JPH0497201A - Production of beam expander and diffraction grating - Google Patents

Production of beam expander and diffraction grating

Info

Publication number
JPH0497201A
JPH0497201A JP2212845A JP21284590A JPH0497201A JP H0497201 A JPH0497201 A JP H0497201A JP 2212845 A JP2212845 A JP 2212845A JP 21284590 A JP21284590 A JP 21284590A JP H0497201 A JPH0497201 A JP H0497201A
Authority
JP
Japan
Prior art keywords
diffraction grating
excimer laser
laser beam
diffraction
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2212845A
Other languages
Japanese (ja)
Inventor
Seiji Tanaka
誠嗣 田中
Tatsuo Ito
達男 伊藤
Shinichi Mizuguchi
水口 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2212845A priority Critical patent/JPH0497201A/en
Publication of JPH0497201A publication Critical patent/JPH0497201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain the compact beam expander at a low cost by providing two sheets of diffraction gratings intersecting with an excimer laser beam. CONSTITUTION:The 1st reflection type diffraction grating 1a and the 2nd reflection type diffraction grating 2a are so disposed as to intersect orthogonally with each other. The excimer laser beam 3 before being expanded by these diffraction gratings becomes a laser beam 4 expanded to a square shape. The laser light 3 emitted from an excimer laser beam source is uniformly expanded in the two directions within the plane perpendicular to the optical axis by the 1st diffraction grating 1a and the 2nd diffraction grating 2a orthogonal with the 1st diffraction grating 1a in such a manner, by which the square luminous flux having a uniform and wide area is obtd. The same function as the function of ordinary devices is obtd. in this way only by two sheets of the diffraction gratings in place of the costly optical lenses for which many pieces of optical parts constituting the device are used.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エキシマレーザステッパ、エキシマレーザ加
工機に用いられるビームエキスパンド装置とエキシマレ
ーザ用回折格子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an excimer laser stepper, a beam expanding device used in an excimer laser processing machine, and a method for manufacturing a diffraction grating for an excimer laser.

従来の技術 近年、半導体製造技術の向上から、エキシマレーザ光で
マスクパターンを作成する技術が主流になってきている
。また、微細加工の要求からエキシマレーザを用いた加
工機が出現している。上記の2つの装置にはともに大口
径のビーム径が必要である。ステッパの場合、露光エリ
アの大きさは製造工程上から20Ill1口以上必要で
ある。加工機の場合、ビーム径を小さ(絞るために、レ
ーザ光の波長を短くするか、光束径を大きくする必要が
あるが、エキシマレーザ光を使用し、さらに光束径を大
きくすれば、よりビーム径を小さく絞ることができる。
2. Description of the Related Art In recent years, as semiconductor manufacturing technology has improved, technology for creating mask patterns using excimer laser light has become mainstream. Furthermore, processing machines using excimer lasers have appeared due to the demand for micro-processing. Both of the above two devices require large beam diameters. In the case of a stepper, the size of the exposure area must be 20 Ill or more due to the manufacturing process. In the case of a processing machine, it is necessary to shorten the wavelength of the laser beam or increase the diameter of the beam in order to narrow down the beam diameter, but if you use an excimer laser beam and further increase the diameter of the beam, The diameter can be reduced.

以上の理由よりエキシマレーザ光をエキスバンドする装
置が必要である。近年、般にビームエキスパンド装置は
レンズ要素で構成されている。
For the above reasons, a device for expanding excimer laser light is necessary. In recent years, beam expanding devices are generally composed of lens elements.

以下図面を参照しながら、上述した従来のビームエキス
パンド装置の一例について説明する。
An example of the conventional beam expanding device mentioned above will be described below with reference to the drawings.

第7図に従来のエキシマステッパのビームエキスパンド
装置の構成を示す。第5図に示すように、従来のビーム
エキスパンド装置はエキシマレーザ光3.アナモフィッ
クズーム6、ズームエキスバンド7、第1インテグレー
タ9.第2インテグレータ9.レチクルブラインド投影
レンズ12゜レチクル14などにより構成されている。
FIG. 7 shows the configuration of a conventional excimer stepper beam expanding device. As shown in FIG. 5, the conventional beam expanding device uses excimer laser light 3. Anamorphic zoom 6, zoom extract band 7, first integrator 9. Second integrator9. It is composed of a reticle blind projection lens 12° reticle 14, and the like.

以上のように構成されたビームエキスパンド装置につい
て、以下その動作を説明する。まずエキシマレーザ光3
が装置内に入射する。アナモフィックズーム6より長方
形状の光束が円形状の光束になり、ズームエキスバンド
7により細い光束が太い光束になる。つぎにインテグレ
ータ8,9により縦横方向の光強度を均一化する。レン
ズ10゜13とレチクルブラインド投影レンズ12の組
み合わせにより、レチクル14に均一な光度を持った光
を投影する構成である。
The operation of the beam expanding device configured as described above will be explained below. First, excimer laser light 3
enters the device. The anamorphic zoom 6 turns a rectangular light beam into a circular light beam, and the zoom expansion band 7 turns a thin light beam into a thick light beam. Next, integrators 8 and 9 equalize the light intensity in the vertical and horizontal directions. The combination of the lens 10° 13 and the reticle blind projection lens 12 is configured to project light with uniform luminous intensity onto the reticle 14.

発明が解決しようとする課題 このような従来の構成では、収差を少なくするためにア
ナモフィックズーム6とズームビームエキスパンド7に
複数枚のレンズが必要である。エキシマレーザ(Kn−
F)の場合、248nmのレーザ光を発振するが、レン
ズ硝材はこの遠紫外線光を透過する材料として石英ある
いは蛍石が用いられレンズ製作コストが高価になるとい
う問題点を有していた。また、多数枚のレンズを使用す
るため、装置全体が大型化する問題点も有していた。
Problems to be Solved by the Invention In such a conventional configuration, a plurality of lenses are required for the anamorphic zoom 6 and the zoom beam expander 7 in order to reduce aberrations. Excimer laser (Kn-
In the case of F), a laser beam of 248 nm is oscillated, but the lens glass material used is quartz or fluorite as a material that transmits this far ultraviolet light, which has the problem that the lens manufacturing cost is high. Furthermore, since a large number of lenses are used, there is also the problem that the entire device becomes large.

本発明はこのような課題を解決するもので、高価なレン
ズを多数使っていた光学系を安価な材料で2枚構成の回
折格子に置き換えたズームエキスバンド装置とそれに用
いる回折格子の製造方法を提供することを目的とするも
のである。
The present invention solves these problems by providing a zoom extend band device in which the optical system that used many expensive lenses is replaced with a two-piece diffraction grating made of inexpensive materials, and a method for manufacturing the diffraction grating used therein. The purpose is to provide

課題を解決するための手段 この課題を解決するために本発明はエキシマレーザビー
ムを前方にある第1の回折格子にあて縦方向にビームを
拡張し、その後、後方にある第2の回折格子により横方
向にビームを拡張するように2枚の直交した回折格子を
備えたものである。
Means for Solving the Problem In order to solve this problem, the present invention applies an excimer laser beam to a first diffraction grating in the front, expands the beam in the longitudinal direction, and then expands the beam by a second diffraction grating in the rear. It is equipped with two orthogonal diffraction gratings to expand the beam in the lateral direction.

また、本発明のビームエキスパンド装置に用いる回折格
子をホログラム干渉方法とウェットエツチングまたはド
ライエツチング工程によりSiO2板を加工し、回折格
子を形成するものである。
Further, the diffraction grating used in the beam expanding device of the present invention is formed by processing a SiO2 plate using a hologram interference method and a wet etching or dry etching process.

作用 この構成により、エキシマレーザ光源から出たレーザ光
を第1の回折格子と第1の回折格子に直交する第2の回
折格子によりビームを光軸と垂直な面内の2方向へ均一
に拡大することにより、均一で広いエリアを持つ正方形
の光束を得られるようにしたものである。この結果、ビ
ームエキスパンド装置を構成する光学部品点数が、多数
枚の高価な光学レンズの代わりに2枚の回折格子のみで
従来の装置と同じ機能を持つビームエキスパンド装置が
実現できる。
Effect: With this configuration, the laser beam emitted from the excimer laser light source is uniformly expanded in two directions in a plane perpendicular to the optical axis by the first diffraction grating and the second diffraction grating perpendicular to the first diffraction grating. By doing so, it is possible to obtain a square luminous flux having a uniform and wide area. As a result, it is possible to realize a beam expanding device having the same functions as the conventional device by using only two diffraction gratings instead of a large number of expensive optical lenses.

また、従来のホトレジストによる回折格子を形成する方
法で作成された回折格子では、エキシマレーザ光が回折
格子を形成するレジストにほとんど吸収されてしまうた
めレーザ光の伝達効率が低下する。エキシマ光の伝達効
率の低下を防止するため、光学板をエツチング処理を行
うことによって、基板上にグレー・ティングが作成され
る。その結果、回折格子がエキシマ光を吸収するレジス
トではな(、石英or蛍石自身に回折格子を形成してい
るために、回折格子によるエキシマ光の吸収がなくなり
、エキシマ光の伝達効率が良(なる。
Furthermore, in a diffraction grating created by the conventional method of forming a diffraction grating using photoresist, most of the excimer laser light is absorbed by the resist forming the diffraction grating, resulting in a decrease in laser light transmission efficiency. In order to prevent a decrease in the transmission efficiency of excimer light, a grating is created on the substrate by etching the optical plate. As a result, the diffraction grating is not a resist that absorbs excimer light (because the diffraction grating is formed on quartz or fluorite itself, the absorption of excimer light by the diffraction grating is eliminated, and the transmission efficiency of excimer light is improved ( Become.

実施例 以下、本発明の実施例のビームエキスパンド装置を図面
を参照しながら説明する。第1図に本発明の第1の実施
例のエキスバンド装置の構成を示す。第1図に示すよう
に第1の反射型回折格子1aと、第2の反射型回折格子
2aとが直交するように配置され、この回折格子により
、拡張される前のエキシマレーザ光3は正方形に拡張さ
れたレーザ光4となる。
EXAMPLE Hereinafter, a beam expanding device according to an example of the present invention will be explained with reference to the drawings. FIG. 1 shows the configuration of an expander according to a first embodiment of the present invention. As shown in FIG. 1, the first reflective diffraction grating 1a and the second reflective diffraction grating 2a are arranged to be perpendicular to each other, and the excimer laser beam 3 before being expanded is shaped into a square shape by the diffraction grating. The laser beam 4 is expanded to .

以上のように構成されたビームエキスパンド装置につい
てその動作を説明する。エキ−シマレーザ光3(波長2
48 nm)は長方形にビームをカットされ、第1の反
射型回折格子により長方形の短辺方向が拡張される方向
から照射する。照射された光は第1の回折格子1aによ
り回折され、第1の回折格子1aの回折方向と3のエキ
シマレーザ光の入射方向と垂直な方向に回折するように
置かれた第2の反射型回折格子2aに照射する。照射さ
れた光はさらに回折しレーザ光4として、レチクルを照
射する。第2図は第1図の第1の反射型回折格子1aの
作用を示す図であって、エキシマレーザ光3が直角に1
次回折してビーム光5aになる。この時、エキシマレー
ザ光3の1部は反射光5bとなる。具体的には、エキシ
マレーザ光3の波長をλ(248nm) 、入射角をθ
τ、−次の回折角をθditとすれば、回折格子ピッチ
dはsinθr +sin e dit−λ/dθτ゛
θd1t′″丁 で与えられ、拡大倍率mはm=tanθτとなる。
The operation of the beam expanding device configured as described above will be explained. Excimer laser light 3 (wavelength 2
48 nm), the beam is cut into a rectangle, and irradiated from the direction in which the shorter side of the rectangle is expanded by the first reflective diffraction grating. The irradiated light is diffracted by the first diffraction grating 1a, and the second reflective type is placed so as to be diffracted in a direction perpendicular to the diffraction direction of the first diffraction grating 1a and the direction of incidence of the excimer laser beam 3. It irradiates the diffraction grating 2a. The irradiated light is further diffracted and irradiates the reticle as laser light 4. FIG. 2 is a diagram showing the action of the first reflection type diffraction grating 1a in FIG.
The light is then diffracted and becomes a beam of light 5a. At this time, a part of the excimer laser light 3 becomes reflected light 5b. Specifically, the wavelength of the excimer laser beam 3 is λ (248 nm), and the incident angle is θ.
If the diffraction angle of τ, −th order is θdit, the diffraction grating pitch d is given by sinθr + sin e dit−λ/dθτ゛θd1t′″, and the magnification magnification m is m=tanθτ.

第1図の第2反射型回折格子も上記と同様の作用で光束
が拡大される。以上の実施例によって光束断面が直方形
のエキシマレーザ光は2回の回折により正方形の光束を
得ることができる。
The second reflection type diffraction grating shown in FIG. 1 also expands the luminous flux by the same effect as described above. According to the embodiments described above, the excimer laser beam having a rectangular beam cross section can be diffracted twice to obtain a square beam.

つぎに、本発明の第2の実施例を図面を参照しながら説
明する。第3図に本発明の第2の実施例のビームエキス
パンド装置を示す。第4図は第1の透過型回折格子の機
能を示す図である。第1の実施例と興なる点は、2枚の
反射型回折格子の代わりに、2枚の透過型回折格子が用
いられている点である。なお、第1図、第2図と同一部
材には同じ番号を付して説明を省略する。上記のように
構成されたビームエキスパンド装置について動作を説明
する。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 shows a beam expanding device according to a second embodiment of the present invention. FIG. 4 is a diagram showing the function of the first transmission type diffraction grating. The difference from the first embodiment is that two transmission diffraction gratings are used instead of two reflection diffraction gratings. Note that the same members as in FIGS. 1 and 2 are given the same numbers and their explanations will be omitted. The operation of the beam expanding device configured as described above will be explained.

レーザ光を回折格子により偏向する作用は第1の実施例
と全く同じである。回折格子が透過型であるため、回折
方向が第4図に示すように第1の実施例と鏡面対称にな
る。
The action of deflecting the laser beam by the diffraction grating is exactly the same as in the first embodiment. Since the diffraction grating is of a transmission type, the diffraction direction is mirror-symmetrical to that of the first embodiment, as shown in FIG.

また、本発明の第3の実施例について図面を参照にしな
がら説明する。
Further, a third embodiment of the present invention will be described with reference to the drawings.

第5図および第6図は本発明の回折格子の製造工程での
回折格子の断面図である。第5図に示すようにSiO2
基板15上にレジスト16でマスクが形成されている。
FIG. 5 and FIG. 6 are cross-sectional views of the diffraction grating in the manufacturing process of the diffraction grating of the present invention. As shown in Figure 5, SiO2
A mask is formed on the substrate 15 using a resist 16.

第5図までの製造工程を説明する。SiO2基板15上
に、ポジ型ホトレジストをスピンナーで回転塗布し、A
rレーザによる2光束干渉露光を行う。回折格子のピッ
チは前記の第1の実施例で求めた値dになるように露光
する。ホトレジストを現像すると第5図のようなホトレ
ジストの格子が形成される。
The manufacturing process up to FIG. 5 will be explained. A positive photoresist is spin-coated onto the SiO2 substrate 15 using a spinner.
Perform two-beam interference exposure using an r laser. Exposure is performed so that the pitch of the diffraction grating becomes the value d determined in the first embodiment. When the photoresist is developed, a grid of photoresist as shown in FIG. 5 is formed.

つぎに、第6図にエツチング後のSiO2基板17のレ
リーフ格子を示す。第5図のレリーフ格子をウェットエ
ツチングあるいはドライエツチングを行い、レジストを
除去すると第6図に示すレリーフが形成される。ここで
のエツチングはHFとCF4を使用している。このよう
なエツチング加工することによりエキシマレーザ光に対
して伝達効率のよい回折格子が形成され、安価なビーム
エキスパンド装置が実現できる。
Next, FIG. 6 shows the relief grating of the SiO2 substrate 17 after etching. When the relief grating shown in FIG. 5 is subjected to wet etching or dry etching and the resist is removed, the relief shown in FIG. 6 is formed. Etching here uses HF and CF4. By performing such etching processing, a diffraction grating with good transmission efficiency for excimer laser light is formed, and an inexpensive beam expanding device can be realized.

発明の効果 以上の実施例の説明からも明らかなように、本発明によ
れば、エキシマレーザ光と交差する2枚の回折格子を備
えることにより、低コストで、コンパクトなビームエキ
スパンド装置を提供することができる。
Effects of the Invention As is clear from the description of the embodiments above, the present invention provides a low-cost, compact beam expanding device by providing two diffraction gratings that intersect with excimer laser light. be able to.

また、回折格子の製造方法として、ドライエツチングま
たはウェットエツチング方法によりSiO2の基板表面
にグレーティングを形成することにより、エキシマレー
ザ光を吸収しない、伝達効率のよい回折格子が実現され
る。
Furthermore, as a method for manufacturing the diffraction grating, by forming the grating on the surface of the SiO2 substrate by dry etching or wet etching, a diffraction grating that does not absorb excimer laser light and has good transmission efficiency can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の反射型ビームエキスパンド装置の斜視
図、第2図は同反射型回折格子の作用を示す図、第3図
は同透過型ビームエキスパンド装置の斜視図、第4図は
同透過型回折格子の作用を示す図、第5図、第6図は同
製造工程中の回折格子の断面図、第7図は従来のビーム
エキスパンド装置の構成図である。 la、2a・・・・・・反射型回折格子、Ib、2b・
・・・・・透過型回折格子、3・・・・・・エキシマレ
ーザ光、4・・・・・・拡大レーザ光、5a・・・・・
・1次回折光、5b・・・・・・反射光、15・・・・
・・SiO2基板、16・・・・・・ホトレジスト、1
7・・・・・・SiO2回折格子。 代理人の氏名 弁理士 粟野重孝 ほか1名第 図 斗 功次L−丁°丸
FIG. 1 is a perspective view of the reflective beam expanding device of the present invention, FIG. 2 is a diagram showing the action of the reflective diffraction grating, FIG. 3 is a perspective view of the transmitting beam expanding device, and FIG. 4 is the same. 5 and 6 are cross-sectional views of the diffraction grating during the same manufacturing process, and FIG. 7 is a diagram showing the configuration of a conventional beam expanding device. la, 2a...Reflection type diffraction grating, Ib, 2b.
... Transmission type diffraction grating, 3 ... Excimer laser light, 4 ... Expanded laser light, 5a ...
・1st order diffracted light, 5b...Reflected light, 15...
...SiO2 substrate, 16...Photoresist, 1
7...SiO2 diffraction grating. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (3)

【特許請求の範囲】[Claims] (1)エキシマレーザと、レーザ光を拡張する回折格子
と、投影装置とからなるビームエキスパンド装置であっ
て、レーザ光を均一に拡張する2枚の回折格子を回折方
向が直交するよう配置したビームエキスパンド装置。
(1) A beam expanding device consisting of an excimer laser, a diffraction grating that expands the laser beam, and a projection device, in which the two diffraction gratings that uniformly expand the laser beam are arranged so that the diffraction directions are orthogonal to each other. Expanding device.
(2)透過型または反射型のいずれかの回折格子をレー
ザビームの回折に用いる請求項1記載のビームエキスパ
ンド装置。
(2) The beam expanding device according to claim 1, wherein either a transmission type or reflection type diffraction grating is used for diffraction of the laser beam.
(3)エキシマレーザを透過あるいは反射させる蛍石板
またはSiO_2板をエッチングして回折格子を形成す
る回折格子の製造方法。
(3) A method for manufacturing a diffraction grating in which a diffraction grating is formed by etching a fluorite plate or a SiO_2 plate that transmits or reflects excimer laser.
JP2212845A 1990-08-10 1990-08-10 Production of beam expander and diffraction grating Pending JPH0497201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212845A JPH0497201A (en) 1990-08-10 1990-08-10 Production of beam expander and diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212845A JPH0497201A (en) 1990-08-10 1990-08-10 Production of beam expander and diffraction grating

Publications (1)

Publication Number Publication Date
JPH0497201A true JPH0497201A (en) 1992-03-30

Family

ID=16629287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212845A Pending JPH0497201A (en) 1990-08-10 1990-08-10 Production of beam expander and diffraction grating

Country Status (1)

Country Link
JP (1) JPH0497201A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425358A1 (en) * 1993-08-04 1995-02-09 Fraunhofer Ges Forschung Method for the optical isolation of a laser-beam source and optical isolator, in particular for carrying out the method
US6833955B2 (en) * 2001-10-09 2004-12-21 Planop Planar Optics Ltd. Compact two-plane optical device
US7492512B2 (en) 2004-07-23 2009-02-17 Mirage International Ltd. Wide field-of-view binocular device, system and kit
US7499216B2 (en) 2004-07-23 2009-03-03 Mirage Innovations Ltd. Wide field-of-view binocular device
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
US7625882B2 (en) 2003-05-27 2009-12-01 Vascular Biogenics Ltd. Oxidized lipids and uses thereof in the treatment of inflammatory diseases and disorders
USRE42992E1 (en) 2003-02-19 2011-12-06 Mirage Innovations Ltd. Chromatic planar optic display system
JP2013536469A (en) * 2010-08-18 2013-09-19 アイピージー フォトニクス コーポレーション Method and apparatus for manufacturing volume Bragg grating

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425358A1 (en) * 1993-08-04 1995-02-09 Fraunhofer Ges Forschung Method for the optical isolation of a laser-beam source and optical isolator, in particular for carrying out the method
DE4425358C2 (en) * 1993-08-04 2002-04-25 Fraunhofer Ges Forschung Optical isolator device for arrangement in the beam path between a laser beam source and an object
US7893291B2 (en) 2000-11-24 2011-02-22 Vascular Biogenics Ltd. Methods employing and compositions containing defined oxidized phospholipids for prevention and treatment of atherosclerosis
US6833955B2 (en) * 2001-10-09 2004-12-21 Planop Planar Optics Ltd. Compact two-plane optical device
USRE42992E1 (en) 2003-02-19 2011-12-06 Mirage Innovations Ltd. Chromatic planar optic display system
US7625882B2 (en) 2003-05-27 2009-12-01 Vascular Biogenics Ltd. Oxidized lipids and uses thereof in the treatment of inflammatory diseases and disorders
US7902176B2 (en) 2003-05-27 2011-03-08 Vascular Biogenics Ltd. Oxidized lipids and uses thereof in the treatment of inflammatory diseases and disorders
US7973023B2 (en) 2003-05-27 2011-07-05 Vascular Biogenics Ltd. Oxidized lipids and uses thereof in the treatment of inflammatory diseases and disorders
US7492512B2 (en) 2004-07-23 2009-02-17 Mirage International Ltd. Wide field-of-view binocular device, system and kit
US7499216B2 (en) 2004-07-23 2009-03-03 Mirage Innovations Ltd. Wide field-of-view binocular device
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
JP2013536469A (en) * 2010-08-18 2013-09-19 アイピージー フォトニクス コーポレーション Method and apparatus for manufacturing volume Bragg grating

Similar Documents

Publication Publication Date Title
US7005235B2 (en) Method and systems to print contact hole patterns
KR0166612B1 (en) Method and apparatus for exposing pattern, mask used therefor and semiconductor integrated circuit formed by using the same
JP3993335B2 (en) Lithographic apparatus and method
KR101503992B1 (en) Exposure method and apparatus, and device manufacturing method
US8110345B2 (en) High resolution lithography system and method
JPH1154426A (en) Lighting device and aligner using the same
JPH0567558A (en) Exposure method
JP3293882B2 (en) Projection exposure equipment
US20060286460A1 (en) Photomask, method of making a photomask and photolithography method and system using the same
JPH1126344A (en) Method and device for forming pattern, and manufacture of semiconductor device
US4521087A (en) Optical system with diffuser for transformation of a collimated beam into a self-luminous arc with required curvature and numerical aperture
US4231657A (en) Light-reflection type pattern forming system
US5359388A (en) Microlithographic projection system
JPH0497201A (en) Production of beam expander and diffraction grating
CN102132213A (en) Spectral purity filter, lithographic apparatus including such spectral purity filter and device manufacturing method
JP2000021712A (en) Illuminating optical system and aligner provided with the system
EP0750231A1 (en) Exposure apparatus and exposure method using the same
US6903859B2 (en) Homogenizer
JPH06181167A (en) Image forming method, fabrication of device employing the method, and photomask employed therein
JPH05217851A (en) Projection aligner
JPH0666246B2 (en) Illumination optics
KR20100001817A (en) Photo mask and manufacturing method of a semiconductor using the same
JPH03210987A (en) Optical treating device
JPH0774085A (en) Illumination system of projection exposing device
JPH05335213A (en) Light exposure method