを試験容器に導入
し、水素の吸蔵、パージの操作を繰り返した。
[Example] Ca-Ni was used as a hydrogen storage alloy in a small test container (made of SUS304, sample chamber volume: approximately 2.7 cc) shown in Figure 1.
A hydrogen gas absorption test was carried out using a mixed gas of hydrogen and nitrogen with hydrogen concentrations of 100%, 90%, 70%, and 50%, respectively, filled with 6 g of -Am-Al alloy. That is, the hydrogen storage alloy is cooled and maintained at a temperature (20° C.) at which the equilibrium pressure is below atmospheric pressure, and a mixed gas of hydrogen and nitrogen of each composition is introduced into the test container.
Next, the mixed gas with a reduced hydrogen concentration in the test vessel is purged to a pressure near the hydrogen storage equilibrium pressure of the alloy. Next, new residual gas was introduced into the test container again, and the hydrogen storage and purging operations were repeated.

第2図に水素の吸蔵、パージを繰り返した時の
繰り返し回数と水素吸蔵量の変化を示す。図か
ら、パージを繰り返すことにより水素吸蔵量が増
加し、水素回収量の増大を図ることが可能である
ことがわかる。
Figure 2 shows the number of repetitions and changes in the amount of hydrogen storage when hydrogen storage and purging are repeated. From the figure, it can be seen that by repeating purging, the amount of hydrogen storage increases and it is possible to increase the amount of hydrogen recovery.

アンモニアや炭化水素例えばメタン等と水素と
の混合ガスの場合も同様の結果が得られる。
Similar results can be obtained with a mixed gas of hydrogen and ammonia or a hydrocarbon such as methane.

上記のような操作を行なうため、本発明方法を
実施する装置は、水素貯蔵合金が充填された容器
内にガスの供給及び排出することができ、また水
素貯蔵合金を冷却又は加熱することのできる装置
であればよく、容易に水素の貯蔵・回収が行なう
ことができる。
In order to perform the above-mentioned operations, an apparatus for carrying out the method of the invention is capable of supplying and discharging gas into a container filled with a hydrogen storage alloy, and is also capable of cooling or heating the hydrogen storage alloy. Any device can be used, and hydrogen can be easily stored and recovered.

[発明の効果] 本発明によつて、水素混合ガスから低圧で水素
を貯蔵・回収することができる。また、貯蔵・回
収した水素を有効に利用することが可能である。
[Effects of the Invention] According to the present invention, hydrogen can be stored and recovered from a hydrogen mixed gas at low pressure. Furthermore, it is possible to effectively utilize stored and recovered hydrogen.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で使用する試験容器の
断面図、第2図は実施例において混合ガスの導入
−パージを繰り返した場合のパージ回数と水素吸
蔵量の関係を示す図である。 図中、A…本体、B,C…止め金具、D…上ぶ
た、E…金属フイルター、F…試料室、G…測温
用熱電対、H…ステンレスパイプ、O…Oリン
グ。
FIG. 1 is a cross-sectional view of a test container used in an example of the present invention, and FIG. 2 is a diagram showing the relationship between the number of purges and the amount of hydrogen storage when the process of introducing mixed gas and purging is repeated in the example. In the figure, A...Body, B, C...Fixing metal fittings, D...Upper lid, E...Metal filter, F...Sample chamber, G...Thermocouple for temperature measurement, H...Stainless steel pipe, O...O ring.

Claims (1)

【特許請求の範囲】[Claims] 1 水素貯蔵合金の平衡圧が混合ガス中の水素ガ
スの圧力以下になるように水素貯蔵合金を冷却保
持した状態の水素貯蔵合金を充填した容器の水素
取り出し口を閉じて該容器内に水素を含む低圧混
合ガスを導入し、混合ガス中の水素を該水素貯蔵
合金に吸蔵させた後、該容器中の残留ガスを該水
素取り出し口より該合金の水素吸蔵平衡圧付近の
圧力まで放出し、以後、前記混合ガスの容器内へ
の導入・混合ガス中の水素貯蔵合金への吸蔵・平
衡圧付近までの圧力への残留ガスの放出からなる
操作を複数回繰り返すことを特徴とする水素貯蔵
合金による低圧水素混合ガスからの水素吸蔵回収
方法。
1 Close the hydrogen outlet of the container filled with the hydrogen storage alloy with the hydrogen storage alloy cooled and maintained so that the equilibrium pressure of the hydrogen storage alloy is less than the pressure of hydrogen gas in the mixed gas, and introduce hydrogen into the container. Introducing a low-pressure mixed gas containing hydrogen and storing the hydrogen in the mixed gas in the hydrogen storage alloy, and then releasing the residual gas in the container from the hydrogen outlet to a pressure near the hydrogen storage equilibrium pressure of the alloy, Thereafter, the operation consisting of introducing the mixed gas into the container, occluding the hydrogen in the mixed gas into the hydrogen storage alloy, and releasing the residual gas to a pressure close to the equilibrium pressure is repeated multiple times. hydrogen storage and recovery method from low-pressure hydrogen mixed gas.
JP59239396A 1984-11-15 1984-11-15 Recovery of hydrogen from low pressure mixed gas containing hydrogen Granted JPS61122103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59239396A JPS61122103A (en) 1984-11-15 1984-11-15 Recovery of hydrogen from low pressure mixed gas containing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59239396A JPS61122103A (en) 1984-11-15 1984-11-15 Recovery of hydrogen from low pressure mixed gas containing hydrogen

Publications (2)

Publication Number Publication Date
JPS61122103A JPS61122103A (en) 1986-06-10
JPH049725B2 true JPH049725B2 (en) 1992-02-21

Family

ID=17044153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59239396A Granted JPS61122103A (en) 1984-11-15 1984-11-15 Recovery of hydrogen from low pressure mixed gas containing hydrogen

Country Status (1)

Country Link
JP (1) JPS61122103A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209801A (en) * 1981-06-15 1982-12-23 Kyodo Sanso Kk Preparation of hydrogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209801A (en) * 1981-06-15 1982-12-23 Kyodo Sanso Kk Preparation of hydrogen

Also Published As

Publication number Publication date
JPS61122103A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
JPH0248406A (en) Inert-gas purifying method to large quantity of nitrogen using no hydrogen or other reducing gases
JP2004515344A (en) Methods and materials for purifying hydride, inert and non-reactive gases
US4075312A (en) Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope
Peters et al. H2 flux inhibition and stability of Pd-Ag membranes under exposure to trace amounts of NH3
US3120998A (en) Furification of boron nitride by treatment with carbonaceous agents
JPH06211506A (en) Rfining of hexafluoride sulfur
JPH049725B2 (en)
US5669961A (en) Method for the purification of noble gases, nitrogen and hydrogen
TWI537214B (en) Method for producing high purity germane by a continuous or semi-continuous process
GB2187973A (en) Process and apparatus for decontaminating exhaust gas from a fusion reactor fuel cycle
Penzhorn et al. Storage of tritium in ZrCo alloy: Effect of pre-exposure to impurities relevant to the fusion fuel cycle
JP4364040B2 (en) Hydrogen iodide decomposition method in thermochemical hydrogen production
Betteridge et al. The separation of hydrogen from gas mixtures
US5064627A (en) Continuous process for separating hydrogen in high purity from a gaseous hydrogen-containing mixture
US3711601A (en) Enriching with heavy hydrogen isotopes
US3839537A (en) Process for producing deuterium-rich gas concentrate and transition metalrare earth intermetallic hydride-deuteride
Oesterreicher et al. Water formation on oxygen exposure of some hydrides of intermetallic compounds
RU2063927C1 (en) Method of hydrogen and / or inert gasses purification from gas-shaped impurities
JP7383592B2 (en) Method for producing oxygen isotope-labeled carbon monoxide and method for producing oxygen isotope-labeled carbon dioxide
US2635948A (en) Manufacture of hydrogen
JPS6186401A (en) Recovery of gaseous hydrogen
US5993760A (en) Bulk nitrogen purification process that requires no hydrogen in the regeneration
JP6941424B2 (en) Method for purifying monomethylhydrazine gas
US1196101A (en) Ttntthttrt
Christman Improving the Distribution and Use of Biogas by Conversion to Methanol

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term