JPH049626B2 - - Google Patents

Info

Publication number
JPH049626B2
JPH049626B2 JP58199720A JP19972083A JPH049626B2 JP H049626 B2 JPH049626 B2 JP H049626B2 JP 58199720 A JP58199720 A JP 58199720A JP 19972083 A JP19972083 A JP 19972083A JP H049626 B2 JPH049626 B2 JP H049626B2
Authority
JP
Japan
Prior art keywords
wear
particles
steel
molten
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58199720A
Other languages
Japanese (ja)
Other versions
JPS6092061A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19972083A priority Critical patent/JPS6092061A/en
Publication of JPS6092061A publication Critical patent/JPS6092061A/en
Publication of JPH049626B2 publication Critical patent/JPH049626B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/08Casting in, on, or around objects which form part of the product for building-up linings or coverings, e.g. of anti-frictional metal

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は靭性に優れた鋼基材の表面に耐摩耗性
表層が一体化された耐摩耗性と靭性に優れた複合
材の製造法に関するものである。 (従来の技術) 一般的に耐摩耗性と靭性とは相反する性質であ
るため、両特性に優れた材質は未だ開発されてお
らず、耐摩耗性に優れている材質例えば高クロム
白鋳鉄は靭性が著しく劣つている。ところが、耐
摩耗性とともに靭性をも要求される部品、特に、
他の部品と摺動または擦動する摩耗面のみは耐摩
耗性が要求されるベース部分は靭性を要求される
部品は極めて多い。そこで、鋳包み法や高圧浸透
法或いは接着法により靭性に優れたベース部分を
靭性に優れた金属とし表層のみは耐摩耗性材料で
形成したものが多く開発されてきたが、使用でき
る材質や形状に制約が多いので満足できるものと
はいいがたいものであつた。 このような問題を解決するための発明として
は、下型のキヤビテイ面に耐摩耗性粒子を層状に
セツトしてこれをキヤビテイ面に加えられる吸引
圧で吸引しつつ金属溶湯を注湯して耐摩耗性粒子
相互間に該金属溶湯を浸透させるようにした複合
材の製造法が特開昭49−121735号公報により先に
提案されている。 (発明が解決しようとする課題) しかしながら、前記公報に記載したような方法
では耐摩耗性粒子相互間への金属溶湯の浸透性が
悪くて耐摩耗性粒子と金属溶湯の接着強度がでな
いなど多くの問題が残され、金属基材の表面に耐
摩耗性粒子が強固に一体化されない場合が多発し
ていた。 (課題を解決するための手段) 本発明は前記のような課題を解決した耐摩耗性
と靭性に優れた複合材の製造法を提供しようとす
るもので、上下一対の鋳型のうち下型のキヤビテ
イ面に耐摩耗性粒子と注湯される溶湯により溶融
されるNi系の金属粒子をそれぞれ層状にセツト
してこれを該キヤビテイ面に加えられる吸引圧に
より吸引させたのち該鋳型内に鋼の溶湯を注湯し
てその溶湯熱により前記金属粒子を溶融させると
ともにこの溶融金属と前記鋼溶湯とを前記吸引圧
によりこの耐摩耗性粒子相互間に混合浸透させて
靭性に優れた鋼基材の表面に前記Ni系の金属と
鋼との合金をもつて前記耐摩耗性粒子が強固に一
体化された耐摩耗性表層を有する複合材を鋳造す
ることを特徴とする耐摩耗性と靭性に優れた複合
材の製造法を第1の発明とし、上下一対の鋳型の
うち下型のキヤビテイ面に耐摩耗性粒子と注湯さ
れる溶湯により溶融されるNi系の金属粒子との
混合層を層状にセツトしてこれを該キヤビテイ面
に加えられる吸引圧により吸引させたのち該鋳型
内に鋼の溶湯を注湯してその溶湯熱により前記金
属粒子を溶融させるとともにこの溶融されたNi
系の金属と前記鋼溶湯とを前記吸引圧によりこの
耐摩耗性粒子相互間に混合浸透させて靭性に優れ
た鋼基材の表面に前記Ni系の金属と鋼との合金
をもつて前記耐摩耗性粒子が強固に一体化された
耐摩耗性表層を有する複合材を鋳造することを特
徴とする耐摩耗性と靭性に優れた複合材の製造法
を第2の発明とするものである。 本発明におてい上下一対の鋳型のうち下型のキ
ヤビテイ面に層状にセツトしておく耐摩耗性粒子
としては耐摩耗性に優れた金属粒子やセラミツク
ス粒子を単独で或いは両者を混合して使用するも
ので、先ず、キヤビテイ面に吸引圧が加えられる
ように真空ポンプ等の減圧器と接続された吸引器
1が埋設された第1図に示すような下型2a或い
は第3図に示すような減圧造型法に用いられる下
型2cのキヤビテイ面に所要の厚さとなるよう耐
摩耗性粒子を層状にセツトして耐摩耗性粒子より
なる層3を形成する。この場合、後に注湯される
鋼溶湯の溶湯熱で容易に溶融されるうえに鋼の強
度を増すNi系の金属粒子4を第1図、第3図に
示すように耐摩耗性粒子よりなる層3の表面に薄
層状にセツトしておく。なお、このようなNi系
の金属粒子4は前記のように耐摩耗性粒子よりな
る層3の表面に層状に形成するのではなく、第2
図に示すように、下型2bのキヤビテイ面に耐摩
耗性粒子とNi系の金属粒子4との混合層として
所要の厚さとなるよう層状にセツトしておいても
よい。次いで、前記した層の表面に吸引圧が有効
に作用するよう必要に応じプラスチツクスフイル
ム5を被装し、該下型2a,2b,2cの開口に
は吸引作用が働くようにした上型6a,6b,6
cを型合せし、上下一対の鋳型内を減圧してキヤ
ビテイ面に吸引圧を加えて耐摩耗性粒子よりなる
層3や耐摩耗性粒子とNi系の金属粒子4との混
合層をキヤビテイ面に吸引保持させ、この状態で
湯口7から鋼溶湯を注湯してプラスチツクスフイ
ルム5を溶融気化させたうえ吸引圧が加えられて
いる前記層に接触させ、自溶性のあるNi系の金
属粒子4を鋼溶湯とともに該鋼溶湯や凝固潜熱に
より溶融させてこれを耐摩耗性粒子相互間に混合
浸透させる。そして、これらが冷却すると鋼溶湯
が硬化して靭性に優れた鋼基材となるとともに耐
摩耗性粒子を相互間に浸透する溶融したNi系の
金属と鋼溶湯との合金で強固に一体化し、第4図
または第5図に倍率10倍の顕微鏡写真で示す金属
組織のような、靭性に優れた鋼基材の表面に、該
鋼基材に対し的確に一体化され且つ鋼基材よりも
強度のある鋼とNi系の金属との合金により耐摩
耗性粒子が強固に一体化された耐摩耗性表層を有
する複合材が得られることとなる。 実施例 1 第1図に示す鋳型を用いて粒径2000μmから
3000μmの27%クロム鋳鉄粒子からなる層を下型
のキヤビテイ面にセツトしたのち、粒径約50μm
の17%Cr、4%Fe、4%Si、3.5%B、1.0%C、
残部NiのNi系の合金粒子からなる薄層をセツト
したのち高マンガン鋼の溶湯を注湯して鋳造品を
造り、これに1000℃から強制空冷の熱処理を行つ
た。これをアルミナ粒度#40のエンドレス研摩ベ
ルトで荷重218g/cm2、ベルト周速8m/secの条
件で、高マンガン鋼、27%クロム鋳鉄および実施
例試料の耐摩耗性の比較調査を行つた結果は表1
の通りであつた。
(Field of Industrial Application) The present invention relates to a method for manufacturing a composite material having excellent wear resistance and toughness, in which a wear-resistant surface layer is integrated on the surface of a steel base material having excellent toughness. (Prior art) In general, wear resistance and toughness are contradictory properties, so a material with excellent both properties has not yet been developed. Materials with excellent wear resistance, such as high chromium white cast iron, Toughness is significantly inferior. However, parts that require not only wear resistance but also toughness, especially
There are many parts in which only the wear surface that slides or rubs against other parts is required to have wear resistance, while the base part is required to have toughness. Therefore, many products have been developed in which the base part is made of a metal with excellent toughness and the surface layer is made of a wear-resistant material using the cast-in method, high-pressure infiltration method, or adhesive method. However, it was difficult to say that the results were satisfactory as there were many restrictions. In order to solve these problems, an invention has been developed in which wear-resistant particles are set in a layer on the cavity surface of the lower mold, and molten metal is poured while the particles are sucked by suction pressure applied to the cavity surface. A method for producing a composite material in which the molten metal is allowed to penetrate between abrasive particles was previously proposed in Japanese Patent Application Laid-open No. 121735/1983. (Problems to be Solved by the Invention) However, in the method described in the above publication, there are many problems such as poor penetration of the molten metal between the wear-resistant particles and a lack of adhesive strength between the wear-resistant particles and the molten metal. However, this problem remained, and there were many cases where the wear-resistant particles were not firmly integrated onto the surface of the metal base material. (Means for Solving the Problems) The present invention aims to provide a method for manufacturing a composite material with excellent wear resistance and toughness that solves the above-mentioned problems. Wear-resistant particles and Ni-based metal particles melted by the poured molten metal are set in layers on the cavity surface, and these are sucked by the suction pressure applied to the cavity surface, and then steel is placed in the mold. Molten metal is poured and the metal particles are melted by the heat of the molten metal, and the molten metal and the steel molten metal are mixed and penetrated between the wear-resistant particles by the suction pressure to form a steel base material with excellent toughness. A composite material with excellent wear resistance and toughness characterized by casting a composite material having a wear-resistant surface layer in which the wear-resistant particles are firmly integrated with an alloy of the Ni-based metal and steel on the surface. The first invention is a method for manufacturing a composite material, in which a mixed layer of wear-resistant particles and Ni-based metal particles melted by poured molten metal is layered on the cavity surface of the lower mold of a pair of upper and lower molds. After setting the mold to the mold and drawing it in by suction pressure applied to the cavity surface, molten steel is poured into the mold, and the metal particles are melted by the heat of the molten metal, and the molten Ni
The Ni-based metal and the molten steel are mixed and infiltrated between the wear-resistant particles by the suction pressure, and the alloy of the Ni-based metal and steel is applied to the surface of the steel base material having excellent toughness. The second invention is a method for manufacturing a composite material having excellent wear resistance and toughness, which is characterized by casting a composite material having a wear-resistant surface layer in which abrasive particles are firmly integrated. In the present invention, as the wear-resistant particles set in a layer on the cavity surface of the lower mold of a pair of upper and lower molds, metal particles or ceramic particles with excellent wear resistance are used alone or in a mixture of both. First, a lower mold 2a as shown in FIG. 1 or as shown in FIG. A layer 3 made of wear-resistant particles is formed by setting wear-resistant particles in a layered manner to a desired thickness on the cavity surface of a lower mold 2c used in a vacuum molding method. In this case, the Ni-based metal particles 4, which are easily melted by the heat of the molten steel that is poured later and which increases the strength of the steel, are made of wear-resistant particles as shown in Figures 1 and 3. Set it in a thin layer on the surface of layer 3. Note that such Ni-based metal particles 4 are not formed in a layered manner on the surface of the layer 3 made of wear-resistant particles as described above, but in the second layer.
As shown in the figure, a mixed layer of wear-resistant particles and Ni-based metal particles 4 may be set on the cavity surface of the lower mold 2b in a layered manner to have a desired thickness. Next, a plastic film 5 is covered as necessary so that suction pressure can effectively act on the surface of the above-described layer, and an upper mold 6a is formed so that the suction action can be applied to the openings of the lower molds 2a, 2b, and 2c. ,6b,6
c, and by reducing the pressure inside the upper and lower molds and applying suction pressure to the cavity surface, layer 3 made of wear-resistant particles and a mixed layer of wear-resistant particles and Ni-based metal particles 4 are formed on the cavity surface. In this state, molten steel is poured from the sprue 7 to melt and vaporize the plastic film 5, and then brought into contact with the layer to which suction pressure is applied, to form self-soluble Ni-based metal particles. 4 is melted together with the molten steel by the molten steel and latent heat of solidification, and mixed and penetrated between the wear-resistant particles. When these are cooled, the molten steel hardens and becomes a steel base material with excellent toughness, and the wear-resistant particles are firmly integrated by an alloy of the molten Ni-based metal and the molten steel, which penetrate into each other. The metal structure shown in the micrograph at 10x magnification in Figure 4 or Figure 5 shows that the surface of a steel base material with excellent toughness is precisely integrated with the steel base material, and that it is larger than the steel base material. The alloy of strong steel and Ni-based metal results in a composite material having a wear-resistant surface layer in which wear-resistant particles are firmly integrated. Example 1 Using the mold shown in Figure 1, particles from 2000 μm in diameter
After setting a layer of 27% chromium cast iron particles of 3000μm on the cavity surface of the lower mold, the particle size is approximately 50μm.
17%Cr, 4%Fe, 4%Si, 3.5%B, 1.0%C,
After setting a thin layer of Ni-based alloy particles with the balance being Ni, molten high manganese steel was poured into the casting to create a cast product, which was then heat treated with forced air cooling from 1000°C. The results were obtained by comparing the wear resistance of high manganese steel, 27% chromium cast iron, and example samples using an endless abrasive belt with an alumina grain size of #40 at a load of 218 g/cm 2 and a circumferential belt speed of 8 m/sec. is table 1
It was hot on the street.

【表】 実施例 2 第2図に示す鋳型を用いて粒径約50μmのアル
ミナ粒子と、粒径約50μmの17%Cr、4%Fe、4
%Si、3.5%B、1.0%C、残部NiのNi系の合金粒
子からなる混合層を下型のキヤビテイ面にセツト
したのち該鋳型内に高マンガン鋼の溶湯を注湯
し、減圧造型法により鋳造品をつくつた。ノズル
径6.45mm、投射圧5Kg/cm2、投射角13゜で5号珪
砂を投射材として用いたエヤーブラストにより高
マンガン鋼、27%クロム鋳鉄および実施例の試料
の耐摩耗性の比較調査をしたところ表2の通りで
あつた。
[Table] Example 2 Using the mold shown in Figure 2, alumina particles with a particle size of about 50 μm, 17% Cr, 4% Fe, 4
After setting a mixed layer of Ni-based alloy particles of %Si, 3.5%B, 1.0%C, and the balance Ni on the cavity surface of the lower mold, molten high manganese steel was poured into the mold, and the reduced pressure molding method was used. A cast product was made using the following method. Comparative investigation of the wear resistance of high manganese steel, 27% chromium cast iron, and the example samples was conducted by air blasting using No. 5 silica sand as the blasting material with a nozzle diameter of 6.45 mm, blasting pressure of 5 kg/ cm 2, and blasting angle of 13°. The results were as shown in Table 2.

【表】 (発明の効果) 本発明は前記説明から明らかなように、従来耐
摩耗性と靭性の両性質に優れた材質を得ることは
困難とされていて製造方法に起因する欠点のない
ものが得られていなかつた耐摩耗性複合材を比較
的簡単に鋳造できるようにしたもので、しかも、
耐摩耗性粒子同志を鋼溶湯のみで一体化するので
はなく、耐摩耗性粒子とNi系の金属粒子との二
重層の表面または耐摩耗性粒子とNi系の金属粒
子との混合層を設けた後に鋼溶湯を注湯して該鋼
溶湯とこれにより溶融されたNi系の溶融金属と
が浸透混合した合金が耐摩耗性粒子の間に介入さ
れて耐摩耗性粒子同志をこの合金で一体化してい
るから、耐摩耗性粒子相互間の接着性と鋼基材と
の一体性が極めてよく優れた耐摩耗性表層が簡単
に得られる。すなわち、Ni系の金属と鋼との合
金は鋼のの特質を残して強度を増すのみならず溶
融時には鋼溶湯よりも耐摩耗性粒子相互間への浸
透性がよく、吸引圧をキヤビテイ面に加えながら
鋳造されると耐摩耗性粒子相互間の間隙に隙間な
く浸透するとともにベースとなる鋼と的確に一体
化し、また、耐摩耗性粒子等が鋳造鋼中へ遊離混
入することもないなど多くの利点があり、用途の
広い耐摩耗性と靭性に優れた複合材の製造法とし
て業界の発展に寄与するところ極めて大なもので
ある。
[Table] (Effects of the Invention) As is clear from the above description, the present invention is a material that does not have the disadvantages caused by the manufacturing method, which has conventionally been difficult to obtain materials with excellent wear resistance and toughness. This makes it possible to relatively easily cast a wear-resistant composite material that has not yet been obtained.
Rather than integrating wear-resistant particles with only molten steel, we provide a double layer surface of wear-resistant particles and Ni-based metal particles or a mixed layer of wear-resistant particles and Ni-based metal particles. After that, molten steel is poured, and an alloy in which the molten steel and Ni-based molten metal penetrate and mix is interposed between the wear-resistant particles, and the wear-resistant particles are united with this alloy. , the adhesion between the wear-resistant particles and the integrity with the steel base material are extremely good, making it easy to obtain an excellent wear-resistant surface layer. In other words, alloys of Ni-based metals and steel not only increase strength while retaining the characteristics of steel, but also have better permeability between wear-resistant particles when melted than molten steel, making it possible to apply suction pressure to the cavity surface. When cast while adding, the wear-resistant particles penetrate into the gaps between each other without any gaps and are accurately integrated with the base steel, and the wear-resistant particles do not mix loosely into the cast steel. This method has the following advantages and will greatly contribute to the development of the industry as a manufacturing method for composite materials with excellent wear resistance and toughness that have a wide range of uses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1に使用する鋳型の一
部切欠正面図、第2図は本発明の実施例2に使用
する鋳型の一部切欠正面図、第3図は本発明に用
いる鋳型の他の実施例を示す一部切欠正面図、第
4図は実施例1によつて鋳造された複合材の金属
組織の顕微鏡写真、第5図は実施例2によつて鋳
造された複合材の金属組織の顕微鏡写真である。
Fig. 1 is a partially cutaway front view of a mold used in Example 1 of the present invention, Fig. 2 is a partially cutaway front view of a mold used in Example 2 of the present invention, and Fig. 3 is a partially cutaway front view of a mold used in Example 2 of the present invention. A partially cutaway front view showing another example of the mold, FIG. 4 is a micrograph of the metal structure of the composite material cast in Example 1, and FIG. 5 is a photomicrograph of the composite material cast in Example 2. This is a microscopic photograph of the metallographic structure of the material.

Claims (1)

【特許請求の範囲】 1 上下一対の鋳型のうち下型のキヤビテイ面に
耐摩耗性粒子と注湯される溶湯により溶融される
Ni系の金属粒子をそれぞれ層状にセツトしてこ
れを該キヤビテイ面に加えられる吸引圧により吸
引させたのち該鋳型内に鋼の溶湯を注湯してその
溶湯熱により前記金属粒子を溶融させるとともに
この溶融されたNi系の金属と前記鋼溶湯とを前
記吸引圧によりこの耐摩耗性粒子相互間に混合浸
透させて靭性に優れた鋼基材の表面に前記Ni系
の金属と鋼との合金をもつて前記耐摩耗性粒子が
強固に一体化された耐摩耗性表層を有する複合材
を鋳造することを特徴とする耐摩耗性と靭性に優
れた複合材の製造法。 2 上下一対の鋳型のうち下型のキヤビテイ面に
耐摩耗性粒子と注湯される溶湯により溶融される
Ni系の金属粒子との混合層を層状にセツトして
これを該キヤビテイ面に加えられる吸引圧により
吸引させたのち該鋳型内に鋼の溶湯を注湯してそ
の溶湯熱により前記金属粒子を溶融させるととも
にこの溶融されたNi系の金属と前記鋼溶湯とを
前記吸引圧によりこの耐摩耗性粒子相互間に混合
浸透させて靭性に優れた鋼基材の表面に前記Ni
系の金属と鋼との合金をもつて前記耐摩耗性粒子
が強固に一体化された耐摩耗性表層を有する複合
材を鋳造することを特徴とする耐摩耗性と靭性に
優れた複合材の製造法。
[Scope of Claims] 1. Wear-resistant particles are melted by pouring molten metal into the cavity surface of the lower mold of a pair of upper and lower molds.
Ni-based metal particles are set in layers and are sucked by suction pressure applied to the cavity surface, then molten steel is poured into the mold and the metal particles are melted by the heat of the molten metal. The molten Ni-based metal and the molten steel are mixed and infiltrated between the wear-resistant particles by the suction pressure, and the alloy of the Ni-based metal and steel is applied to the surface of the steel base material having excellent toughness. 1. A method for producing a composite material having excellent wear resistance and toughness, which comprises casting a composite material having a wear-resistant surface layer in which the wear-resistant particles are firmly integrated. 2 The wear-resistant particles are melted by the molten metal poured into the cavity surface of the lower mold of a pair of upper and lower molds.
A mixed layer with Ni-based metal particles is set in a layered manner, and this is suctioned by suction pressure applied to the cavity surface, and then molten steel is poured into the mold, and the metal particles are heated by the heat of the molten metal. At the same time, the molten Ni-based metal and the molten steel are mixed and infiltrated between the wear-resistant particles by the suction pressure, so that the Ni is deposited on the surface of the steel base material having excellent toughness.
A composite material having excellent wear resistance and toughness is produced by casting a composite material having a wear-resistant surface layer in which the wear-resistant particles are firmly integrated with an alloy of metals of the same type and steel. Manufacturing method.
JP19972083A 1983-10-25 1983-10-25 Productiin of composite material having excellent wear resistance and toughness Granted JPS6092061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19972083A JPS6092061A (en) 1983-10-25 1983-10-25 Productiin of composite material having excellent wear resistance and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19972083A JPS6092061A (en) 1983-10-25 1983-10-25 Productiin of composite material having excellent wear resistance and toughness

Publications (2)

Publication Number Publication Date
JPS6092061A JPS6092061A (en) 1985-05-23
JPH049626B2 true JPH049626B2 (en) 1992-02-20

Family

ID=16412487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19972083A Granted JPS6092061A (en) 1983-10-25 1983-10-25 Productiin of composite material having excellent wear resistance and toughness

Country Status (1)

Country Link
JP (1) JPS6092061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002115A1 (en) 2010-06-28 2012-01-05 オリンパスメディカルシステムズ株式会社 Endoscope device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286661A (en) * 1986-06-04 1987-12-12 Kawasaki Heavy Ind Ltd Enclosed casting method for high hard grain
US4947924A (en) * 1987-04-10 1990-08-14 Sumitomo Metal Industries, Ltd. Metal-ceramic composite and method of producing the same
JP5550084B2 (en) * 2013-06-13 2014-07-16 Tpr株式会社 Cylindrical sliding member and manufacturing method thereof
CN103341614B (en) * 2013-06-27 2016-03-02 重庆罗曼耐磨新材料股份有限公司 The preparation method of easy ceramet composite wear-resistant part
CN103752764A (en) * 2013-12-13 2014-04-30 柳州市柳港激光科技有限公司 Composite shovel having wear resistance metal and ceramic hybrid surface layer
KR102483221B1 (en) * 2018-10-10 2022-12-30 성보공업주식회사 Tooth for bucket of excavator and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121735A (en) * 1973-03-24 1974-11-21
JPS6064749A (en) * 1983-09-20 1985-04-13 Riken Corp Production of casting having wear resistant surface layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121735A (en) * 1973-03-24 1974-11-21
JPS6064749A (en) * 1983-09-20 1985-04-13 Riken Corp Production of casting having wear resistant surface layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002115A1 (en) 2010-06-28 2012-01-05 オリンパスメディカルシステムズ株式会社 Endoscope device

Also Published As

Publication number Publication date
JPS6092061A (en) 1985-05-23

Similar Documents

Publication Publication Date Title
US4596746A (en) Powder sheet for sintering
US5299620A (en) Metal casting surface modification by powder impregnation
US5052464A (en) Method of casting a member having an improved surface layer
JPH05261515A (en) Method for impregnating metal product with hard wear-resistant surface and product produced thereby
JPH049626B2 (en)
US4646811A (en) Process for forming a high alloy layer on a casting
JP3240023B2 (en) Manufacturing method of durable air-permeable type
KR20090095652A (en) Method of reinforcing low melting temperature cast metal parts
US3792726A (en) Method for strenghtnening a metal surface
US3489202A (en) Production of castings
JPS60206557A (en) Joining method of cast iron and cermet
JP2003220462A (en) Abrasion-resistant composite and its manufacturing method
JP3828600B2 (en) Method for surface modification of cast products
JPS58179535A (en) Casting mold for vacuum casting
CN85102053A (en) Vacuum sealed molding part and component metal surface composite alloy metallization processes
JPH02122005A (en) Manufacture of plural-layers aluminum alloy material
JP2004225145A (en) Method for manufacturing ceramic-metal matrix composite
JPS6390350A (en) Production of composite mold by metal and inorganic materials
JPS609089B2 (en) Manufacturing method of fine particle dispersed metal composite material
JPH02268964A (en) Wear resisting pump parts and its manufacture
JPS61137665A (en) Pressure casting method of metallic mold for molding
JPH02280944A (en) And core for pressure casting and manufacture thereof
JPS6379923A (en) Ceramic-metal composite material and its production
JPS6046237A (en) Ceramics-metal composite material and manufacture thereof
JPS59209470A (en) Production of wear-resistant member