JPH0496987A - Heat-accumulation agent composition - Google Patents

Heat-accumulation agent composition

Info

Publication number
JPH0496987A
JPH0496987A JP2213760A JP21376090A JPH0496987A JP H0496987 A JPH0496987 A JP H0496987A JP 2213760 A JP2213760 A JP 2213760A JP 21376090 A JP21376090 A JP 21376090A JP H0496987 A JPH0496987 A JP H0496987A
Authority
JP
Japan
Prior art keywords
heat storage
storage agent
heat
composition
carbon powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2213760A
Other languages
Japanese (ja)
Inventor
Izumi Kaizuka
貝塚 泉
Makoto Yamauchi
誠 山内
Michiro Narita
成田 道郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP2213760A priority Critical patent/JPH0496987A/en
Publication of JPH0496987A publication Critical patent/JPH0496987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

PURPOSE:To provide the subject composition containing a latent-heat accumulator and carbon powder having graphite structure, capable of accumulating thermal energy in a short time by heating with electromagnetic wave and easily releasing the thermal energy. CONSTITUTION:The objective composition contains (A) a latent-heat accumulation agent utilizing the latent heat of phase transition [preferably a hydrated salt having a melting point of 40-200 deg.C, e.g. CH3COONa.3H2O and (NH4) Al(SO4)2.12H2O], (B) carbon powder having graphite structure (e.g. carbon black) and preferably (C) an inorganic filler (e.g. amorphous silica). The content of the component B in the composition is preferably 0.5-10wt.%.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新規な電磁波加熱用蓄熱剤、さらに詳しくは
、電磁波加熱により短時間で効率よく熱エネルギーを蓄
えることができ、かつ容易に熱エネルギーを取り出すこ
とのできる蓄熱剤組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a novel heat storage agent for electromagnetic wave heating, and more specifically, a novel heat storage agent for electromagnetic wave heating, which can efficiently store thermal energy in a short time and easily store thermal energy. The present invention relates to a removable heat storage agent composition.

従来の技術 従来、蓄熱剤を加熱して熱エネルギーを蓄える方法とし
て、例えば蓄熱剤を電気ヒーターや熱媒中で加熱して溶
融させる方法が一般的に用いられていたが、最近では、
より短時間で蓄熱剤を溶融して熱エネルギーを蓄える手
段として、電磁波加熱による方法が検討されている。
Conventional technology In the past, as a method of heating a heat storage agent to store thermal energy, for example, heating the heat storage agent in an electric heater or a heat medium to melt it was generally used, but recently,
As a means to melt the heat storage agent and store thermal energy in a shorter time, a method using electromagnetic heating is being considered.

しかしながら、電磁波で物質を加熱する場合、特に代表
的な電磁波発生装置である電子レンジを使用した場合、
電磁波が均一に照射されないため局部加熱は避けられな
いという問題が生じる。したがって、電子レンジで蓄熱
剤を加熱する場合には、この現象により、該蓄熱剤の中
心部のみが溶融して、蓄熱剤に温度分布が生じて全体が
均一に溶融されず、効率よく熱エネルギーを蓄えること
ができないのが実情である。
However, when heating substances with electromagnetic waves, especially when using a microwave oven, which is a typical electromagnetic wave generator,
A problem arises in that local heating is unavoidable because electromagnetic waves are not uniformly irradiated. Therefore, when heating a heat storage agent in a microwave oven, due to this phenomenon, only the center of the heat storage agent melts, creating a temperature distribution in the heat storage agent and not melting the entire heat storage agent uniformly. The reality is that it is not possible to accumulate.

発明が解決しようとする課題 本発明は、このような事情のもとて電磁波加熱により、
局部加熱をもたらすことなく、短時間で効率よく熱エネ
ルギーを蓄えることができ、かつ容易に熱エネルギーを
取り出しうる蓄熱剤組成物を提供することを目的として
なされたものである。
Problems to be Solved by the Invention Under these circumstances, the present invention solves the problem by electromagnetic heating.
The purpose of this invention is to provide a heat storage agent composition that can efficiently store thermal energy in a short period of time without causing local heating, and can easily extract thermal energy.

課題を解決するだめの手段 本発明者らは、電磁波加熱用蓄熱剤組成物を開発すべく
鋭意研究を重ねた結果、潜熱型蓄熱剤に、電磁波加熱に
よって発熱するグラファイト構造を有する炭素粉末を配
合し、さらに場合により無機充てん剤を配合することに
より、その目的を達成しうろことを見い出し、この知見
に基づいて本発明を完成するに至った。
Means to Solve the Problem As a result of extensive research to develop a heat storage agent composition for electromagnetic heating, the inventors have combined a latent heat type heat storage agent with carbon powder having a graphite structure that generates heat when heated by electromagnetic waves. However, it was discovered that the objective could be achieved by further adding an inorganic filler if necessary, and based on this knowledge, the present invention was completed.

すなわち、本発明は、(A)相転移による潜熱を利用し
た潜熱型蓄熱剤とCB)グラファイト構造を有する炭素
粉末と、場合により用いられる(C)無機充てん剤とを
含有して成る電磁波加熱用蓄熱剤組成物を提供するもの
である。
That is, the present invention provides a heat storage agent for electromagnetic wave heating comprising (A) a latent heat type heat storage agent that utilizes latent heat due to phase transition, CB) carbon powder having a graphite structure, and (C) an inorganic filler used as the case requires. A heat storage agent composition is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明組成物においては、(A)成分として電磁波照射
によって融解が可能な相転移による潜熱を利用した潜熱
型蓄熱剤が用いられる。この潜熱型蓄熱剤については特
に制限はなく、従来公知のものを用いることができるが
、融点が40〜200℃の範囲にある無機系又は有機系
のものが好ましい。
In the composition of the present invention, a latent heat type heat storage agent that utilizes latent heat due to phase transition that can be melted by electromagnetic irradiation is used as component (A). There are no particular restrictions on this latent heat type heat storage agent, and conventionally known ones can be used, but inorganic or organic ones with a melting point in the range of 40 to 200°C are preferred.

無機系蓄熱剤としては、水和塩系潜熱型蓄熱剤が好まし
く、この水和塩系潜熱型蓄熱剤としては、例えばCaC
(22・6HzO1Na2SO,’1OH20,Na2
CO1”1OH20、Na2HPOa”12H20,Z
n(NOx)z”6Hzo、Na2S2O5’5H20
゜N1(NCh)z・6Hzo、CH3COONa・3
H20、Ba(OH)2・8H20゜(NH+)Aff
(SO4)z’12H20ナトが挙げられるが、これら
の中で特にCH1C0ONa’3H20及び(NH*)
A(i(SO4)z ’12H20が好適である。
As the inorganic heat storage agent, a hydrated salt-based latent heat type heat storage agent is preferable, and as the hydrated salt-based latent heat type heat storage agent, for example, CaC
(22・6HzO1Na2SO,'1OH20,Na2
CO1"1OH20, Na2HPOa"12H20,Z
n(NOx)z"6Hzo, Na2S2O5'5H20
゜N1(NCh)z・6Hzo, CH3COONa・3
H20, Ba(OH)2・8H20゜(NH+)Aff
(SO4)z'12H20Nato, among which CH1C0ONa'3H20 and (NH*)
A(i(SO4)z'12H20) is preferred.

一方、有機系蓄熱剤としては、例えはパラフィンワック
ス、動植物油脂、高級脂肪酸、ポリエチレンクリコール
、ペンタエリスリトールなどを挙げることができるが、
これらの中でパラフィンワックスが特に好適である。
On the other hand, examples of organic heat storage agents include paraffin wax, animal and vegetable oils, higher fatty acids, polyethylene glycol, and pentaerythritol.
Among these, paraffin wax is particularly suitable.

これらの蓄熱剤を単独で電磁波により加熱した場合には
、全体が均一に加熱されず、融解した部分と固化したま
まの部分ができ、全体が均質に融解するまで時間を要し
、熱エネルギーを効率的に蓄えることができない。
When these heat storage agents are heated alone using electromagnetic waves, the whole part is not heated uniformly, and some parts are melted and others remain solidified, and it takes time until the whole part is uniformly melted, and the heat energy is not used. cannot be stored efficiently.

本発明組成物においては、(B)成分としてグラファイ
ト構造を有する炭素粉末が用いられる。この炭素粉末は
電磁波加熱により発熱する性質を有し、その結晶構造中
に、炭素原子が六角網状に配列した層平面が積層して成
るグラファイト状の結晶子をもっている。このような炭
素粉末としては、例えばカーボンブラックやグラファイ
トなどが挙げられる。カーボンブラックについては特に
制限はなく、一般の導電性樹脂の製造やゴムの補強材料
として用いられているものの中から任意のものを選択し
て用いることができる。このようなカーボンブラックと
しては、例えばアセチレンブラック、7アーネスブラツ
ク、副生カーボンブラックなどを挙げることができる。
In the composition of the present invention, carbon powder having a graphite structure is used as component (B). This carbon powder has the property of generating heat when heated by electromagnetic waves, and has graphite-like crystallites in its crystal structure, which are made up of layered planes in which carbon atoms are arranged in a hexagonal network. Examples of such carbon powder include carbon black and graphite. There are no particular restrictions on carbon black, and any carbon black can be selected from those used in the production of general conductive resins and as reinforcing materials for rubber. Examples of such carbon black include acetylene black, 7 Arnes black, and by-product carbon black.

また、グラファイトとしては、例えば天然黒鉛、人造黒
鉛、膨張黒鉛などが挙げられる。これらのグラファイト
構造を有する炭素粉末の中で好適なものとしては、副生
カーボンブラック、アセチレンブラック及び膨張黒鉛を
挙げることができる。これらのグラファイト構造を有す
る炭素粉末は、通常組成物全重量に基づき、0.5〜1
5重量%、好ましくは0.5〜10重量%の範囲で用い
られる。
Examples of graphite include natural graphite, artificial graphite, and expanded graphite. Among these carbon powders having a graphite structure, preferable ones include by-product carbon black, acetylene black, and expanded graphite. These carbon powders having a graphite structure usually have a content of 0.5 to 1 based on the total weight of the composition.
It is used in an amount of 5% by weight, preferably in a range of 0.5 to 10% by weight.

これらの炭素粉末は、前記したように電磁波により発熱
する性質を有することから、組成物中において、(A)
成分の蓄熱剤より早く昇温し、電磁波が照射されにくい
部分にも熱を伝えるため、局部加熱を抑えて組成物全体
を短時間で融解させ、熱エネルギーを効率よく蓄えるこ
とが可能となる。
Since these carbon powders have the property of generating heat by electromagnetic waves as described above, in the composition, (A)
Because it heats up faster than the component heat storage agent and transmits heat to areas that are difficult to be irradiated with electromagnetic waves, it suppresses local heating and melts the entire composition in a short time, making it possible to efficiently store thermal energy.

グラファイト構造をもたない不定型な非晶質の炭素粉末
、例えば活性炭を蓄熱剤に加えて電子レンジで加熱した
場合には、蓄熱剤組成物の局部加熱現象を抑えて、短時
間で熱エネルギーを蓄えることは不可能であって、該グ
ラファイト構造をもたない炭素粉末は電磁波による発熱
体として適していない。
When amorphous carbon powder that does not have a graphite structure, such as activated carbon, is added to a heat storage agent and heated in a microwave oven, the local heating phenomenon of the heat storage agent composition is suppressed and thermal energy is generated in a short time. It is impossible to store carbon powder, and carbon powder without the graphite structure is not suitable as a heating element using electromagnetic waves.

また、本発明組成物においては、電磁波で加熱溶融後、
蓄熱剤の融点以下の温度に冷却すると、(B)成分の炭
素粉末が結晶核生成剤として作用するので、速やかに潜
熱を取り出すことができる。
In addition, in the composition of the present invention, after heating and melting with electromagnetic waves,
When cooled to a temperature below the melting point of the heat storage agent, the carbon powder of component (B) acts as a crystal nucleating agent, so latent heat can be rapidly extracted.

本発明組成物においては、該炭素粉末を均質に分散させ
るためや、熱伝搬効率を高めるなどの目的で、所望に応
じ、(C)成分として無機充てん剤をさらに配合するこ
とができる。この無機充てん剤の配合量は、通常組成物
全量に基づき1.0〜50重量%、好ましくは2.0〜
30重量%の範囲で選はれる。
In the composition of the present invention, an inorganic filler may be further blended as component (C), if desired, for the purpose of homogeneously dispersing the carbon powder or increasing heat transfer efficiency. The amount of this inorganic filler is usually 1.0 to 50% by weight, preferably 2.0 to 50% by weight based on the total amount of the composition.
It is selected within the range of 30% by weight.

該無機充てん剤としては、(A)成分の蓄熱剤として水
和塩系潜熱型蓄熱剤を用いる場合には、例えばゼオライ
ト、タルク、シリカ、カオリンなどが好ましく用いられ
る。一方、該蓄熱剤として有機潜熱型蓄熱剤を用いる場
合には、例えば非結晶シリカ、酸化チタン、ゼオライト
などが好ましく用いられる。
As the inorganic filler, for example, zeolite, talc, silica, kaolin, etc. are preferably used when a hydrated salt-based latent heat type heat storage agent is used as the heat storage agent of component (A). On the other hand, when an organic latent heat type heat storage agent is used as the heat storage agent, for example, amorphous silica, titanium oxide, zeolite, etc. are preferably used.

これらの無機充てん剤の中で、ボイル油給油量がloo
m(2/ 100g以上のものが好ましく、このような
無機充てん剤を配合することにより、組成物は溶融時に
増粘し、かつチキン性が向上して炭素粉末が均質に分散
しやすくなり、溶融時に炭素粉末の沈殿を生じないので
繰り返し使用も可能となる。
Among these inorganic fillers, boil oil supply amount is loo
m(2/ 100g or more is preferable.By blending such an inorganic filler, the composition will thicken when melted, and its consistency will be improved, making it easier to disperse the carbon powder homogeneously. Since carbon powder does not precipitate at times, it can be used repeatedly.

これらの無機充てん剤は、2種以上を組み合わせて使用
することもできる。
These inorganic fillers can also be used in combination of two or more.

本発明組成物は、粉体状又は溶融状の蓄熱剤と炭素粉末
と必要に応じて用いられる無機充てん剤粉末とを、ミキ
サーなどで混合することによって調製することができる
。このようにして得られた組成物においては、電磁波加
熱の際に、炭素粉末から蓄熱剤へ熱伝播が効率よく行わ
れるためには、該炭素粉末が蓄熱剤中に均質に分散され
ていることが重要である。
The composition of the present invention can be prepared by mixing a powdered or molten heat storage agent, carbon powder, and optionally used inorganic filler powder using a mixer or the like. In the composition thus obtained, in order for heat to be efficiently propagated from the carbon powder to the heat storage agent during electromagnetic heating, the carbon powder must be homogeneously dispersed in the heat storage agent. is important.

特に、炭素粉末としてカーボンブラックを用いる場合に
は、該カーボンブラックは粒子の連鎖構造(ストラフチ
ャー)をもち、凝集しゃすいため、分散をよくするため
の機械的処理を混合前に行うのが有利である。
In particular, when carbon black is used as the carbon powder, it is advantageous to perform mechanical treatment to improve dispersion before mixing, as the carbon black has a chain structure of particles and is prone to agglomeration. be.

本発明組成物には、所望に応じ、蓄熱剤の添加物として
公知のもの、例えば水蒸気の発生を抑制するためのアク
リル系吸水性高分子化合物などの吸水剤、溶融時の粘度
を調整するためのカルボキシメチルセルロースなどの粘
度調整剤、該炭素粉末の分散を良くするための金属セッ
ケンや高級アルコールなどの界面活性剤などを添加する
ことができる。
The composition of the present invention may optionally contain known additives for heat storage agents, such as water-absorbing agents such as acrylic water-absorbing polymer compounds to suppress the generation of water vapor, and to adjust the viscosity when melted. A viscosity modifier such as carboxymethyl cellulose, and a surfactant such as a metal soap or higher alcohol to improve the dispersion of the carbon powder can be added.

発明の効果 本発明によると、潜熱型蓄熱剤にグラファイト構造を有
する炭素粉末を配合することにより、電磁波加熱の際、
炭素粉末が蓄熱剤よりも早く昇温し、電磁波が照射され
にくい部分にも熱が伝わり、局部加熱が抑制されて、短
時間で効率よく熱エネルギーを蓄えうる蓄熱剤組成物が
得られる。さらに、無機充てん剤を加えることにより、
熱伝搬効率が高められ、より効率よく熱エネルギーを貯
えうる蓄熱剤組成物を得ることができる。
Effects of the Invention According to the present invention, by blending carbon powder having a graphite structure into a latent heat type heat storage agent, during electromagnetic heating,
Carbon powder heats up faster than the heat storage agent, heat is transmitted to areas that are difficult to irradiate with electromagnetic waves, local heating is suppressed, and a heat storage agent composition that can efficiently store thermal energy in a short time can be obtained. Furthermore, by adding an inorganic filler,
It is possible to obtain a heat storage agent composition that has improved heat transfer efficiency and can store thermal energy more efficiently.

また、グラファイト構造を有する炭素粉末は、蓄熱剤と
して水和塩系のものを用いる場合、その結晶核生成剤と
して作用するために、過冷却状態が速やかに解除され、
容易に熱エネルギーを取り出すことのできる蓄熱剤組成
物を得ることができる。
Furthermore, when a hydrated salt-based heat storage agent is used as a heat storage agent, carbon powder having a graphite structure acts as a crystal nucleating agent, so that the supercooled state is quickly released.
A heat storage agent composition from which thermal energy can be easily extracted can be obtained.

具体的には、例えば水和塩系蓄熱剤として(NHs)A
ff(SOJz・12H20を使用し、その150gを
15X15cmのシート状容器に封入し、電磁波加熱を
0.2〜3分間行うことにより、90°C以上に昇温し
、かつ室温放置の場合、30分間以上50°C以上に保
つことができる。
Specifically, for example, (NHs)A as a hydrated salt-based heat storage agent
ff (Using SOJz・12H20, enclosing 150 g of it in a 15 x 15 cm sheet-like container and heating it with electromagnetic waves for 0.2 to 3 minutes to raise the temperature to 90°C or higher and leaving it at room temperature, 30 The temperature can be maintained at 50°C or higher for more than a minute.

また、有機系蓄熱剤として融点70°Cのパラフィンワ
ックスを使用する場合、電磁波加熱を0.2〜3分間行
うことにより、100°C以上に昇温し、室温放置の場
合、30分間以上70℃以上に保つことができる。
In addition, when paraffin wax with a melting point of 70°C is used as an organic heat storage agent, the temperature is raised to 100°C or higher by electromagnetic heating for 0.2 to 3 minutes, and when left at room temperature, it is heated to 70°C for 30 minutes or more. Can be kept above ℃.

本発明の蓄熱剤組成物は、例えば食品の保温用蓄熱剤、
温湿布などの湿布剤と併用する保熱剤、ホットカーラ−
の蓄熱剤、防寒を目的とした蓄熱剤などとして好適に用
いられる。
The heat storage agent composition of the present invention can be used, for example, as a heat storage agent for keeping food warm.
Heat retaining agent used in combination with compresses such as warm compresses, hot curlers
It is suitably used as a heat storage agent for cold protection, etc.

実施例 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Examples Next, the present invention will be explained in more detail with reference to examples.
The present invention is not limited in any way by these examples.

なお、実施例及び比較例で使用した原料の種類を次に示
す。
The types of raw materials used in Examples and Comparative Examples are shown below.

(1)無機系蓄熱剤 CHsCOONa ・3H20純正化学(株)製試薬−
級グレード (NH,)AC(SQ、)2・12H20同 上(2)
有機系蓄熱剤 マイクロワックス155(mp、70)  日本石油(
株)製ステアリン酸(mp、70)      日本油
脂(株)製PEG−6000(mp、56−61)  
   ライオン(株)製(3)炭素粉末 (イ) グラファイト構造を有するもの・カーボンブラ
ック ケッチエンブラックECケッチエンブラック・インター
ナショナル (株)製 ケッチエンブラック600JD  同  上アセチレン
ブラック  電気化学(株)製305〇       
三菱化成(株)製#15         旭カーボン
(株)製パルカンXC−72キャポット社製 ・グラファイトBSP−2申越黒鉛(株)製(ロ) グ
ラファイト構造を有さないもの活性炭a;特製白鷺 大
田薬品(株)製活性炭り:試薬−級グレード 純正化学(株)製 (4)無機充てん剤 トクンールN(ソリ力)(ボイル油吸油量250m+2
710h)徳山曹達(株)製造 実施例1 CH3C0ONa−3)120から成る水和塩型蓄熱剤
96.0重量部とグラファイト構造を有する炭素粉末で
あるケッチエンブラックEC4,0重量部とを、ミキサ
ーで均一に粉砕混合して蓄熱剤組成物を調製したのち、
その209をシャーレに入れ、家庭用電子レンジにて、
高周波出力50QWで20秒間電磁波加熱を行った。加
熱終了直後の組成物の温度は59°Cであり、また目視
により組成物は均質に溶融していて、局部加熱が起こっ
ていないことが確認されI;。
(1) Inorganic heat storage agent CHsCOONa ・3H20 reagent manufactured by Junsei Kagaku Co., Ltd.
Grade (NH,)AC(SQ,)2・12H20 Same as above (2)
Organic heat storage agent Microwax 155 (mp, 70) Nippon Oil (
Stearic acid (mp, 70) manufactured by NOF Corporation PEG-6000 (mp, 56-61) manufactured by NOF Corporation
Manufactured by Lion Corporation (3) Carbon powder (a) Carbon black Ketchen Black EC manufactured by Lion Corporation Ketchen Black 600JD manufactured by International Co., Ltd. Acetylene black manufactured by Denki Kagaku Co., Ltd. 305〇
Mitsubishi Kasei Co., Ltd. #15 Asahi Carbon Co., Ltd. Palcan Co., Ltd. Activated carbon: Reagent-grade grade Junsei Kagaku Co., Ltd. (4) Inorganic filler Tokunuru N (warping force) (boil oil absorption 250 m + 2
710h) Tokuyama Soda Co., Ltd. Production Example 1 96.0 parts by weight of a hydrated salt type heat storage agent consisting of CH3C0ONa-3)120 and 4.0 parts by weight of Ketchen Black EC, which is a carbon powder having a graphite structure, were mixed in a mixer. After preparing the heat storage agent composition by uniformly pulverizing and mixing with
Put the 209 in a petri dish and put it in a household microwave.
Electromagnetic heating was performed for 20 seconds at a high frequency output of 50 QW. The temperature of the composition immediately after heating was 59°C, and visual inspection confirmed that the composition was homogeneously melted and no local heating occurred.

まj;、溶融した組成物が融点以下の温度になると、速
やかに結晶化による固化か始まることが目視により観察
され、過冷却現象が発生していないことが確認された。
It was visually observed that when the molten composition reached a temperature below its melting point, it immediately began to solidify by crystallization, and it was confirmed that no supercooling phenomenon occurred.

なお、温度の測定は接触式デジタル温度計によって行っ
t二。
The temperature was measured using a contact type digital thermometer.

実施例2〜12、比較例1〜6 第1表に示す種類と量の蓄熱剤と炭素粉末とをミキサー
で均一に粉砕、混合して蓄熱剤組成物を調製したのち、
実施例1と同様にして、電磁波加熱を行い、加熱終了後
の組成物の温度を測定し、かつ組成物の溶融状態(局部
加熱の有無)を観察するとともに、速やかに結晶化によ
る固化が始まるかどうかを観察した。速やかに固化した
場合、過冷却現象は起こっていないことになる。
Examples 2 to 12, Comparative Examples 1 to 6 A heat storage agent composition was prepared by uniformly pulverizing and mixing heat storage agents of the type and amount shown in Table 1 and carbon powder using a mixer.
In the same manner as in Example 1, conduct electromagnetic heating, measure the temperature of the composition after heating, and observe the molten state of the composition (presence or absence of local heating), and solidification by crystallization immediately begins. I observed whether If it solidifies quickly, it means that no supercooling phenomenon has occurred.

なお、比較例2.4の蓄熱剤組成物は、加熱中周部加熱
が生じ、全体が均一に溶融するまで、それぞれ180秒
、600秒を要した。
In addition, in the heat storage agent composition of Comparative Example 2.4, heating occurred at the periphery during heating, and it took 180 seconds and 600 seconds, respectively, until the whole was uniformly melted.

実施例13〜25 第2表に示す種類と量の蓄熱剤、グラファイト構造の炭
素粉末及び無機充てん剤を、ミキサーで均一に粉砕、混
合して蓄熱剤組成物を調製したのち、実施例1と同様に
実施した。その結果を第2表に示す。
Examples 13 to 25 Heat storage agents of the types and amounts shown in Table 2, graphite-structured carbon powder, and inorganic fillers were uniformly ground and mixed in a mixer to prepare heat storage agent compositions. The same procedure was carried out. The results are shown in Table 2.

実施例26〜32 第3表に示す種類と量の有機系潜熱型蓄熱剤をあらかじ
め80°Cにて溶融した状態にし、これに第3表に示す
種類と量のグラファイト構造の炭素粉末及び無機充てん
剤を加え、十分にかきまぜて均質に混合したのち、この
50gを型(直径8.5cmの円形底面、厚みlc++
+の円盤)に入れ、自然冷却して蓄熱剤組成物を調製し
た。なお、カーボンブラックの粉砕については、ボール
ミル中で20秒間行った。
Examples 26 to 32 Organic latent heat type heat storage agents of the types and amounts shown in Table 3 are melted at 80°C in advance, and then graphite-structured carbon powder and inorganic powders of the types and amounts shown in Table 3 are melted. After adding the filler and stirring thoroughly to mix it homogeneously, put 50g of this into a mold (diameter 8.5cm circular bottom, thickness lc++
A heat storage agent composition was prepared by placing the mixture in a + disc) and allowing it to cool naturally. The carbon black was pulverized in a ball mill for 20 seconds.

次いで、該組成物を家庭用電子レンジ(高周波出力50
0W)で所定時間電磁波加熱を行い、加熱終了直後の組
成物の温度を測定するとともに、組成物の溶融状態を目
視により観察し、局部加熱の有無を調べた。その結果を
第3表に示す。
Next, the composition was heated in a household microwave oven (high frequency output 50
0 W) for a predetermined period of time, and the temperature of the composition was measured immediately after the heating was completed, and the melted state of the composition was visually observed to check for the presence or absence of local heating. The results are shown in Table 3.

Claims (1)

【特許請求の範囲】 1(A)相転移による潜熱を利用した潜熱型蓄熱剤と(
B)グラファイト構造を有する炭素粉末を含有して成る
電磁波加熱用蓄熱剤組成物。 2(A)相転移による潜熱を利用した潜熱型蓄熱剤と(
B)グラファイト構造を有する炭素粉末と(C)無機充
てん剤とを含有して成る電磁波加熱用蓄熱剤組成物。
[Claims] 1(A) A latent heat type heat storage agent that utilizes latent heat due to phase transition;
B) A heat storage agent composition for electromagnetic heating comprising carbon powder having a graphite structure. 2(A) A latent heat type heat storage agent that utilizes latent heat due to phase transition and (
B) A heat storage agent composition for electromagnetic heating comprising carbon powder having a graphite structure and (C) an inorganic filler.
JP2213760A 1990-08-14 1990-08-14 Heat-accumulation agent composition Pending JPH0496987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2213760A JPH0496987A (en) 1990-08-14 1990-08-14 Heat-accumulation agent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213760A JPH0496987A (en) 1990-08-14 1990-08-14 Heat-accumulation agent composition

Publications (1)

Publication Number Publication Date
JPH0496987A true JPH0496987A (en) 1992-03-30

Family

ID=16644575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213760A Pending JPH0496987A (en) 1990-08-14 1990-08-14 Heat-accumulation agent composition

Country Status (1)

Country Link
JP (1) JPH0496987A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310921A (en) * 1996-05-23 1997-12-02 Nippon Shizen Kagaku Sogo Kenkyusho:Kk Heat storage type hot-water device
JPH11293235A (en) * 1998-04-13 1999-10-26 Ntc Kogyo Kk Wax for expansion material and heat storage material
JP2004149796A (en) * 2002-10-28 2004-05-27 Sgl Carbon Ag Mixture for heat accumulating material
EP1475685A2 (en) 2003-05-09 2004-11-10 Behr Thermot-tronik GmbH Thermostatic actuator
US6960308B1 (en) 1999-07-11 2005-11-01 Maoz Betzer Tsilevich Endothermic heat shield composition and method for the preparation thereof
JP2006328143A (en) * 2005-05-24 2006-12-07 Hitachi Chem Co Ltd Heat storage material and method for producing the same
JP2008064753A (en) * 2006-09-05 2008-03-21 Samsung Electronics Co Ltd Fine fluid apparatus for use in protein detection based on centrifugal force and fine fluid system including same
JP5474236B1 (en) * 2013-05-17 2014-04-16 健 鈴木 Heat treatment method for fuel materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310921A (en) * 1996-05-23 1997-12-02 Nippon Shizen Kagaku Sogo Kenkyusho:Kk Heat storage type hot-water device
JPH11293235A (en) * 1998-04-13 1999-10-26 Ntc Kogyo Kk Wax for expansion material and heat storage material
US6960308B1 (en) 1999-07-11 2005-11-01 Maoz Betzer Tsilevich Endothermic heat shield composition and method for the preparation thereof
JP2004149796A (en) * 2002-10-28 2004-05-27 Sgl Carbon Ag Mixture for heat accumulating material
EP1475685A2 (en) 2003-05-09 2004-11-10 Behr Thermot-tronik GmbH Thermostatic actuator
EP2280328A1 (en) * 2003-05-09 2011-02-02 Behr Thermot-tronik GmbH Thermostatic actuator
JP2006328143A (en) * 2005-05-24 2006-12-07 Hitachi Chem Co Ltd Heat storage material and method for producing the same
JP2008064753A (en) * 2006-09-05 2008-03-21 Samsung Electronics Co Ltd Fine fluid apparatus for use in protein detection based on centrifugal force and fine fluid system including same
JP5474236B1 (en) * 2013-05-17 2014-04-16 健 鈴木 Heat treatment method for fuel materials

Similar Documents

Publication Publication Date Title
US5565132A (en) Thermoplastic, moldable, non-exuding phase change materials
JP6279784B1 (en) Latent heat storage material composition and latent heat storage tank
CN104386981A (en) Concrete materials having functions of heat conduction and heat storage, and preparation method thereof
JP2015000944A (en) Paraffin-based latent heat-storing material composition and use as latent heat storing material of paraffin-based composition
JPH1067981A (en) Heat-storing substance heatable with microwave
JPH0496987A (en) Heat-accumulation agent composition
CN108467711A (en) A kind of inorganic composite phase-change material and preparation method thereof
CN106867468A (en) A kind of inorganic salts mass of expanded graphite bluk recombination phase-change material and preparation method thereof
CN108251068A (en) A kind of 2-8 DEG C of composite phase-change material and preparation method thereof
CA1133689A (en) Hydrated mg(no.sub.3).sub.2/mgc1.sub.2 reversible phase change compositions
KR102394085B1 (en) Strontium bromide phase change material
CN102757766A (en) Low-temperature phase change thermal storage material and preparation method thereof
US4272391A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JP6054813B2 (en) Paraffin-based latent heat storage material composition and use of paraffin-based composition as latent heat storage material
CN100506942C (en) Material for storing heat of phase change in low temperature, and preparation method
JPH05209166A (en) Sealing material and its preparation
CN111978929A (en) Organic-inorganic composite phase change energy storage material and preparation method thereof
JP2020007415A (en) Latent heat storage material composition
CN110437806A (en) A kind of PCM phase change heat storage material and preparation method thereof
JPH01123917A (en) Composite heat accumulating material
JP2001152141A (en) Heat accumulator composition
CN110257017A (en) Fatty acid/attapulgite modified/expanded graphite composite phase-changing energy storage material and preparation method thereof
JP3444127B2 (en) Heat storage material composition
CN115368876A (en) Disodium hydrogen phosphate dodecahydrate composite phase-change heat storage material and preparation method thereof
JPH01268784A (en) Heat storage material with latent heat