JPH0497097A - Automatic direction control method of small-diameter tunnel robot using fuzzy control - Google Patents
Automatic direction control method of small-diameter tunnel robot using fuzzy controlInfo
- Publication number
- JPH0497097A JPH0497097A JP21408490A JP21408490A JPH0497097A JP H0497097 A JPH0497097 A JP H0497097A JP 21408490 A JP21408490 A JP 21408490A JP 21408490 A JP21408490 A JP 21408490A JP H0497097 A JPH0497097 A JP H0497097A
- Authority
- JP
- Japan
- Prior art keywords
- angle
- fuzzy
- deviation
- robot
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000002689 soil Substances 0.000 claims 1
- 238000004088 simulation Methods 0.000 description 23
- 238000010586 diagram Methods 0.000 description 17
- 238000010276 construction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
- Feedback Control In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、無排度弐で押し込み推進させながらロボット
先端のへラド角を制御し、方向修正を行うファジィ制御
を用いた小口径トンネルロボットの自動方向制御法に関
するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is a small-diameter tunnel robot that uses fuzzy control to correct the direction by controlling the Herad angle at the tip of the robot while propelling it with no displacement. This invention relates to an automatic direction control method.
第1図にトンネルロボットのシステム構成を示す。本シ
ステムはヘッド角修正機能を持つトンネルロボット本体
1、埋設管2、埋設管を押し込む押管装置3、油圧装置
4、操作盤5よりなる。埋設管2は押管装置3により油
圧で1本ずつ押し込まれる。このとき、オペレータ6は
ヘッド角を逐次修正し、計画線に沿うように方向制御を
行う。Figure 1 shows the system configuration of the tunnel robot. This system consists of a tunnel robot main body 1 with a head angle correction function, a buried pipe 2, a push pipe device 3 for pushing the buried pipe, a hydraulic device 4, and an operation panel 5. The buried pipes 2 are pushed in one by one using hydraulic pressure by the pushing pipe device 3. At this time, the operator 6 successively corrects the head angle and performs direction control so as to follow the planned line.
この方向制御は現状ではオペレータ6の経験と知識に頬
っている。7は地表である。第2図で本トンネルロボッ
トのヘッド角とピッチング角について定義する。第3図
は実際の施工データから求めたヘッド角−ピッチング角
変化量特性である。ピッチング角変化量はヘッド角が同
じでもかなりばらついており、ヘッド角が異なると、そ
のばらつきかたも違う。このため、ある角度、方向修正
したいと思っても、どの程度ヘッド角を修正すればよい
か分からず、方向制御が非常に困難であった。This direction control currently depends on the experience and knowledge of the operator 6. 7 is the surface of the earth. Figure 2 defines the head angle and pitching angle of this tunnel robot. FIG. 3 shows head angle-pitching angle variation characteristics obtained from actual construction data. The amount of change in pitching angle varies considerably even when the head angle is the same, and the variation varies depending on the head angle. For this reason, even if one wishes to correct a certain angle or direction, it is difficult to know how much the head angle should be corrected, making direction control extremely difficult.
上記の事情に鑑みてなされたもので、従来オペレータの
経験と勘にたよって行われていた小口径トンネルロボッ
トの方向制御をオペレータの経験と知識を制御規則とす
るファジィ制御により自動化するファジィ制御を用いた
小口径トンネルロボットの自動方向制御法を提供するこ
とを目的とする。This was developed in view of the above circumstances, and the fuzzy control method automates the direction control of small-diameter tunnel robots, which conventionally relied on the operator's experience and intuition, using fuzzy control that uses the operator's experience and knowledge as control rules. The purpose of this study is to provide an automatic direction control method for small-diameter tunnel robots.
〔課題を解決するための手段及び作用]本発明は上記課
題を解決するために、
多重ファジィ制御規則
rlF x is A AND y is B THE
N z is Clの前件部Xとして小口径トンネルロ
ボット本体の計画線に対する偏差、前件部yとして計画
線に対する偏角(ピッチング角−計画線の傾き)、前件
部AとしてXを示すファジィ集合、前件部Bとしてyを
示すファジィ集合、後件部Zとして小口径トンネルロボ
ットのヘッド角、後件部CとしてZを示すファジィ集合
をとり、所定のファジィ制御規則を用いて偏差、偏角の
ファジィ集合の三角形の頂点での偏差、偏角の値の絶対
値を大きい順にA1、B1、C1、・・・Z1、0とし
たときAl−B1>B1−C1>・・・〉=71となる
ようにA1、B1、C1,・・・Zlの値が偏角A1は
4.0〜1.4〔deg〕、Blは2.2〜0.75
(deg ) 、C1は1、1〜0.3 (deg )
、D Iは0.1 (deg 〕の範囲で決定し、前
記多重ファジィ制御規則に偏差X=X0、偏角y=y
Oが入力された時、制御人力であるへ、ド角Zを「代数
積−加算−重心法」およびその他の非ファジィ化手法を
用いて決定したものである。[Means and effects for solving the problems] In order to solve the above problems, the present invention provides the following: multiple fuzzy control rules rlF x is A AND y is B THE
The antecedent part X of N z is Cl is the deviation of the small diameter tunnel robot body from the planned line, the antecedent part y is the deviation angle from the planned line (pitching angle - the slope of the planned line), and the antecedent part A is the fuzzy A set, a fuzzy set showing y as the antecedent part B, a fuzzy set showing the head angle of the small-diameter tunnel robot as the consequent part Z, and a fuzzy set showing Z as the consequent part C, and calculate the deviation and bias using a predetermined fuzzy control rule. When the absolute values of the deviations and declination values at the vertices of the triangle of the fuzzy set of angles are A1, B1, C1, ... Z1, 0 in descending order, Al-B1>B1-C1>...>= 71, the values of A1, B1, C1,...Zl are the declination angle A1 is 4.0 to 1.4 [deg], and Bl is 2.2 to 0.75.
(deg), C1 is 1, 1 to 0.3 (deg)
, DI is determined in the range of 0.1 (deg), and the multiple fuzzy control rule is applied to the deviation X=X0, argument y=y
When O is input, the angle Z is determined by human control using the "algebraic product-addition-centroid method" and other defuzzification methods.
従来技術との差異は、本発明の方向制御法を使うことに
より、従来オペレータの経験と勘によって行われていた
小口径トンネルロボットの方向制御を自動化することが
できる点である。The difference from the prior art is that by using the directional control method of the present invention, it is possible to automate the directional control of a small diameter tunnel robot, which was conventionally performed based on the operator's experience and intuition.
本実施例では、特許請求の範囲で示したファジィ制御法
により生成される入力ヘッド角を用いた方向制御のシミ
ュレーションと評価を行い、本制御法の有効性を示す。In this example, directional control using the input head angle generated by the fuzzy control method shown in the claims is simulated and evaluated to demonstrate the effectiveness of this control method.
方向修正に関するシミュレータはダイナミックモデル〔
弐(1)〕とロボットのピッチング角と位1の算出式〔
弐(2)、(3)〕によって構成される。方向制御のシ
ミュレーションは以下のように行う。まず、ファジィ制
御規則によりヘッド角を求める。The simulator for direction correction is a dynamic model [
2 (1)] and the formula for calculating the pitching angle and place 1 of the robot [
2 (2), (3)]. The direction control simulation is performed as follows. First, the head angle is determined using fuzzy control rules.
次にそのへ、ド角を弐(11のダイナミックモデルに代
入し、方向修正量を計算する。そして、式(2)、(3
)を用い、ロボットのピッチング角と位置を計算する。Next, substituting the do angle into the dynamic model of Ni (11) and calculating the amount of direction correction. Then, equations (2) and (3
) to calculate the pitching angle and position of the robot.
本システムのダイナミックモデルは方向修正角がヘッド
角とロボットの姿勢を近似的に表わすピッチング角変化
量の時系列順および確率分布項の和で表わせる確率モデ
ルで表した。パラメータa、、、b、、は最小2乗法に
よって推定される。The dynamic model of this system is expressed as a stochastic model in which the direction correction angle can be expressed by the sum of probability distribution terms and the chronological order of pitching angle changes that approximately represent the head angle and robot posture. The parameters a,,,b,, are estimated by the least squares method.
このモデル同定は特願平1−277200に記述しであ
る。This model identification is described in Japanese Patent Application No. 1-277200.
シミュレータ
Δθ、(k)=a、Δθp(k−1)+−+ a 、、
Δθp(k−n)+boθh(k)+blθh(k−1
)+−+b、、θh(k−n)+e(k) (1)θJ
k)”θ、 (k−1)+Δθ、 (k)
(2)Y(k)=Y(k−1)+Lsin(θ
、、 (k) ) (3)第4図で各
パラメータを定義する。下方の軌道が計画線であり、上
方の軌道がロボットの軌道である。ストロークkにおけ
る計画線の位置をY a (k)計画線の傾きをθa(
k) 、ロボットの位置をY (k)、ロボットのピッ
チング角をΔθ1、(k)、ピッチング角変化量をΔθ
、 (k) 、1ストロークの長さをLとおく。また、
式(2)のダイナミックモデルにおいて、e (k)は
残差、nはモデルの次数である。Simulator Δθ, (k)=a, Δθp(k-1)+−+ a,,
Δθp(k-n)+boθh(k)+blθh(k-1
)+-+b,, θh(k-n)+e(k) (1) θJ
k)”θ, (k-1)+Δθ, (k)
(2) Y(k)=Y(k-1)+Lsin(θ
,, (k) ) (3) Define each parameter in FIG. The lower trajectory is the planned line, and the upper trajectory is the robot's trajectory. The position of the design line at stroke k is Y a (k), and the slope of the design line is θa (
k), the position of the robot is Y (k), the pitching angle of the robot is Δθ1, (k), the amount of change in pitching angle is Δθ
, (k), Let L be the length of one stroke. Also,
In the dynamic model of equation (2), e (k) is the residual and n is the order of the model.
ファジィ制御シモユレータのブロック線図を第5図に示
す。A block diagram of the fuzzy control simulator is shown in FIG.
以下に、岡山地区のパラメータ推定値を用いたシミュレ
ーション結果を示す。計画線はすべて初期位置、角度と
もOの水平線とした。第6図はファジィ制御シミュレー
ション(ファジィ制御規則〔1〕)の結果である。この
シミュレーションでは、
多重ファジィ制御規則
rIF x is A AND y is B THE
N z is Clの前件部Xとして小口径トンネルロ
ボット本体の計画線に対する偏差、前件部yとして計画
線に対する偏角、前件部AとしてXを示すファジィ集合
、前件部Bとしてyを示すファジィ集合、後件部2とし
て小口径トンネルロボットのヘッド角、後件部Cとして
2を示すファジィ集合をとり、前記多重ファジィ制御規
則に偏差X=X0、偏角y=Y。The simulation results using parameter estimates for the Okayama area are shown below. All planned lines were horizontal lines with initial positions and angles of O. FIG. 6 shows the results of fuzzy control simulation (fuzzy control rule [1]). In this simulation, multiple fuzzy control rules rIF x is A AND y is B THE
The antecedent part X of N z is Cl is the deviation of the small diameter tunnel robot body from the planned line, the antecedent part y is the deviation angle from the planned line, the antecedent part A is a fuzzy set indicating X, and the antecedent part B is y. The head angle of the small diameter tunnel robot is taken as the consequent part 2, the fuzzy set shown is 2 as the consequent part C, and the deviation X=X0 and the deviation angle y=Y are set in the multiple fuzzy control rule.
が入力された時、制御入力であるヘッド角2を「代数積
−加算一重心法」による非ファジィ化手法を用いて決定
するファジィ制御法において、多重ファジィ制御規則の
集合を、
第7図のファジィ制御規則〔1〕としている。In the fuzzy control method, in which the head angle 2, which is the control input, is determined using a defuzzification method based on the "algebraic product-addition single centroid method" when , the set of multiple fuzzy control rules is determined as shown in Fig. 7. The fuzzy control rule [1] is used.
ただし、PH:positive hugePB:p
ositive b、ig
PM:positive medianPS:pos
itive smallZO:zer。However, PH:positive hugePB:p
ositive b,ig PM:positive medianPS:pos
itive smallZO:zer.
NH:negative huge
NB:negative big
NM:negative medianNS:neg
ative smallとした。NH: negative huge NB: negative big NM: negative medianNS: neg
It was set as active small.
なお、ファジィ集合の形は三角形とし、第8図のように
設定されており、ファジィ規則〔1〕では、
偏差の、ファジィ集合の三角形の頂点と底辺の両端の値
として、
PH=500 Cmm) 、PB=l 60 〔I
IIIlf 、PM−30(IIm) 、PS=2
(IIm) 、Z○=0〔fllI11〕、N5=PS
、NM=−PMXNB=−PB。The shape of the fuzzy set is a triangle, and it is set as shown in Figure 8, and according to fuzzy rule [1], the value of the deviation at both ends of the triangle of the fuzzy set is PH = 500 Cmm) , PB=l 60 [I
IIIlf, PM-30 (IIm), PS=2
(IIm), Z○=0 [fllI11], N5=PS
, NM=-PMXNB=-PB.
NH−−P)(
偏角の、ファジィ集合の三角形の頂点と底辺の両端の値
として、
PH=2.1 (deg) 、PB=0.75 (
deg) 、PM−〇、3 (deg) 、PS=0
.1 (deg) 、ZO=0(deg)、
N5=−PS、NM−−PM、、NB=−PB、NH=
−PH
ヘッド角の、ファジィ集合の三角形の頂点と底辺の両端
の値として、
PB= 1.5 (deg) 、PM= 1.0 (
deg) 、PS=0.5 (deg〕、ZO=O(
degE、N5=−PS、NM=−PM、、NB=−P
Bとし、特許請求の範囲で示したように
PH−PB1> PB−PM > PN−PS>
=lPS1. INH−NB1>INB−NM>
INM−NS l >= INs Iになるよ
うに選択しである。NH--P) (As the value of both ends of the apex and base of the triangle of the fuzzy set, PH=2.1 (deg), PB=0.75 (
deg), PM-〇, 3 (deg), PS=0
.. 1 (deg), ZO=0 (deg), N5=-PS, NM--PM, NB=-PB, NH=
-PH As the head angle values of the apex and base of the fuzzy set triangle, PB= 1.5 (deg), PM= 1.0 (
deg), PS=0.5 (deg), ZO=O(
degE, N5=-PS, NM=-PM, NB=-P
B, and as shown in the claims, PH-PB1>PB-PM>PN-PS>
=lPS1. INH-NB1>INB-NM>
It is selected so that INM-NS l >= INs I.
また、残差e (k)は平均値0 [deg) 、標準
偏差0.137 [deg)の正規分布で近似した。初
期位置、角度はそれぞれ、500 (sa+) 、0
(deg)とした。計画線は初期偏差0 (R1111
)の水平線とした。Further, the residual e (k) was approximated by a normal distribution with an average value of 0 [deg] and a standard deviation of 0.137 [deg]. The initial position and angle are 500 (sa+) and 0, respectively.
(deg). The planned line has an initial deviation of 0 (R1111
) as the horizontal line.
第6図を見て分かるように非常に良好な制御が行われて
いることが分かる。制御入力ヘッド角を調べたところ、
所定の距離まではヘッド角を下方最大限の−1,5度に
固定して最大限の速度で計画線に近づき、その後徐々に
上方へヘッド角を制御し、計画線の角度に一致するよう
に制御しており、はぼ最適な制御を行っていることが分
かる。また、(初期偏差−400[、mmJン、
第12図はファジィ制御シミュレーション(初期偏差
300[mm))、
第13図はファジィ制御シミュレーション(初期偏差−
300(sm)
)、
第14図はファジィ制御シミュレーション(初期偏差
200[ma+))、
第17図はファジィ制御シミュレーション(初期偏差−
100[mn+))、
第18図はファジィ制御シミュレーション(初期偏差
50 (+am) )、第19図はファジィ制御シミ
ュレーション(初期偏差 −50〔1II11〕)、と
なる。As can be seen from FIG. 6, very good control is achieved. When I investigated the control input head angle, I found that
Until a predetermined distance, the head angle is fixed at the maximum downward position of -1.5 degrees to approach the planned line at maximum speed, and then the head angle is gradually controlled upward to match the angle of the planned line. It can be seen that the control is being performed in an optimal manner. In addition, (initial deviation -400 [, mmJ) Figure 12 shows the fuzzy control simulation (initial deviation
300 [mm)), Figure 13 shows the fuzzy control simulation (initial deviation -
300(sm)), Figure 14 shows the fuzzy control simulation (initial deviation
200 [ma+)), Figure 17 shows the fuzzy control simulation (initial deviation -
100[mn+)), Figure 18 shows the fuzzy control simulation (initial deviation
50 (+am) ), and FIG. 19 is a fuzzy control simulation (initial deviation -50 [1II11]).
第9図8から第19図に示されるように初期偏差を変え
た場合でも、収束が速くかつ良好に計画線に追従してい
くことが分かる。It can be seen that even when the initial deviation is changed as shown in FIGS. 8 to 19, the convergence is fast and the design line is followed well.
このファジィ制御規則は、初期偏差が±500Cats
J以内ならばすべてほぼ最適な制御を行うことができる
。This fuzzy control rule has an initial deviation of ±500Cats.
If it is within J, almost optimal control can be performed in all cases.
上記ファジィ規則を用いて、N(fiの異なる各地区に
おける良好な制御を行う偏角PH,PB、PM、PSを
求めた。これを第20図に示す。この第20図の各地区
のPH,PB、PM、PSを使用すると、初期偏差が±
500〔113以内ならば、第6図での偏角PH,PB
、PM、PSを使用するよりさらに最適な制御を行うこ
とができることをシミュレーションにより確認した。Using the above fuzzy rules, we found the declination angles PH, PB, PM, and PS that provide good control in each district with different N(fi. These are shown in Figure 20.PH of each district in Figure 20 , PB, PM, and PS, the initial deviation is ±
If it is within 500 [113, the declination angle PH, PB in Figure 6
It was confirmed through simulation that even more optimal control can be performed than using , PM, and PS.
以上より、偏角のPHは4.0〜1.4 Cdeg )
、PBは2.2〜0.75 (deg 〕、PMは1.
1〜0.3(deg ) 、PSは0.1 (deg
)の範囲で選択すればよいことがわかる。From the above, the PH of the declination angle is 4.0 to 1.4 Cdeg)
, PB is 2.2-0.75 (deg), PM is 1.
1 to 0.3 (deg), PS is 0.1 (deg)
) can be selected within the range.
以上説明したように本発明によれば、従来、オペレータ
の経験と勘によって行われていた小口径トンネルロボッ
トの方向制御は特許請求の範囲のファジィ制御規則を用
い、偏角のPHは4.0〜1.4 (deg ) 、P
Bは2.2〜0.75 (deg )、PMは1.1〜
0.3 (deg ] 、PSは0.1 (deg )
の範囲で選択をして制御することにより、オペレータの
負担が軽減され、かつ品質の良い施工ができるという効
果がある。As explained above, according to the present invention, the direction control of a small-diameter tunnel robot, which was conventionally performed based on the operator's experience and intuition, uses the fuzzy control rules of the claims, and the PH of the declination angle is 4.0. ~1.4 (deg), P
B is 2.2~0.75 (deg), PM is 1.1~
0.3 (deg), PS is 0.1 (deg)
By selecting and controlling within this range, the burden on the operator is reduced and high-quality construction is possible.
第1図はトンネルロボットのシステム構成を示す構成図
、
第2図はヘッド角とピッチング角の定義を示す説明図、
第3図はヘッド角−ピッチング角変化量特性を示す特性
図、
第4図は各パラメータの定義を示す説明図、第5図はフ
ァジィ制御シミュレータのブロック線図、
第6図はファジィ制御シミニレ−ジョン(ファジィ制御
規則〔1〕)の特性図、
第7図はファジィ制御規則〔1〕を示す説明図、第8図
はファジィ集合を示す説明図、
第9図はファジィ制御シミュレーション(初期偏差−5
00(m+i))の特性図、
第10図はファジィ制御シミュレーション(初期偏差
400(+n+))の特性図、第11図はファジィ制御
シミュレーション(初期偏差−400(n+m))の特
性図、第12図はファジィ制御ソミュレーション(初期
偏差 300(mm))の特性図、
第13図はファジィ制御シミュレーション(初期偏差−
300(nm))の特性図、
第14図はファジィ制御シミュレーション(初期偏差
200(mn+))の特性図、第15図はファジィ制御
シミュレーション(初期偏差−200fm:l)の特性
図、
第16図はファジィ制御シミュレーション(初期偏差
100(nu++))の特性図、第17図はファジィ制
御シミュレーション(初期偏差−100[w+m))の
特性図、第18図はファジィ制御シミュレーション(初
期偏差 50 (mn+3 )の特性図、第19図は
ファジィ制御シミュレーション(初期偏差 −50(+
am) )の特性図、第20図はファジィ規則を用いて
各地区における制御を行う偏角を示す説明図である。
1・・・ロボット本体、2・・・埋設管、3・・・押管
装置、4・・・油圧装置、
5・・・操作盤、
6・・・オペレータ、
・・・地表。Fig. 1 is a block diagram showing the system configuration of the tunnel robot. Fig. 2 is an explanatory diagram showing the definition of head angle and pitching angle. Fig. 3 is a characteristic diagram showing the head angle-pitching angle variation characteristic. Fig. 4 is an explanatory diagram showing the definition of each parameter, Fig. 5 is a block diagram of the fuzzy control simulator, Fig. 6 is a characteristic diagram of fuzzy control simulation (fuzzy control rule [1]), and Fig. 7 is a fuzzy control rule An explanatory diagram showing [1], Fig. 8 is an explanatory diagram showing a fuzzy set, and Fig. 9 is an explanatory diagram showing a fuzzy control simulation (initial deviation -5
00(m+i)), and Figure 10 shows the fuzzy control simulation (initial deviation
400 (+n+)), Figure 11 is a characteristic diagram of fuzzy control simulation (initial deviation -400 (n+m)), Figure 12 is a characteristic diagram of fuzzy control simulation (initial deviation 300 (mm)), Figure 13 shows the fuzzy control simulation (initial deviation -
300 (nm)), and Figure 14 shows the fuzzy control simulation (initial deviation
200(mn+)), Fig. 15 is a characteristic diagram of fuzzy control simulation (initial deviation -200fm:l), Fig. 16 is a characteristic diagram of fuzzy control simulation (initial deviation
100 (nu++)), Fig. 17 is a characteristic diagram of fuzzy control simulation (initial deviation -100 [w+m)), Fig. 18 is a characteristic diagram of fuzzy control simulation (initial deviation 50 (mn+3)), Fig. 19 is fuzzy control simulation (initial deviation −50(+
am) ), FIG. 20 is an explanatory diagram showing the deflection angle to be controlled in each district using fuzzy rules. 1...Robot body, 2...Buried pipe, 3...Push pipe device, 4...Hydraulic device, 5...Operation panel, 6...Operator,...Ground surface.
Claims (1)
ド角を制御し、方向修正を行なう小口径トンネルロボッ
トの方向制御の制御入力であるヘッド角の決定法に関し
て、 多重ファジィ制御規則 「IF x is A AND y is B THE
N z is C」の前件部xとして小口径トンネルロ
ボット本体の計画線に対する偏差、前件部yとして計画
線に対する偏角、前件部Aとしてxを示すファジィ集合
、前件部Bとしてyを示すファジィ集合、後件部zとし
て小口径トンネルロボットのヘッド角、後件部Cとして
zを示すファジィ集合をとり、所定のファジィ制御規則
を用いて偏差、偏角のファジィ集合の三角形の頂点での
偏差、偏角の値の絶対値を大きい順にA1、B1、C1
、・・・Z1、0としたときA1−B1>B1−C1>
・・・>=Z1となるように、A1、B1、C1、・・
・Z1の値が偏角A1は4.0〜1.4〔deg〕、B
1は2.2〜0.75〔deg〕、C1は1.1〜0.
3〔deg〕、D1は0.1〔deg〕の範囲で決定し
、前記多重ファジィ制御規則に偏差x=x0、偏角y=
y0が入力された時、制御入力であるヘッド角zを「代
数積−加算−重心法」およびその他の非ファジィ化手法
を用いて決定することを特徴としたファジィ制御を用い
た小口径トンネルロボットの自動方向制御法。[Scope of Claim] Multi-fuzzy control regarding a method for determining the head angle, which is a control input for direction control of a small-diameter tunnel robot, which controls the head angle of the tip of the robot and corrects the direction while pushing and propelling the robot without soil removal. Rule “IF x is A AND y is B THE
The antecedent part x of "N z is C" is the deviation of the small diameter tunnel robot body from the planned line, the antecedent part y is the deviation angle from the planned line, the antecedent part A is a fuzzy set indicating x, and the antecedent part B is y , the head angle of the small diameter tunnel robot as the consequent part z, and the fuzzy set showing z as the consequent part C, and using a predetermined fuzzy control rule, calculate the vertices of the triangle of the fuzzy set of the deviation and declination angle. The absolute values of the deviation and declination values are A1, B1, C1 in descending order.
,... When Z1 is 0, A1-B1>B1-C1>
...>=Z1, A1, B1, C1,...
・The value of Z1 is the argument angle A1 is 4.0 to 1.4 [deg], B
1 is 2.2 to 0.75 [deg], and C1 is 1.1 to 0.
3 [deg], D1 is determined in the range of 0.1 [deg], and the deviation x=x0, deviation angle y=
A small-diameter tunnel robot using fuzzy control characterized in that when y0 is input, the head angle z, which is a control input, is determined using the "algebraic product-addition-centroid method" and other defuzzification methods. automatic direction control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21408490A JP2597418B2 (en) | 1990-08-13 | 1990-08-13 | Automatic Direction Control Method for Small Diameter Tunnel Robot Using Fuzzy Control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21408490A JP2597418B2 (en) | 1990-08-13 | 1990-08-13 | Automatic Direction Control Method for Small Diameter Tunnel Robot Using Fuzzy Control |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0497097A true JPH0497097A (en) | 1992-03-30 |
JP2597418B2 JP2597418B2 (en) | 1997-04-09 |
Family
ID=16649974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21408490A Expired - Fee Related JP2597418B2 (en) | 1990-08-13 | 1990-08-13 | Automatic Direction Control Method for Small Diameter Tunnel Robot Using Fuzzy Control |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2597418B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111911207A (en) * | 2020-07-16 | 2020-11-10 | 西安科技大学 | Gantry shield type intelligent tunneling robot system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108871457A (en) * | 2018-07-27 | 2018-11-23 | 深圳市施罗德工业测控设备有限公司 | A kind of pipe detection system |
-
1990
- 1990-08-13 JP JP21408490A patent/JP2597418B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111911207A (en) * | 2020-07-16 | 2020-11-10 | 西安科技大学 | Gantry shield type intelligent tunneling robot system |
Also Published As
Publication number | Publication date |
---|---|
JP2597418B2 (en) | 1997-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106909144A (en) | For the unpiloted field obstacle-avoiding route planning of agricultural machinery and its control method | |
Noguchi et al. | Development of a master–slave robot system for farm operations | |
CN113835423B (en) | Path planning method, motion control method and system based on B spline curve | |
CN105867377A (en) | Automatic navigation control method of agricultural machine | |
US11698636B2 (en) | Foothold position control system and method for biped robot | |
CN111271071A (en) | Shield tunneling machine attitude control method based on fuzzy adaptive neural network | |
CN106970594A (en) | A kind of method for planning track of flexible mechanical arm | |
CN112109732A (en) | Intelligent driving self-adaptive curve pre-aiming method | |
CN111707274B (en) | Energy-optimal spacecraft continuous dynamic obstacle avoidance trajectory planning method | |
CN103984230A (en) | Zero-disturbance optimization control method for base of space manipulator | |
CN107807522A (en) | Underwater robot track following backstepping control method | |
CN108490943A (en) | A kind of adaptive curve automatic Pilot control method of agricultural machinery | |
EP3688543A1 (en) | Method for the navigation of a robot, and robot for executing said method | |
Gruning et al. | Energy-aware path planning for skid-steer robots operating on hilly terrain | |
JPH0497097A (en) | Automatic direction control method of small-diameter tunnel robot using fuzzy control | |
CN110109363A (en) | A kind of Neural Network Adaptive Control method that wheeled mobile robot is formed into columns | |
CN112486018A (en) | Model-free unmanned vehicle path tracking method based on speed adaptive preview | |
JPH0497098A (en) | Fuzzy control method of small-diameter tunnel robot | |
Fang et al. | Robust adaptive control of automatic guidance of farm vehicles in the presence of sliding | |
JPH0566803A (en) | Neural type optimal fuzzy set representative value auto tuning method for small aperture tunnel robot | |
CN110399679B (en) | Foundation position optimization design method | |
Gang et al. | Design and testing of headland turning algorithms based on transition distance prediction for autonomous rice transplanter | |
Sasiadek et al. | Path tracking of an autonomous LHD articulated vehicle | |
JPH04309696A (en) | Direction control knowledge acquiring method for small bore tunnel robot using neural network | |
CN114375431A (en) | Trajectory simplification method and device for industrial robot, computer storage medium and industrial robot operating platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |