JPH0496907A - Prepolymerization of olefin - Google Patents

Prepolymerization of olefin

Info

Publication number
JPH0496907A
JPH0496907A JP21514790A JP21514790A JPH0496907A JP H0496907 A JPH0496907 A JP H0496907A JP 21514790 A JP21514790 A JP 21514790A JP 21514790 A JP21514790 A JP 21514790A JP H0496907 A JPH0496907 A JP H0496907A
Authority
JP
Japan
Prior art keywords
prepolymerization
compound
group
titanium
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21514790A
Other languages
Japanese (ja)
Other versions
JP2543238B2 (en
Inventor
Yoshiyuki Kitajima
北島 佳幸
Eitaro Asaeda
朝枝 英太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2215147A priority Critical patent/JP2543238B2/en
Publication of JPH0496907A publication Critical patent/JPH0496907A/en
Application granted granted Critical
Publication of JP2543238B2 publication Critical patent/JP2543238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To prepare a polymer, excellent in transparency, rigidity and heat resistance, high in stereoregularity, etc., and suitable for injection moldings, films, etc., by subjecting an olefin to a multi-stage prepolymerization reaction by adding a catalyst containing different organic silicon compounds in the every polymerization stages. CONSTITUTION:(D) An olefin such as propylene is prepolymerized in a solvent such as hexane in the presence of (A) a titanium compound such as titanium tetrachloride carried on magnesium chloride, (B) an organic aluminum compound such as triethyl aluminum and (C) an organic silicon compound of formula I (R, R' are hydrocarbon; (n) is 1-3) for providing the objective polymer, while the component C is changed for each stage and is used preferably two to five times repeatedly, e.g. into a compound of formula II (R1 is H, alkyl; R<2>, R<3> are alkyl) or III (R<4> is alicyclic hydrocarbon or aromatic hydrocarbon) at the first polymerization stage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、透明性に優れたボップロピレンを得るのに好
適なオレフィンの予grI!合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention provides a pre-grI! Regarding the matching method.

(従来の技術及び発明が解決しようとする課題)ポリプ
ロピレンは、機械的性質、成形性、化学的安定性に優れ
た樹脂として広(利用されている。
(Prior Art and Problems to be Solved by the Invention) Polypropylene is widely used as a resin with excellent mechanical properties, moldability, and chemical stability.

しかしながら、透明性については、高い結晶性のために
一般にポリスチレンやポリ塩化ビニル等の樹脂に劣って
いる。
However, in terms of transparency, it is generally inferior to resins such as polystyrene and polyvinyl chloride due to its high crystallinity.

ポリプロピレンの透明性を改良する試みとして、これま
でにいくつかの提案がなされている。例えば、ポリプロ
ピレンにソルビトール誘導体、芳香族カルボン酸のナト
リウム塩またはカリウム塩などの造核剤を添加すること
により、成形物の球晶を小さく均一にし、それによって
成形物の透明性を改良する方法が知られている(特開昭
58−80392号公報、特開昭55−12460号公
報)。しかしながら、これら有機系造核剤は、成形時、
特にシートや二軸延伸フィルムの成形時に樹脂よりブリ
ードアウトしてロール汚れの原因となったり、また、加
工時に臭気が発生するという問題があった。さらに、芳
香族カルボン酸塩は、これらが加水分解したり、あるい
は他の添加剤と反応することで樹脂を着色させたりする
という問題もあった。
Several proposals have been made in attempts to improve the transparency of polypropylene. For example, by adding nucleating agents such as sorbitol derivatives, sodium salts or potassium salts of aromatic carboxylic acids to polypropylene, the spherulites of molded products are made small and uniform, thereby improving the transparency of molded products. It is known (Japanese Patent Application Laid-Open No. 58-80392, Japanese Patent Application Laid-Open No. 55-12460). However, during molding, these organic nucleating agents
In particular, there have been problems in that during molding of sheets and biaxially stretched films, the resin bleeds out, causing roll stains, and that odor is generated during processing. Furthermore, aromatic carboxylic acid salts have the problem of coloring the resin due to hydrolysis or reaction with other additives.

一方、3−メチルブテン−1等の分岐α−オレフィン等
を従来の立体規則性触媒で少量予備重合させることによ
りポリプロピレンの透明性を改良する方法が知られてい
る(特開昭63−69809号公報、特開昭62−17
38号公報)。この方法によれば、ブリードアウトの心
配はなくポリプロピレンの透明性改良効果を得ることが
できる。
On the other hand, a method is known in which the transparency of polypropylene is improved by prepolymerizing a small amount of branched α-olefin such as 3-methylbutene-1 using a conventional stereoregular catalyst (JP-A-63-69809). , Japanese Patent Publication No. 62-17
Publication No. 38). According to this method, there is no fear of bleed-out and the effect of improving the transparency of polypropylene can be obtained.

しかしながら、ポリプロピレンをフィルム等の用途に使
用する場合、この程度の透明性では十分満足できるもの
ではなく、さらに優れた透明性が求められている。
However, when polypropylene is used for applications such as films, this level of transparency is not fully satisfactory, and even better transparency is required.

(課題を解決するための手段) 本発明者らは、上記課題に鑑み、鋭意研究を行った結果
、特定の予備重合を行なうことにより上記の目的が達成
できることを見出し、本発明を完成させるに至った。
(Means for Solving the Problems) In view of the above problems, the present inventors conducted intensive research and found that the above objects could be achieved by performing a specific prepolymerization. It's arrived.

即ち、本発明は、下記成分A、B及びOA、チタン化合
物 B、有機アルミニウム化合物 C6一般式CI )  R−3i(OR’ )4−CI
 )で示される有機ケイ素化合物 の存在下にオレフィンの予備重合を多段に行なし1、各
予備重合段階で異なる有機ケイ素化合物を用い、且つ各
予備重合段階の少くとも1段階において下記式(A) CH2=C)I −C−R”          [:
 A ]又は下記式CB〕 CH,=CH−R’ CB、] で示される不飽和化合物を重合することを特徴とするオ
レフィンの予備重合方法である。
That is, the present invention comprises the following components A, B and OA, titanium compound B, organoaluminum compound C6 general formula CI) R-3i(OR')4-CI
) Prepolymerization of an olefin is carried out in multiple stages in the presence of an organosilicon compound represented by 1, a different organosilicon compound is used in each prepolymerization step, and at least one of the prepolymerization steps has the following formula (A): CH2=C)I-C-R” [:
A ] or the following formula CB] CH,=CH-R' CB, ] This is a method for prepolymerizing olefins, which is characterized by polymerizing an unsaturated compound represented by the following formula.

本発明の予備重合方法で用いられるチタン化合物(A)
は、オレフィンの重合に使用されることが公知の化合物
が何ら制限なく採用される。特に、チタン、マグネシウ
ム及びハロゲンを成分とする触媒活性の高いチタン化合
物が好適である。このような触媒活性の高いチタン化合
物は、ハロゲン化チタン、特に四塩化チタンを種々のマ
グネシウム化合物に担持させたものとなって(、sる。
Titanium compound (A) used in the prepolymerization method of the present invention
Any compound known to be used in the polymerization of olefins may be employed without any restriction. In particular, titanium compounds with high catalytic activity containing titanium, magnesium, and halogen are suitable. Such titanium compounds with high catalytic activity include titanium halides, particularly titanium tetrachloride, supported on various magnesium compounds.

この触媒の製法は、公知の方法が何ら制限なく採用され
る。例えば、特開昭56−155206号公報、同56
136806、同57−34103、同5B −870
6、同5B −83006、同58−138708、同
58−183709、同59−206408、同59−
219311、同60−81208 、同60−812
09 、同60−186508、同60−192708
、同61−211309、同61271304、同62
−15209、同62−11706、同62−7270
2、同6’2−104810等に示されている方法が採
用される。
For the production of this catalyst, any known method may be employed without any restriction. For example, JP-A-56-155206, JP-A-56-155206;
136806, 57-34103, 5B-870
6, 5B-83006, 58-138708, 58-183709, 59-206408, 59-
219311, 60-81208, 60-812
09, 60-186508, 60-192708
, 61-211309, 61271304, 62
-15209, 62-11706, 62-7270
2, the method shown in 6'2-104810 etc. is adopted.

具体的には、例えば、四塩化チタンを塩化マグネシウム
のようなマグネシウム化合物と共粉砕する方法、アルコ
ール、エーテル、エステル、ケトン又はアルデヒド等の
電子供与体の存在下に/”tロゲン化チタンとマグネシ
ウム化合物とを共粉砕する方法、又は、溶媒中でハロゲ
ン化チタン、マグネシウム化合物及び電子供与体を接触
させる方法等が挙げられる。
Specifically, for example, titanium tetrachloride is co-milled with a magnesium compound such as magnesium chloride, titanium tetrachloride and magnesium in the presence of an electron donor such as an alcohol, ether, ester, ketone or aldehyde. Examples include a method of co-milling with a compound, or a method of bringing a titanium halide, a magnesium compound, and an electron donor into contact with each other in a solvent.

次に有機アルミニウム化合物(B)も、オレフィンの重
合に使用されることが公知の化合物が何ら制限なく採用
される。例えば、トリメチルアルミニウム、トリエチル
アルミニウム、トリーnプロピルアルミニウム、トリー
nブチルアルミニウム、トリーnデシルアルミニウム、
トリーnヘキシルアルミニウム、トリーnデシルアルミ
ニウム、トリーnデシルアルミニウム等のトリアルキル
アルミニウム類;ジエチルアルミニウムモノクロライド
等のジエチルアルミニウムモノハライド類纂メチルアル
ミニウムセスキクロライド、エチルアルミニウムジクロ
ライド、エチルアルミニウムジクロライド等のアルキル
アルミニウムハライド類などが挙げられる。他にモノエ
トキシジエチルアルミニウム、ジェトキシモノエチルア
ルミニウム等のアルコキシアルミニウム類を用いること
ができる。中でもトリエチルアルミニウムが最も好まし
い。各予備重合段階で使用する有機アルミニウム化合物
の使用量はチタン化合物中のTi原子に対しAj!/T
i(モル比)で1〜100、好ましくは2〜20である
Next, as the organoaluminum compound (B), any compound known to be used in the polymerization of olefins can be used without any restriction. For example, trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, tri-n-decylaluminum,
Trialkyl aluminums such as tri-n hexyl aluminum, tri-n decyl aluminum, tri-n decyl aluminum; diethylaluminum monohalides such as diethyl aluminum monochloride; alkyl aluminum halides such as methyl aluminum sesquichloride, ethyl aluminum dichloride, and ethyl aluminum dichloride; Examples include. In addition, alkoxyaluminums such as monoethoxydiethylaluminum and jetoxymonoethylaluminum can be used. Among them, triethylaluminum is most preferred. The amount of organoaluminum compound used in each prepolymerization step is Aj! relative to the Ti atom in the titanium compound. /T
i (molar ratio) is 1 to 100, preferably 2 to 20.

さらに、有機ケイ素化合物(C)は、前記一般式〔同で
示される化合物が何ら制限なく採用される。一般式C1
E中のR及びR′は、アルキル基、アルケニル基、アル
キニル基及びアリール基等の炭化水素基である。本発明
において好適に用いられる有機ケイ素化合物を例示する
と、次のとおりである。例えば、トリメチルメトキシシ
ラン、トリメチルエトキシシラン、ジメチルジメトキシ
シラン、ジメチルジェトキシシラン、ジフェニルジメト
キシシラン、メチルフエニルジメトキシシラン、ジフェ
ニルジェトキシシラン、エチルトリメトキシシラン、メ
チルトリメトキシシラン、ビニルトリメトキシシラン、
フェニルトリメトキシシラン、メチルトリエトキシシラ
ン、エチルトリエトキシシラン、ビニルトリエトキシシ
ラン、メチルトリエトキシシラン、フェニルトリエトキ
シシラン、ケイ酸エチル、6−ドリエトキシシリル2−
ノルボルネンなどである。
Further, as the organosilicon compound (C), a compound represented by the above general formula [the same] may be used without any limitation. General formula C1
R and R' in E are hydrocarbon groups such as an alkyl group, an alkenyl group, an alkynyl group, and an aryl group. Examples of organosilicon compounds preferably used in the present invention are as follows. For example, trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyljethoxysilane, diphenyldimethoxysilane, methylphenyldimethoxysilane, diphenyljethoxysilane, ethyltrimethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane,
Phenyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, ethyl silicate, 6-driethoxysilyl 2-
Such as norbornene.

各予備重合段階で用いる有機ケイ素化合物の使用量はチ
タン化合物中のTi原子に対しSi/Ti(モル比)で
0.1〜100、好ましくは0.5〜10である。
The amount of the organosilicon compound used in each prepolymerization step is from 0.1 to 100, preferably from 0.5 to 10, in Si/Ti (molar ratio) relative to the Ti atoms in the titanium compound.

本発明においては、上記したチタン化合物(A)、有機
アルミニウム化合物(B)及び有機ケイ素化合物(C)
に加えて、下記一般式(II)R’−1(II) で示されるヨウ素化合物(D)を用いることが、得られ
るポリオレフィンの剛性、耐熱性が高くなるために好ま
しい。
In the present invention, the above titanium compound (A), organoaluminum compound (B) and organosilicon compound (C)
In addition, it is preferable to use an iodine compound (D) represented by the following general formula (II) R'-1 (II) because the resulting polyolefin has high rigidity and heat resistance.

前記一般式(If)中、R′は、アルキル基、アルケニ
ル基、アルキニル基又はアリール基等の炭化水素基であ
る。本発明で好適に使用し得るヨウ素化合物を具体的に
示すと次のとおりである。例えば、ヨウ素、ヨウ化メチ
ル、ヨウ化エチル、ヨウ化プロピル、ヨウ化ブチル、ヨ
ードベンゼン、p−ヨウ化トルエン等である。中でもヨ
ウ化メチル、ヨウ化エチルが好ましい。各予備重合段階
で用いるヨウ素化合物の使用量はチタン化合物中のチタ
ン原子に対し、I/Ti(モル比)で、0.1〜100
、好ましくは0.5〜50である。
In the general formula (If), R' is a hydrocarbon group such as an alkyl group, an alkenyl group, an alkynyl group, or an aryl group. Specific examples of iodine compounds that can be suitably used in the present invention are as follows. Examples include iodine, methyl iodide, ethyl iodide, propyl iodide, butyl iodide, iodobenzene, p-toluene iodide, and the like. Among them, methyl iodide and ethyl iodide are preferred. The amount of the iodine compound used in each prepolymerization step is 0.1 to 100 I/Ti (mole ratio) based on the titanium atom in the titanium compound.
, preferably 0.5 to 50.

本発明においては多段階に予備重合を行ない、且つ各予
備重合段階で異なる種類の有機ケイ素化合物を用いる。
In the present invention, prepolymerization is carried out in multiple stages, and different types of organosilicon compounds are used in each prepolymerization stage.

本発明において予備重合を多段階に行なうとは、上記[
A)、CB)、  (C)および必要により用いられる
CD)の各成分の存在下にオレフィンを予備重合し、得
られたチタン含有ポリオレフィンと上記CB)、(C)
および必要により用いられる(D)の各成分の存在下に
さらにオレフィンの予備重合を繰り返し行なうことをい
う。予備重合は2〜5回の範囲で行なうことが好ましい
。各予備重合で用いる上記の各成分は逐次添加されても
よく、−括混合したものを用いても良い。
In the present invention, carrying out prepolymerization in multiple stages means the above [
Prepolymerize the olefin in the presence of each component of A), CB), (C) and CD) used if necessary, and the obtained titanium-containing polyolefin and the above CB), (C)
It also means repeatedly carrying out prepolymerization of olefin in the presence of each component (D) used as necessary. Prepolymerization is preferably carried out 2 to 5 times. The above-mentioned components used in each prepolymerization may be added sequentially or may be mixed together.

各予備重合段階では、夫々異なる種類の有機ケイ素化合
物が用いられる。有機ケイ素化合物としては、前記一般
式(1)中のR及びR′の少くとも一方が嵩高い炭化水
素基、例えば、フェニル基、シクロヘキシル基又はノル
ボルニル基等である化合物を用いることが、高結晶性の
ポリオレフインが得られるために好ましい。各予備重合
段階で用いられる有機ケイ素化合物の使用順序は特に制
限されない。
A different type of organosilicon compound is used in each prepolymerization step. As the organosilicon compound, it is preferable to use a compound in which at least one of R and R' in the general formula (1) is a bulky hydrocarbon group, such as a phenyl group, a cyclohexyl group, or a norbornyl group. This method is preferable because a polyolefin with high properties can be obtained. The order of use of the organosilicon compounds used in each prepolymerization step is not particularly limited.

本発明の予備重合においては、上記の各予備重合段階の
少くとも1段階で特定の不飽和化合物の重合が行なわれ
る。不飽和化合物としては、下記式(A)又はCB)で
示される化合物が用いられる。
In the prepolymerization of the present invention, a specific unsaturated compound is polymerized in at least one of the above-mentioned prepolymerization steps. As the unsaturated compound, a compound represented by the following formula (A) or CB) is used.

CH2=CFl −C−R”          [A
 )CH2=CH−R’ (B) ここで、上記式(A)中、R’ 、RZ及びR3で示さ
れるアルキル基としては炭素数に特に制限されるもので
はないが、得られるポリプロピレンの透明性向上のため
には、炭素数1〜6であることが好ましい。
CH2=CFl-C-R” [A
) CH2=CH-R' (B) Here, in the above formula (A), the alkyl groups represented by R', RZ and R3 are not particularly limited in number of carbon atoms, but the transparency of the polypropylene obtained In order to improve properties, it is preferable that the number of carbon atoms is 1 to 6.

また、上記式(B)中、R4で示される脂環式炭化水素
基は、飽和及び不飽和のいずれであってもよ(、また、
炭素数には特に制限されないが、得られるポリプロピレ
ンの透明性の点から6員環であることが好ましい。具体
的には、シクロヘキシル基、1−シクロヘキセン−1−
イル基、2シクロヘキセン−1−イル基、3−シクロヘ
キセン−1−イル基、2−メチル−1−シクロヘキセン
−1−イル基、3−メチル−1−シクロヘキセン−1−
イル基、4−メチル−1−シクロヘキセン−1−イル基
、2−メチル−2−シクロヘキセン−1−イル基、3−
メチル−2−シクロヘキセン−1−イル基、4−メチル
−2−シクロヘキセン−ニーイル基、2−メチル−3−
シクロヘキセン−1−イル基、3−メチル−3−シクロ
ヘキセン−1−イル基、4−メチル−3−シクロヘキセ
ン−1−イル基等を挙げることができる。
Furthermore, in the above formula (B), the alicyclic hydrocarbon group represented by R4 may be either saturated or unsaturated (also,
Although the number of carbon atoms is not particularly limited, a six-membered ring is preferred from the viewpoint of transparency of the polypropylene obtained. Specifically, cyclohexyl group, 1-cyclohexene-1-
yl group, 2cyclohexen-1-yl group, 3-cyclohexen-1-yl group, 2-methyl-1-cyclohexen-1-yl group, 3-methyl-1-cyclohexen-1-yl group
yl group, 4-methyl-1-cyclohexen-1-yl group, 2-methyl-2-cyclohexen-1-yl group, 3-
Methyl-2-cyclohexen-1-yl group, 4-methyl-2-cyclohexen-niyl group, 2-methyl-3-yl group
Examples include cyclohexen-1-yl group, 3-methyl-3-cyclohexen-1-yl group, and 4-methyl-3-cyclohexen-1-yl group.

さらに、上記式CB)中、R′で示される芳香族炭化水
素基は、アリール基又はアラルキル基が何ら制限なく採
用される。アリール基としては、炭素数6〜10である
ことが好ましく、具体的には、フェニル基、0−)リル
基、m−)リル基、p−トリル基、2.3−キシリル基
、2,4−キシリル基、4−1−プチルフユニル基等を
挙げることができる。また、アラルキル基としては炭素
数7〜11であることが好ましく、具体的には、ヘンシ
ル基、フェネチル基、フェニルプロピル基、フェニルブ
チル基等を挙げることができる。
Further, in the above formula CB), the aromatic hydrocarbon group represented by R' may be an aryl group or an aralkyl group without any restriction. The aryl group preferably has 6 to 10 carbon atoms, and specifically includes phenyl group, 0-)lyl group, m-)lyl group, p-tolyl group, 2,3-xylyl group, 2, Examples include 4-xylyl group and 4-1-butylphunyl group. Further, the aralkyl group preferably has 7 to 11 carbon atoms, and specific examples thereof include hensyl group, phenethyl group, phenylpropyl group, and phenylbutyl group.

前記式(A)及びl’B)で示される不飽和化合物を具
体的に示すと次のとおりである。例えば、3−メチル−
1−ブテン、3−メチル−1−ペンテン、ビニルシクロ
ヘキサン、4−ビニルシクロヘキセン−1、スチレン、
0−メチルスチレン、p−t−ブチルスチレン、アリル
ベンゼン、1−ビニル−2−メチルシクロヘキセン−1
等を挙げることができ、これらの中でも特に3−メチル
1−ブテン、3−メチル−1−ペンテンビニルシクロヘ
キサン、0−メチルスチレン及びp−tブチルスチレン
がポリプロピレンの透明性改良効果が大きいために好ま
しく用いられる。
Specific examples of the unsaturated compounds represented by formulas (A) and l'B) are as follows. For example, 3-methyl-
1-butene, 3-methyl-1-pentene, vinylcyclohexane, 4-vinylcyclohexene-1, styrene,
0-methylstyrene, pt-butylstyrene, allylbenzene, 1-vinyl-2-methylcyclohexene-1
Among these, 3-methyl-1-butene, 3-methyl-1-pentenvinylcyclohexane, 0-methylstyrene, and pt-butylstyrene are particularly preferred because they have a large effect on improving the transparency of polypropylene. used.

上記の不飽和化合物は同時に2種類以上使用することも
可能である。更に上記の不飽和化合物に10重量部以下
のα−オレフィン、例えば、エチレン、プロピレン、ブ
テン、1−ヘキセン、4メチル−1−ペンテン等を共存
させてもよい。また、水素の共存下に予備重合を行って
もよい。
It is also possible to use two or more types of the above unsaturated compounds at the same time. Furthermore, 10 parts by weight or less of α-olefin, such as ethylene, propylene, butene, 1-hexene, 4-methyl-1-pentene, etc., may be made to coexist with the above-mentioned unsaturated compound. Preliminary polymerization may also be carried out in the presence of hydrogen.

本発明における多段階の各予備重合段階のうち、上記の
不飽和化合物を用いた段階以外の予備重合段階で用いら
れるオレフィンとしては、エチレン、プロピレン、1−
ブテン、1−ヘキセン、4−メチル−1−ペンテンなど
であり、同時に2種類以上使用することも可能であるが
、立体規則性の向上を勘案すると特定の一種類のオレフ
ィンを90モル%以上用いることが好ましい。
Among the multiple prepolymerization steps in the present invention, the olefins used in the prepolymerization steps other than the step using the above-mentioned unsaturated compound include ethylene, propylene, 1-
Butene, 1-hexene, 4-methyl-1-pentene, etc., and it is possible to use two or more types at the same time, but in order to improve stereoregularity, 90 mol% or more of one specific type of olefin is used. It is preferable.

各予備重合段階で行なわれる重合量は、チタン化合物1
g当り0.1〜1000g好ましくは、0.5〜500
gの範囲から選べばよい。各段階の重合量の比率は特に
限定するものではない。
The amount of polymerization carried out in each prepolymerization step is the titanium compound 1
0.1-1000g per g, preferably 0.5-500g
You can choose from the range of g. The ratio of polymerization amount in each stage is not particularly limited.

各予備重合は通常スラリー重合を適用させるのが好まし
く、溶媒として、ヘキサン、ヘプタン、シクロヘキサン
、ベンゼン、トルエンなどの飽和脂肪族炭化水素若しく
は芳香族炭化水素を単独で、又はこれらの混合溶媒を用
いることができる。各予備重合温度は、−20〜100
°C1特に0〜60°Cの温度が好ましく、予備重合の
各段階でもまた異なる温度の条件下で行ってもよい。予
備重合時間は、予備重合温度及び予備重合での重合量に
応じ適宜決定すれば良く、予備重合における圧力は、限
定されるものではないが、スラリー重合の場合は、一般
に大気圧〜5 kg/d程度である。各予備重合は、回
分、半回分、連続のいずれの方法で行ってもよい。各予
備重合終了後には、ヘキサン、ヘプタン、シクロヘキサ
ン、ベンゼン、トルエン等の飽和脂肪族炭化水素若しく
は芳香族炭化水素を単独で、または混合溶媒で洗浄する
ことが好ましく、洗浄回数は通常の場合5〜6回が好ま
しい。
For each prepolymerization, it is usually preferable to apply slurry polymerization, and as a solvent, a saturated aliphatic hydrocarbon or aromatic hydrocarbon such as hexane, heptane, cyclohexane, benzene, toluene, etc. may be used alone, or a mixed solvent thereof may be used. I can do it. Each prepolymerization temperature is -20 to 100
C. Temperatures of 0 to 60.degree. C. are preferred, and each stage of the prepolymerization may also be carried out under different temperature conditions. The prepolymerization time may be appropriately determined depending on the prepolymerization temperature and the polymerization amount in the prepolymerization, and the pressure in the prepolymerization is not limited, but in the case of slurry polymerization, it is generally atmospheric pressure to 5 kg/ It is about d. Each prepolymerization may be carried out in batch, semi-batch or continuous manner. After each preliminary polymerization, it is preferable to wash with a saturated aliphatic hydrocarbon or aromatic hydrocarbon such as hexane, heptane, cyclohexane, benzene, toluene, etc. alone or with a mixed solvent, and the number of washings is usually 5 to 5. Preferably 6 times.

本発明による予備重合後の本重合に於ける重合条件は、
本発明の効果が認められる限り、特に制限はしないが一
般には次の条件が好ましい。重合温度は、20〜200
°C1好ましくは50〜150°Cであり、分子量調節
剤として水素を共存させることもできる。また、重合は
、スラリー重合、無溶媒重合、及び気相重合にも通用で
き、回分式、半回分式、連続式の何れの方法でもよく、
更に重合を条件の異なる2段以上に分けて行うこともで
きる。重合を行うオレフィン類としては、エチレン、プ
ロピレン、ブテン−1、ペンテン−1、ヘキセン−1,
4−メチルペンテン−1などであり、これらの七ツマ−
を単独で、又は2種以上を混合して用いることができる
。2種以上のオレフィンを用いる場合は、特定の一種を
90モル%以上用いることが得られるポリオレフィンの
立体規則性の向上の点から好ましい。更に炭素数3以上
のオレフィンの立体規則性制御のためエーテル、アミン
、アミド、含硫黄化合物、ニトリル、カルボン酸、酸ア
ミド、酸無水物、酸エステル、有機ケイ素化合物などの
電子供与体を共存させることができる。中でも有機ケイ
素化合物が好ましい。かかる有機ケイ素化合物は前述の
予備重合時に選ばれたものが使用できる。
The polymerization conditions in the main polymerization after the preliminary polymerization according to the present invention are as follows:
As long as the effects of the present invention are recognized, the following conditions are generally preferred, although there are no particular limitations. Polymerization temperature is 20 to 200
C1 is preferably 50 to 150°C, and hydrogen can also be present as a molecular weight regulator. In addition, the polymerization can be applied to slurry polymerization, solventless polymerization, and gas phase polymerization, and may be any of the batch, semi-batch, and continuous methods.
Furthermore, the polymerization can be carried out in two or more stages under different conditions. The olefins to be polymerized include ethylene, propylene, butene-1, pentene-1, hexene-1,
4-methylpentene-1, etc., and these seven polymers
These can be used alone or in combination of two or more. When using two or more types of olefins, it is preferable to use 90 mol % or more of one specific type from the viewpoint of improving the stereoregularity of the resulting polyolefin. Furthermore, in order to control the stereoregularity of olefins having 3 or more carbon atoms, electron donors such as ethers, amines, amides, sulfur-containing compounds, nitriles, carboxylic acids, acid amides, acid anhydrides, acid esters, and organosilicon compounds are allowed to coexist. be able to. Among them, organosilicon compounds are preferred. As such an organosilicon compound, one selected at the time of the above-mentioned prepolymerization can be used.

(効 果) 本発明の予備重合方法によれば、従来の分岐αオレフィ
ンの単なる予備重合による方法に比べ、透明性に一段と
優れたポリオレフィンを得ることができる。しかも、本
発明の方法で得られたポリオレフィンは、立体規則性が
高く、優れた剛性及び耐熱性を有する。
(Effects) According to the prepolymerization method of the present invention, it is possible to obtain a polyolefin with much better transparency than the conventional method of simply prepolymerizing a branched α-olefin. Furthermore, the polyolefin obtained by the method of the present invention has high stereoregularity and excellent rigidity and heat resistance.

従って、本発明の方法によって得られたポリオレフィン
は、射出成形品の他にもフィルムとしても良好に使用し
得る。
Therefore, the polyolefin obtained by the method of the present invention can be satisfactorily used not only as an injection molded product but also as a film.

(実施例) 以下、本発明を実施例及び比較例を掲げて説明するが、
本発明はこれらの実施例に限定されるものではない。
(Example) The present invention will be explained below with reference to Examples and Comparative Examples.
The present invention is not limited to these examples.

以下の実施例において用いた測定方法について説明する
The measurement method used in the following examples will be explained.

(1)立体規則性 本発明で用いた立体規則性の評価方法は、以下の(a)
および(b)である。
(1) Stereoregularity The stereoregularity evaluation method used in the present invention is as follows (a)
and (b).

(a)  p−キシレン可溶分 ポリマー1gをp−キシレン100ccに加え攪拌しな
がら、120°Cまで昇温した後、更に30分攪拌を続
け、ポリマーを完全に溶かした後、Pキシレン溶液を2
3°C524時間放置した。析出物は濾別し、p−キシ
レン溶液は完全に濃縮することで可溶分をえた。
(a) Add 1 g of p-xylene soluble polymer to 100 cc of p-xylene and raise the temperature to 120°C while stirring. After continuing stirring for an additional 30 minutes to completely dissolve the polymer, add the p-xylene solution. 2
It was left at 3°C for 24 hours. The precipitate was separated by filtration, and the p-xylene solution was completely concentrated to obtain the soluble content.

室温p−キシレン可溶分(%)=(p−キシレン可溶分
(g)/ポリマー1g)X100で表される。
Room temperature p-xylene soluble content (%)=(p-xylene soluble content (g)/1 g of polymer)X100.

(b)  ’ ” C−N M Rペンタッド背中A、
Zambelli等によってMacron+olecu
les 6,925(1973)に発表されている方法
、すなわち、IICNMRを用いポリマー分子鎖中の連
続した七ツマー5個のアイソタクチックに結合した分率
である。
(b) ''' C-N M R pentad back A,
Macron+olecu by Zambelli et al.
les 6,925 (1973), that is, the fraction of isotactic bonding of five consecutive heptamers in a polymer molecular chain using IICNMR.

測定はJEOL G5X−270を用いて、パルス幅9
0″パルス間隔15秒、積算toooo回で行った。ビ
ーりの帰属はMacro+*olecules、 8,
697 (1975)に従って行った。
Measurements were made using JEOL G5X-270, with a pulse width of 9
0'' pulse interval was 15 seconds, and the total number of times was too many.The beep was attributed to Macro+*olecules, 8,
697 (1975).

(2)メルトインデックス(以下、Mlと略す)AST
M  D−790に準拠。
(2) Melt index (hereinafter abbreviated as Ml) AST
Compliant with MD-790.

(3)曲げ弾性率(以下、Fmと略す)日本製鋼所 J
120S/l型射出成形機により63.6+u+X12
.7mmX0.31nvの試験片を作成し、ASTM 
: D−790に準じて行った。
(3) Flexural modulus (hereinafter abbreviated as Fm) Japan Steel Works J
63.6+u+X12 by 120S/l type injection molding machine
.. A test piece of 7 mm x 0.31 nv was prepared and ASTM
: Performed according to D-790.

(4)熱変形温度(以下、HDTと略す)日本製鋼所 
J120SAII型射出成形機により63.6m+*X
 12.7mmX0.31 mmの試験片を作成し、A
STM : D−648に準して行った。
(4) Heat distortion temperature (hereinafter abbreviated as HDT) Japan Steel Works
63.6m+*X by J120SAII type injection molding machine
Create a test piece of 12.7 mm x 0.31 mm, and
STM: Performed according to D-648.

(5)透明性(ヘイズ値) 日本製鋼所 J12O3AII型射出成形機により、樹
脂温度230°Cで80. OX 50. OXl、0
(vw)の板に成形した後48時間後に、JIS−に6
714に従い測定した。
(5) Transparency (Haze value) 80. OX50. OXl, 0
(vw) 48 hours after forming into a JIS-6
Measured according to 714.

(6)分子量分布(以下、M w / M nと略す)
重量平均分子量(Mw)と数平均分子量(Mn)の比で
GPC(ゲルパーミェーションクロマトグラフィー)法
により測定した。ウォーターズ社製GPC−150°C
によりO−ジクロルベンゼンを溶媒とし、135°Cで
行った。
(6) Molecular weight distribution (hereinafter abbreviated as Mw/Mn)
The ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) was measured by GPC (gel permeation chromatography) method. Waters GPC -150°C
The reaction was carried out at 135°C using O-dichlorobenzene as a solvent.

(7)結晶化温度(以下、Tcと略す)セイコー電子工
業型DSC−200により、試料を230″Cで10分
保持し、−40°C/分のスピードで陣温し測定した。
(7) Crystallization temperature (hereinafter abbreviated as Tc) The sample was held at 230''C for 10 minutes and heated at a speed of -40°C/min for measurement using a Seiko Electronics Industry DSC-200.

(8)融点(以下、Tmと略す) セイコー電子工業型DSC−200により、試料を23
0°Cで10分保持し、120°Cまで降温し、同温度
で10分等温結晶化を行ない、50゛Cまで冷却した後
10°C/分で昇温し測定した。
(8) Melting point (hereinafter abbreviated as Tm) The sample was
The temperature was held at 0°C for 10 minutes, the temperature was lowered to 120°C, isothermal crystallization was performed at the same temperature for 10 minutes, and after cooling to 50°C, the temperature was raised at 10°C/min and measured.

実施例1 〔チタン化合物の調製〕 チタン成分の調製方法は、特開昭58−83006号公
報の実施例1の方法に準じて行った。すなわち無水塩化
マグネシウム0.95 g (10mmol) 、デカ
ン10sol%及び2−エチルヘキシルアルコール4.
7mj2 (30m+*ol)を125℃で2時間加熱
攪拌した後、この溶液中に無水フタル酸0.55g(3
,75m*ol)を添加し、125°Cにてさらに1時
間撹拌混合を行い、均一溶液とした。室温まで冷却した
後、120℃に保持された四塩化チタン40n+j2 
(0,36sol )中に1時間にわたって全量滴下装
入した。装入終了後、この混合液の温度を2時間かけて
110°Cに昇温し、110°Cに達したところでジイ
ソブチルフタレート0.54+j2(2,5爾*ol)
を添加し、これより2時間同温度にて撹拌上保持した。
Example 1 [Preparation of titanium compound] The titanium component was prepared according to the method of Example 1 of JP-A-58-83006. That is, 0.95 g (10 mmol) of anhydrous magnesium chloride, 10 sol% of decane, and 4. 2-ethylhexyl alcohol.
After heating and stirring 7 mj2 (30 m + * ol) at 125°C for 2 hours, 0.55 g of phthalic anhydride (3
, 75 m*ol) was added thereto, and stirring and mixing was further performed at 125°C for 1 hour to obtain a homogeneous solution. Titanium tetrachloride 40n+j2 kept at 120°C after cooling to room temperature
(0.36 sol) over 1 hour. After charging, the temperature of this mixed liquid was raised to 110°C over 2 hours, and when it reached 110°C, diisobutyl phthalate 0.54 + j2 (2,5*ol) was added.
was added, and the mixture was kept at the same temperature for 2 hours with stirring.

2時間の反応終了後濾過にて固体部を採取し、この固体
部を200mlのT1Cf4にて再懸濁させた後、再び
110°Cで2時間、加熱反応を行なった0反応終了後
、再び熱濾過にて固体部を採取し、デカン及びヘキサン
にて、先液中に遊離のチタン化合物が検出されなくなる
まで充分洗浄した。以上の製造方法にて調製された固体
Ti触媒成分は、ヘプタンスラリーとして保存した。固
体Ti触媒成分の組成はチタン2.1重量%、塩素57
重量%、マグネシウム18.0重量%、及びジイソブチ
ルフタレート21.9重量%であった。
After the 2-hour reaction, the solid part was collected by filtration, and this solid part was resuspended in 200 ml of T1Cf4, and then heated at 110°C for 2 hours. The solid portion was collected by hot filtration and thoroughly washed with decane and hexane until no free titanium compound was detected in the preliminary solution. The solid Ti catalyst component prepared by the above production method was stored as a heptane slurry. The composition of the solid Ti catalyst component is 2.1% by weight of titanium and 57% by weight of chlorine.
% by weight, 18.0% by weight of magnesium, and 21.9% by weight of diisobutyl phthalate.

〔予備重合〕[Prepolymerization]

N2置換を施した11オートクレーブ中に精製へブタン
200ml、トリエチルアルミニウム50IIIlO1
、ジフェニルジメトキシシラン10+wmol、ヨウ化
エチル50mmol及び固体Ti触媒成分をT−4原子
換算で5mn+ol装入した後、プロピレンを固体Ti
触媒成分1gに対し3gとなるように1時間連続的に反
応器に導入し予備重合1回目を施した。なお、この間の
温度は15℃に保持した。1時間後プロピレンの導入を
停止し、反応器内をN2で充分に置換した。得られたス
ラリーの固体部分を精製へブタンで6回洗浄した。
200 ml of purified hebutane, triethylaluminum 50IIIlO1 in a 11 autoclave with N2 substitution
After charging 10+wmol of diphenyldimethoxysilane, 50mmol of ethyl iodide, and 5mn+ol of solid Ti catalyst component in terms of T-4 atoms, propylene was added to the solid Ti catalyst component.
The catalyst component was continuously introduced into the reactor in an amount of 3 g per 1 g for 1 hour to carry out the first prepolymerization. Note that the temperature during this time was maintained at 15°C. After 1 hour, the introduction of propylene was stopped, and the inside of the reactor was sufficiently purged with N2. The solid portion of the resulting slurry was washed six times with purified hebutane.

更にこの固体成分をN2置換を施した11オートクレー
ブ中に装入し、精製へブタン200I11、トリエチル
アルミニウム50mmol、  6− トリエトキシシ
リル2−ツルボlレネン10霞mol、ヨウ化エチル5
0mmolを加えた後、3−メチル1−ブテンLogを
装入し3時間反応させ、予備重合2回目を施した。なお
、この間の温度は15゛Cに保持した。3−メチル−1
−ブテンの予備重合量は固体Ti触媒成分1g当り0.
9gであった。得られたスラリーの固体部分を精製へブ
タンで6回洗浄した。
Further, this solid component was charged into a 11 autoclave which had been replaced with N2, and 200 I1 of purified hebutane, 50 mmol of triethylaluminum, 10 haze mol of 6-triethoxysilyl 2-turbolenenene, and 5 mol of ethyl iodide were added.
After adding 0 mmol, 3-methyl 1-butene Log was charged and reacted for 3 hours to perform a second prepolymerization. Note that the temperature during this time was maintained at 15°C. 3-methyl-1
- The prepolymerized amount of butene is 0.000.
It was 9g. The solid portion of the resulting slurry was washed six times with purified hebutane.

〔重 合〕[Overlapping]

N2置換を施した内容量4002のオートクレーブに、
プロピレン2001を装入し、トリエチルアルミニウム
274 mmol、ジフェニルジメトキシシラン274
m5+ol更に水素2.ONnを装入した後、オートク
レーブの内温を65℃に昇温し、上記、予備重合工程を
経て得られた固体Ti触媒成分をチタン原子として1.
1 mmol装入した。続いてオートクレーブの内温を
75℃まで昇温し、3時間のプロピレンの重合を行った
。重合圧力は34kg/+u+”であり、この間の温度
は75℃に保持し、水素濃度をガスクロマトグラフで確
認しながら0.2−01%に保持した。3時間後未反応
のプロピレンをパージし白色顆粒状の重合体を得た。重
合体の収量は52kgであり、この時の活性は20.8
00gpp/ g −cat ・3Hrであった。上記
重合体に酸化防止剤を添加し、十分に混合した後造粒機
によりペレット状とした。得られたポリプロピレンの物
性を表1に示した。
In an autoclave with an internal capacity of 4002 that was subjected to N2 substitution,
Propylene 2001 was charged, triethylaluminum 274 mmol, diphenyldimethoxysilane 274
m5+ol plus hydrogen 2. After charging ONn, the internal temperature of the autoclave was raised to 65°C, and the solid Ti catalyst component obtained through the above prepolymerization step was converted into titanium atoms.
1 mmol was charged. Subsequently, the internal temperature of the autoclave was raised to 75°C, and propylene was polymerized for 3 hours. The polymerization pressure was 34 kg/+u+'', and the temperature during this time was maintained at 75°C, and the hydrogen concentration was maintained at 0.2-01% while checking with a gas chromatograph. After 3 hours, unreacted propylene was purged and the mixture turned white. A granular polymer was obtained.The yield of the polymer was 52 kg, and the activity at this time was 20.8.
00gpp/g-cat・3Hr. An antioxidant was added to the above polymer, thoroughly mixed, and then pelletized using a granulator. Table 1 shows the physical properties of the obtained polypropylene.

実施例2 実施例1の予備重合の1回目に於て、ジフェニルジメト
キシシランの代わりに6−ドリエトキシシリルー2−ノ
ルボルネンを、予備重合の2回目に6−ドリエトキシシ
リルー2−ノルポル矛ンの代わりにジフェニルジメトキ
シシランを用いた以外は実施例1と同様の操作を行った
。結果を表1に示した。
Example 2 In the first prepolymerization of Example 1, 6-driethoxysilyl-2-norbornene was used instead of diphenyldimethoxysilane, and in the second prepolymerization, 6-driethoxysilyl-2-norpolene was used instead of diphenyldimethoxysilane. The same operation as in Example 1 was performed except that diphenyldimethoxysilane was used instead of. The results are shown in Table 1.

実施例3 実施例1の予備重合で得られた固体Ti触媒成分に更に
ヘプタン20011I!、、トリエチルアルミニウム5
0s+mol、フェニルトリエトキシシラン10+uw
ol、ヨウ化エチルl□n+olを加えたのち、プロピ
レンを再び固体Ti触媒成分1gに対し3gとなるよう
に1時間反応器に導入し、3回目の予備重合を施した。
Example 3 Heptane 20011I! was added to the solid Ti catalyst component obtained in the prepolymerization of Example 1! ,,triethylaluminum 5
0s+mol, phenyltriethoxysilane 10+uw
After adding ethyl iodide l□n+ol, propylene was again introduced into the reactor for 1 hour in an amount of 3 g per 1 g of the solid Ti catalyst component to carry out the third prepolymerization.

得られた固体成分は精製へブタンで6回洗浄した。重合
は実施例1と同様に行った。
The obtained solid component was washed six times with purified hebutane. Polymerization was carried out in the same manner as in Example 1.

結果は表1に示す。The results are shown in Table 1.

実施例4 実施例1の予備重合の1回目に於て、プロピレンの代わ
りに3−メチル−1−ブテンを、予備重合の2回目に、
3−メチル−1−ブテンの代わりにプロピレンを用いた
以外は実施例1と同様の操作を行った。結果を表1に示
した。
Example 4 In the first prepolymerization of Example 1, 3-methyl-1-butene was used instead of propylene, and in the second prepolymerization,
The same operation as in Example 1 was performed except that propylene was used instead of 3-methyl-1-butene. The results are shown in Table 1.

実施例5 実施例1の予備重合の1回目に於て、プロピレンの代わ
りに3−メチル−1−ブテンを用いた以外は実施例1と
同様の操作を行った。結果を表1に示した。
Example 5 The same operation as in Example 1 was carried out except that 3-methyl-1-butene was used instead of propylene in the first prepolymerization of Example 1. The results are shown in Table 1.

実施例6 実施例1の予備重合に於いて、ヨウ化エチルを用いなか
った以外は実施例1と同様の操作を行った。結果を表1
に示した。
Example 6 In the preliminary polymerization of Example 1, the same operation as in Example 1 was performed except that ethyl iodide was not used. Table 1 shows the results.
It was shown to.

実施例7 〔チタン化合物の調製〕 チタン化合物の調製方法は、特開昭62−104810
号公報の実施例1の方法に準じて行った。すなわち、三
塩化アルミニウム(無水)100gと水酸化マグネシウ
ム29gを振動ミルで250°Cにて3時間粉砕させな
がら反応させた。加熱終了後、窒素気流中で冷却し、固
体生成物(1)を得た。
Example 7 [Preparation of titanium compound] The method for preparing a titanium compound is described in JP-A-62-104810.
This was carried out according to the method of Example 1 of the publication. That is, 100 g of aluminum trichloride (anhydrous) and 29 g of magnesium hydroxide were reacted while being ground in a vibration mill at 250° C. for 3 hours. After the heating was completed, the mixture was cooled in a nitrogen stream to obtain a solid product (1).

ガラスフラスコ中において、精製デカン15mj!、固
体生成物(1)2.5g、オルトチタン酸n−ブチル8
.5g、2−エチル−1−ヘキサノール9.8gを混合
し、攪拌しながら130°Cに1.5時間加熱して熔解
させ均一な溶液とした。その溶液を70°Cとし、P−
)ルイル酸エチル1.8gを加え1時間反応させた後、
攪拌しながら四塩化ケイ素26gを2時間かけて滴下し
固体を析出させ、更に70°C11時間攪拌した。固体
を溶液から分離し精製へキサンにより洗浄し固体生成物
(II)を得た。
In a glass flask, 15mj of purified decane! , 2.5 g of solid product (1), n-butyl orthotitanate 8
.. 5 g of 2-ethyl-1-hexanol and 9.8 g of 2-ethyl-1-hexanol were mixed and heated to 130° C. for 1.5 hours while stirring to melt and form a uniform solution. The solution was brought to 70°C and P-
) After adding 1.8 g of ethyl ruylate and reacting for 1 hour,
While stirring, 26 g of silicon tetrachloride was added dropwise over 2 hours to precipitate a solid, and the mixture was further stirred at 70°C for 11 hours. The solid was separated from the solution and washed with purified hexane to yield solid product (II).

その固体生成物(n)全量に1.2−ジクロルエタン3
0−!および四塩化チタン30tal!とともにフタル
酸ジイソブチル1,5gを加え、攪拌しながら100°
Cで2時間反応させた後、同温度にてデカンテーション
により液相部を除き、再び1,2ジクロル工タン30m
jl!、四塩化チタン30mf。
1,2-dichloroethane 3 to the total amount of the solid product (n)
0-! and titanium tetrachloride 30tal! Add 1.5 g of diisobutyl phthalate and heat to 100° while stirring.
After reacting at C for 2 hours, the liquid phase was removed by decantation at the same temperature, and 30 m
jl! , titanium tetrachloride 30mf.

フタル酸ジイソブチル1.5gを加え、攪拌しながらl
 OO’Cに2時間反応させた後、熱濾過にて固体部を
採取して精製へキサンで洗浄し、25°C減圧下で1時
間乾燥して固体生成物(II)を得た。
Add 1.5 g of diisobutyl phthalate and add 1.5 g of diisobutyl phthalate while stirring.
After reacting with OO'C for 2 hours, the solid portion was collected by hot filtration, washed with purified hexane, and dried at 25°C under reduced pressure for 1 hour to obtain solid product (II).

固体生成物(I)は球形であり、平均粒径は15μmで
、その粒径分布は極めて狭いものであった。
The solid product (I) was spherical, had an average particle size of 15 μm, and had a very narrow particle size distribution.

この固体生成Th (I[I)を固体Ti触媒成分とし
た。
This solid product Th (I[I) was used as a solid Ti catalyst component.

なお、該固体Ti触媒成分の組成分析結果は、Ti3、
0重量%(以後%と記す)、Cj256.2%、117
.6%、Afl、7%、フタル酸ジイソブチル20、.
1%、ブトキシ基1.1%、2−エチルへキシルオキシ
io、2%、p−トルイル酸エチル0.1%であった。
In addition, the compositional analysis results of the solid Ti catalyst component are Ti3,
0% by weight (hereinafter referred to as %), Cj256.2%, 117
.. 6%, Afl, 7%, diisobutyl phthalate 20,.
1%, butoxy group 1.1%, 2-ethylhexyloxy io, 2%, and ethyl p-toluate 0.1%.

以下予備重合及び本重合は実施例1と同様に行った。結
果を表1に示した。
The preliminary polymerization and main polymerization were carried out in the same manner as in Example 1. The results are shown in Table 1.

実施例日 〔チタン化合物の調製〕 チタン化合物の調製方法は、特開昭6111706号公
報の実施例1の方法に準じて行った。すなわち、窒素置
換した5 00mj2内容積のガラス製三ンロフラスコ
(温度計、撹拌機付き)に、50sjl!の精製へブタ
ン、50nlのチタンテトラブトキシト、7.0 gの
無水塩化マグネシウムを加える。
Example Day [Preparation of Titanium Compound] The titanium compound was prepared according to the method of Example 1 of JP-A-6111706. That is, 50 sjl. of purified butane, 50 nl of titanium tetrabutoxide, and 7.0 g of anhydrous magnesium chloride are added.

その後、フラスコを90°Cに昇温し、2時間かけて塩
化マグふシウムを完全に溶解させた。次にフラスコを4
0°Cまで冷却し、メチルハイドロジエンポリシロキサ
ン10鴎pを添加することにより、塩化マグネシウム、
チタンテトラブトキシド錯体を析出させた。これを精製
へブタンで洗浄して、灰白色の固体を得た。
Thereafter, the temperature of the flask was raised to 90°C, and the magfusium chloride was completely dissolved over a period of 2 hours. Next, add 4 flasks.
Magnesium chloride,
A titanium tetrabutoxide complex was precipitated. This was washed with purified butane to obtain an off-white solid.

窒素置換した3 00/!内容積のガラス製三ツロフラ
スコ(温度計、撹拌機付き)に、上記で得た析出固体l
ogを含むヘプタンスラリー50mj!を導入した。次
いで、四塩化ケイ素5.8+/!を含むヘプタン溶液2
0yslを室温で30分かけて加えて、さらに30℃で
45分間反応させた。さらに90°Cで1.5時間反応
させ、反応終了後、精製へブタンで洗浄した。次いで、
フタル酸ジヘプチル1.5+aβを含むヘプタン溶液5
(]+j2を加えて5゜°Cで2時間反応させ、この後
、精製へブタンで洗浄し、さらに四塩化チタン25mj
!を加えて9゜°Cで2時間反応させた。これを精製へ
ブタンで洗浄し、固体Ti触媒成分を得た。固体Ti触
媒成分中のチタン含量は、3.04重量%であった。以
下予備重合及び本重合は実施例1と同様に行った。結果
を表1に示した。
Nitrogen replacement 300/! In a glass Mitsuro flask (with thermometer and stirrer), add l of the precipitated solid obtained above.
50 mj of heptane slurry containing OG! introduced. Next, silicon tetrachloride 5.8+/! Heptane solution containing 2
Oysl was added over 30 minutes at room temperature, and the mixture was further reacted at 30°C for 45 minutes. The reaction was further carried out at 90°C for 1.5 hours, and after the reaction was completed, the reaction mixture was washed with purified hebutane. Then,
Heptane solution containing 1.5 diheptyl phthalate + aβ 5
(]+j2 was added and reacted at 5°C for 2 hours, then washed with purified hebutane, and further added with 25 mj of titanium tetrachloride.
! was added and reacted at 9°C for 2 hours. This was washed with purified butane to obtain a solid Ti catalyst component. The titanium content in the solid Ti catalyst component was 3.04% by weight. The preliminary polymerization and main polymerization were carried out in the same manner as in Example 1. The results are shown in Table 1.

比較例I 実施例1の予備重合に於て、予備重合の2回目を施こさ
なかった以外は実施例1と同様の操作を行った。結果を
表1に示した。
Comparative Example I In the preliminary polymerization of Example 1, the same operation as in Example 1 was performed except that the second preliminary polymerization was not performed. The results are shown in Table 1.

比較例2 実施例1の予備重合の1回目に於て、プロピレンの代わ
りに3−メチル−1−ブテンを用い、且つ、予備重合の
2回目を施こさなかった以外は実施例1と同様の操作を
行った。結果を表1に示した。
Comparative Example 2 Same as Example 1 except that 3-methyl-1-butene was used instead of propylene in the first prepolymerization of Example 1, and the second prepolymerization was not performed. performed the operation. The results are shown in Table 1.

比較例3 実施例1の予備重合の2回目に於て、3−メチルブテン
−1の代わりにプロピレン−1を用いた以外は実施例1
と同様の操作を行った。結果を表1に示した。
Comparative Example 3 Example 1 except that propylene-1 was used instead of 3-methylbutene-1 in the second prepolymerization of Example 1.
The same operation was performed. The results are shown in Table 1.

比較例4 実施例1の予備重合の2回目に於て、6−ドリエトキシ
シリルー2−ノルボルネンの代わりにジフェニルジェト
キシシランを用いた以外は実施例1と同様の操作を行っ
た。結果を表1に示した。
Comparative Example 4 The same operation as in Example 1 was performed except that in the second prepolymerization of Example 1, diphenyljethoxysilane was used instead of 6-driethoxysilyl-2-norbornene. The results are shown in Table 1.

実施例9〜12 実施例1の予備重合の2同口に於て、3−メチル−1−
ブテンの代わりに表2に示した不飽和化合物を用いた以
外は実施例1と同様の操作を行った。結果を表2に示し
た。
Examples 9 to 12 At the same stage of the prepolymerization in Example 1, 3-methyl-1-
The same operation as in Example 1 was performed except that the unsaturated compounds shown in Table 2 were used instead of butene. The results are shown in Table 2.

実施例13〜15 実施例1の予備重合に於て、予備重合の2回目で6−ド
リエトキシシリルー2−ノルボルネンの代わりに、フェ
ニルトリエトキシシラン、メチルトリエトキシシラン、
メチルフエニルジエトキシシランを用いた以外は実施例
1と同様の操作を行った。結果を表3に示した。
Examples 13 to 15 In the prepolymerization of Example 1, phenyltriethoxysilane, methyltriethoxysilane,
The same operation as in Example 1 was performed except that methylphenyldiethoxysilane was used. The results are shown in Table 3.

手続補正書 平成2年11月22日Procedural amendment November 22, 1990

Claims (1)

【特許請求の範囲】[Claims] (1)下記成分A、B及びC A、チタン化合物 B、有機アルミニウム化合物 C、一般式R_nSi(OR′)_4_−_n[但し、
RおよびR′は同種又は異種の炭化水素基であり、nは
1〜3の整数である。]で示される有機ケイ素化合物 の存在下にオレフィンの予備重合を多段に行ない、各予
備重合段階で異なる有機ケイ素化合物を用い、且つ各予
備重合段階の少くとも1段階において下記式 ▲数式、化学式、表等があります▼ [但し、R^1は水素原子又はアルキル基であり、R^
2及びR^3は同種又は異種のアルキル基である。] 又は下記式 CH_2=CH−R^4 [但し、R^4は脂環式炭化水素基又は芳香族炭化水素
基である。] で示される不飽和化合物を重合することを特徴とするオ
レフィンの予備重合方法。
(1) The following components A, B and C A, titanium compound B, organoaluminum compound C, general formula R_nSi(OR')_4_-_n [However,
R and R' are the same or different hydrocarbon groups, and n is an integer of 1 to 3. Prepolymerization of an olefin is carried out in multiple stages in the presence of an organosilicon compound represented by the following formula ▲ Numerical formula, chemical formula, There are tables, etc. ▼ [However, R^1 is a hydrogen atom or an alkyl group, and R^
2 and R^3 are the same or different alkyl groups. ] or the following formula CH_2=CH-R^4 [However, R^4 is an alicyclic hydrocarbon group or an aromatic hydrocarbon group. ] A method for prepolymerizing an olefin, which comprises polymerizing an unsaturated compound represented by the following.
JP2215147A 1990-08-16 1990-08-16 Olefin prepolymerization method Expired - Lifetime JP2543238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215147A JP2543238B2 (en) 1990-08-16 1990-08-16 Olefin prepolymerization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215147A JP2543238B2 (en) 1990-08-16 1990-08-16 Olefin prepolymerization method

Publications (2)

Publication Number Publication Date
JPH0496907A true JPH0496907A (en) 1992-03-30
JP2543238B2 JP2543238B2 (en) 1996-10-16

Family

ID=16667457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215147A Expired - Lifetime JP2543238B2 (en) 1990-08-16 1990-08-16 Olefin prepolymerization method

Country Status (1)

Country Link
JP (1) JP2543238B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776979B2 (en) 2007-01-26 2010-08-17 Lg Chem, Ltd. Prepolymerized catalyst for olefin polymerization, process for polymerizing olefin by using the catalyst and polyolefin produced by the process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101021758B1 (en) * 2007-10-02 2011-03-15 주식회사 엘지화학 Process For Producing High Clarity Polypropylene Including Prepolymerization Step

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217015A (en) * 1988-02-25 1989-08-30 Mitsubishi Petrochem Co Ltd Production of propylene polymer
JPH01217014A (en) * 1988-02-25 1989-08-30 Mitsubishi Petrochem Co Ltd Production of propylene polymer
JPH02191608A (en) * 1988-09-14 1990-07-27 Mitsui Petrochem Ind Ltd Production of catalytic component for polymerization of olefin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217015A (en) * 1988-02-25 1989-08-30 Mitsubishi Petrochem Co Ltd Production of propylene polymer
JPH01217014A (en) * 1988-02-25 1989-08-30 Mitsubishi Petrochem Co Ltd Production of propylene polymer
JPH02191608A (en) * 1988-09-14 1990-07-27 Mitsui Petrochem Ind Ltd Production of catalytic component for polymerization of olefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776979B2 (en) 2007-01-26 2010-08-17 Lg Chem, Ltd. Prepolymerized catalyst for olefin polymerization, process for polymerizing olefin by using the catalyst and polyolefin produced by the process

Also Published As

Publication number Publication date
JP2543238B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JP2999000B2 (en) Soluble catalyst composition for C2-C10 alkene-1 polymer
US5459117A (en) Doubly-conformationally locked, stereorigid catalysts for the preparation of tactiospecific polymers
JP3255173B2 (en) Catalyst system for production of amide transition metal compounds and isotactic polypropylene
JP3418440B2 (en) Atactic polypropylene
ES2207821T3 (en) SUPPORTED CATALYSTING SYSTEM, PROCEDURE FOR OBTAINING IT, AND ITS USE FOR OLEFIN POLYMERIZATION.
US7119154B2 (en) Bis (salicylaldiminato) titanium complex catalysts, highly syndiotactic polypropylene by a chain-end control mechanism, block copolymer containing this
JPH05202152A (en) Production of polypropylene molding material
JPH05507958A (en) Group 4B, 5B and 6B metal hydrocarbyl oxides and alumoxanes for olefin polymerization
JP2004533467A (en) Catalyst system for olefin polymerization
BRPI0618237A2 (en) process for the production of ultra high molecular weight polymers using special bridged metallocene catalysts
JPH08269136A (en) Atactic propylene-ethylene copolymer and its production
JPH01101306A (en) Production of propen homopolymer or copolymer by ziegler-natta catalyst
JPH0496907A (en) Prepolymerization of olefin
JP2691023B2 (en) Ultra high molecular weight polypropylene and method for producing the same
JPS63168408A (en) Preparation of polyolefin
JP3752090B2 (en) Polypropylene production method
US6469117B1 (en) Dialkenyl-tricyclic-nonaromatic/olefin polymers
JP3552801B2 (en) Polypropylene resin composition
JPH02170803A (en) Production of polyolefin
JPH02170802A (en) Preliminary polymerization of olefin
JP2537568B2 (en) Prepolymerization method for propylene
JP2594381B2 (en) Method for producing polypropylene
JP3492455B2 (en) Olefin polymerization catalyst and method for producing olefin polymer using the same
JP2954322B2 (en) Production method of α-olefin polymer
JP3294112B2 (en) Olefin polymerization catalyst and method for producing olefin polymer using the same