JPH049596B2 - - Google Patents

Info

Publication number
JPH049596B2
JPH049596B2 JP8777988A JP8777988A JPH049596B2 JP H049596 B2 JPH049596 B2 JP H049596B2 JP 8777988 A JP8777988 A JP 8777988A JP 8777988 A JP8777988 A JP 8777988A JP H049596 B2 JPH049596 B2 JP H049596B2
Authority
JP
Japan
Prior art keywords
weir
groove
sample
density
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8777988A
Other languages
Japanese (ja)
Other versions
JPH01258780A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8777988A priority Critical patent/JPH01258780A/en
Publication of JPH01258780A publication Critical patent/JPH01258780A/en
Publication of JPH049596B2 publication Critical patent/JPH049596B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、密度が異なる2種以上の粉粒体の混
合体から密度別にその粉流体を選別する装置に関
するものである。 <従来の技術> 火力発電所から排出される石炭灰の再利用に際
して未燃炭分の分離除去、その他多くの分野に於
いて、密度が異なる物質同志の混合物からそれら
を分別する必要性がある事は多い。 従来からこの種分別装置としては、浮遊選鉱装
置や水流を併用する湿式揺動テーブルがある。 その他乾式の装置としては、空気等のガス流と
振動を併用する形態のものもある。 <発明の解決しようとする課題> 上記従来技術として示した浮遊選鉱装置や湿式
揺動テーブルは、いずれも湿式である為に、水溶
性の物質が対象あるいは濡らしてはならない物質
が対象の場合には用いられないし、又分別採取し
た物質のその後の利用状態によつては煩雑な乾燥
処理が必要であるという問題がある。又一方乾式
装置は選別対象物がある程度大きく、相当の密度
差がある場合にはよいが、対象物が細かくなると
装置が大規模となる割りにはその選別効率が低い
という問題がある。 本発明は、この様な従来技術の諸欠点を解消
し、乾式下に於いて対象物が微細な場合にも高効
率下に選別が出来る装置を提供する事を目的とす
るものである。 <課題を解決するための手段> 上記本発明の目的は、次の如き手段を採用する
事により達成出来る。即ち、矩形の板状体から成
り、その右辺側が左辺側よりも高くなる様に傾斜
し、更にその後辺側が前辺側よりも高くなる様に
傾斜した揺動テーブルの後辺部の中途から右下角
部方向へ向け所要高さの堰を渡設し、同堰よりも
左側には略同間隔下にその高さが堰よりも小であ
る複数のリツフルを略平行に横設し、上記揺動テ
ーブルを横方向に微小周期振動する如く構成した
ことを特徴とする粉粒体の乾式密度別選別装置で
ある。 なおこの場合に於いて左、右、前、後と称して
いるのは、本発明の装置をある一定方向から見た
場合についてのものであつて、その一定方向を以
下の説明では第1図をその手前から見るものと
し、該第1図の左、右部をそれぞれ装置の左、右
部、下、上部をそれぞれ装置の前、後部とするも
のとする。 <作用> 本発明装置では、揺動テーブルを横方向に微小
周期振動させた状態下で、その左辺側の上部即ち
後方側から、異比重物の混合粉粒体を供給する
と、2本のリツフル間の溝の長手方向即ち左右方
向では、一般の揺動テーブルの原理と同じく、密
度差及び粒径の大小により、大密度の粉粒体ほど
右側へ移動し、又密度が同じならば小径体ほど右
側へ移動する。そして同一溝内の粉粒体は左側の
物も右側の物も揺動テーブルが前辺側が低くなつ
ている事と、右側が堰によつて止められ、それ以
上右進する事が出来ないが為に、リツフルを越え
下段の溝へ移行し、該下段の溝内で更に密度別、
粉径別に左、右に分けられるという事を繰返し、
最下段のリツフルを越える時点では左側には小密
度大径体が偏在し、そこから右側へ移行するに従
つて順次密度は大きく粒径は小さな粉粒体となる
様な分布を示すので、最下段のリツフルの下方に
複数個の採取容器を設置しそれぞれ別々に採取す
れば、密度別及び粒径別の粉粒体を得る事が出来
るのである。 <実施例> 以下本発明の実施例を図面を参酌し乍ら説明す
る。 第1図は本発明装置の揺動テーブル1に用いる
矩形板状体の平面図で、この実施例にあつては、
縦300mm、横500mmの板体を用い、その上面には、
後辺の左端から右へ200mm寄つた部所から前辺右
端へ斜め方向に高さ20mmの堰2を渡設し、同堰2
の左側に、第2図に寸法入り(単位mm)で示す様
なリツフル3を複数本横設した。本装置ではこの
様な揺動テーブル1を、水平面に対して左右方向
に右上がりに角度αを、又前後方向に後上がりに
角度βを持つ様に傾斜させ、それに振動装置を設
けたものであり、その概要図を第3図に示す。即
ち静置状態に配設された基台4上に左右に走るレ
ール5を敷設し、該レール5上に下面に車輪が付
いた水平移動板6を搭載し、該水平移動板6上
に、その左側端が水平移動板6の左側端に枢着さ
れ左右方向に傾動自在とされた左右傾動板7を載
置し、その上に更にその前側端が左右傾動板7の
前側端に枢着され前後方向に傾動自在とされた前
後傾動板8を載置し、同前後傾動板8の上方に上
記揺動テーブル1を架設し、揺動テーブル1の前
辺に立設された最下段のリツフル3の真上の溝は
左右方向に5等分し、左端及び各分割区間の間に
は仕切板9を配し、それぞれ独立する5個のハツ
パー10へ連通したものである。そして上記水平
移動板6には、モーター11と振動機構12とか
ら成る振動装置を取付けた。この様な装置を用
い、下記第1表に示す様な粉度分布を有し、全体
の未燃焼石炭分を約10.1重量%有する石炭灰を実
験試料とし、揺動テーブルの左右の傾きαや前後
の傾きβその他の条件を種々変化せしめ、石炭灰
よりも密度が小で、一般的にはその粒径が大なる
未燃炭分を石炭灰から分別する実験をした。
<Industrial Field of Application> The present invention relates to an apparatus for sorting powder and fluid according to density from a mixture of two or more types of powder and granular materials having different densities. <Prior art> When reusing coal ash discharged from thermal power plants, there is a need to separate and remove unburned coal from a mixture of substances with different densities in many other fields. There are many. Conventionally, this sorting device includes a flotation device and a wet rocking table that uses a water stream. Other dry-type devices include those that use a combination of gas flow such as air and vibration. <Problems to be solved by the invention> Since the flotation equipment and the wet rocking table shown as the above-mentioned prior art are both wet types, they are difficult to solve when the target is a water-soluble substance or a substance that must not be wetted. However, there is a problem in that complicated drying treatment is required depending on the subsequent usage of the separately collected materials. On the other hand, the dry type apparatus is good when the objects to be sorted are large to some extent and there is a considerable difference in density, but when the objects become finer, there is a problem that the sorting efficiency is low even though the apparatus is large-scale. The object of the present invention is to eliminate the various drawbacks of the prior art and to provide an apparatus that can perform highly efficient sorting even when the objects are minute in a dry process. <Means for Solving the Problems> The above objects of the present invention can be achieved by employing the following means. In other words, the swing table is made of a rectangular plate-shaped body, and is inclined so that the right side is higher than the left side, and furthermore, the rear side is inclined so that the rear side is higher than the front side. A weir of the required height is installed across the lower corner, and on the left side of the weir, a plurality of ritzfuls whose height is smaller than that of the weir are placed horizontally at approximately the same distance below the weir, and the above-mentioned oscillator is This is a dry type density sorting device for powder and granular materials, characterized in that a moving table is configured to vibrate minutely in a horizontal direction. Note that in this case, the terms left, right, front, and rear refer to the case where the device of the present invention is viewed from a certain direction, and in the following explanation, that certain direction will be referred to as FIG. 1. is viewed from the front, and the left and right parts of FIG. 1 are the left, right, bottom, and top of the device, respectively, and the front and rear of the device, respectively. <Function> In the device of the present invention, when the mixed powder and granular material of different specific gravity is fed from the upper part of the left side, that is, from the rear side, while the swing table is vibrated minutely in the horizontal direction, two rifts are produced. In the longitudinal direction of the groove between the grooves, that is, in the left-right direction, as is the principle of a general swing table, the powder with a higher density moves to the right due to the difference in density and the size of the particles, and if the density is the same, the smaller the particle moves to the right. Move to the right. The powder and granules in the same groove cannot move further to the right because the front side of the swing table is lower for both the left and right side, and the right side is stopped by the weir. Therefore, it goes beyond the ritzful and moves to the lower groove, and within the lower groove, it is further divided by density,
Repeating that the powder is divided into left and right by diameter,
At the time of passing the bottom stage Ritzful, small-density, large-diameter particles are unevenly distributed on the left side, and as you move from there to the right side, the distribution shows that the density becomes higher and the particle size becomes smaller. By installing a plurality of collection containers below the lower rituffle and collecting each one separately, it is possible to obtain powder and granules of different densities and particle sizes. <Examples> Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of a rectangular plate-like body used in the swing table 1 of the device of the present invention, and in this embodiment,
A plate measuring 300mm in length and 500mm in width is used, and on its top surface,
Weir 2 with a height of 20 mm is installed diagonally from the left end of the rear side to the right end of the front side by 200 mm to the right.
On the left side, multiple Ritzfuls 3 were placed horizontally as shown in Figure 2 with dimensions (unit: mm). In this device, such a swinging table 1 is tilted at an angle α upward to the right in the left-right direction and at an angle β upward upward in the front-rear direction with respect to the horizontal plane, and a vibrating device is installed on it. A schematic diagram is shown in Figure 3. That is, a rail 5 running left and right is laid on a base 4 placed in a stationary state, a horizontally movable plate 6 with wheels on the lower surface is mounted on the rail 5, and on the horizontally movable plate 6, A left-right tilting plate 7 whose left end is pivotally connected to the left-hand end of the horizontally movable plate 6 and can freely tilt in the left-right direction is placed thereon, and its front end is further pivoted to the front end of the left-right tilting plate 7. A front-rear tilting plate 8 which is freely tiltable in the front-rear direction is mounted, and the above-mentioned swing table 1 is constructed above the front-rear tilt plate 8. The groove directly above the riffle 3 is divided into five equal parts in the left and right direction, and a partition plate 9 is arranged at the left end and between each divided section to communicate with five independent hubpers 10. A vibrating device consisting of a motor 11 and a vibrating mechanism 12 was attached to the horizontally movable plate 6. Using such a device, coal ash having a fineness distribution as shown in Table 1 below and having a total unburned coal content of approximately 10.1% by weight was used as an experimental sample, and the left and right inclination α of the swing table and Experiments were conducted to separate unburned coal, which has a lower density than coal ash and generally has a larger particle size, from coal ash by varying the front and rear slope β and other conditions.

【表】 なお上記第1表の粒径の項目で、−44とは44未
満、+297とは297超、44〜53とは44以上53未満で、
他の〜で範囲を示しているものもこれと同様とす
る。 即ちこの実験は、説明の為に、堰2やリツフル
3の幅を無視し、それらを共に線で示した第4図
で示す様に、揺動テーブル1の前辺に最も近い溝
を左右方向に仕切板9で5等分し、その各々の領
域を右側からA,B,C,D,Eとなし、該仕切
板9を設けた溝の直上段の溝から上段に向け、
各々の溝を順次,,,,,となし、
各種実験を行つた。 まず、溝の左端部に、上記第1表に示した石
炭灰を供給し、α=9.4°、β=28.9°、振幅約15
mm、振動数N=3.5回/sec.を一定とし、1時間当
りの供給量F(Kg/h.)を種々変化させ、揺動テ
ーブルの前辺に立設したリツフルを越え下方に落
下した試料を上記A,B,…の各領域別に採取
し、各試料につきその中に含まれる未燃炭分を電
気炉で800℃、1時間燃焼させ、その時のIg.loss
値をもつて各領域に於ける未燃炭含有率を求めた
実験1の結果を示したのが第5図のグラフであ
る。なお第5図中の各ポイントの傍に記した数字
は、各々供給した試料の全量を1とした場合の各
採取域での採取割合を示す。 この第5図に示すグラフから、1時間当りの供
給量Fの如何を問わず揺動テーブルの右側から採
取される物ほど未燃炭分が少ないがFが少量にな
るほど試料全体が右側へ寄ると共に、より石炭灰
と未燃炭との分別がより急激となる事が判る。 次は、試験供給点、α,β及び振幅は上記実験
1と同じで、F=0.709Kg/h.と一定にし、振動
数Nを変化させ同様に未燃炭分を求めた実験2の
結果を第6図のグラフに示す。第6図中の各ポイ
ントの傍に記す数字は第5図の場合と同様にその
領域での採取割合を示す。 この第6図から、振動数Nが大きな場合ほど左
右の拡がりは大となる事が判る。 次に第7図に示すグラフは、試料供給点、振幅
及びFは実験2と同じで、N=3.5S-1、β=28.9°
と一定にし、αを種々変化させた実験3の結果を
示すもので、この第7図中の各ポイントの傍に記
す数字は第5図の場合と同様にその領域での採取
割合を示す。 この第7図から、あまりαが大となれば試料が
左側へ移行し左右の拡がりが小さく選別効率も良
くないのでαは大き過ぎない値とする必要がある
事が判る。 次に第8図に示すグラフは、α=9.4°及びF=
2.4Kg/h.と一定とし、βを種々変える他は上記
実験3と同じ条件で行つた実験4の結果を示すも
のである。 この第8図から、前後の傾きもそれをあまり大
きくすれば試料の左右の拡がりが小さく、しかも
最も高密度の物が集まると考えられるA領域でさ
えまだ相当量の未燃炭文が含まれており、選別効
率が良くない事が判る。 次に第9図に示すグラフは、試料供給点、振
幅、振動数、F及びαは、実験4と同じで、β=
22.4°と一定にし、ある程度選別操作をなし試料
が溝から溝及び溝よりも下段の溝にまで移
り、そこから少量が下方のホツパー10へ落下し
始めた時点で、各溝内試料毎に試料を取出し、各
溝毎及び各領域毎の試料についてのIg.lossを求め
た実験5の結果を示すものである。 この第9図から、一部逆転している所もあるが
下段の溝に在る試料ほど図中の勾配が急になつて
おり即ち十分に比重選別がなされている事が判
る。 次に第10図は上記実験5と同じ条件下で、最
下段のリツフルを越え、ホツパー10内に採取さ
れた試料につき、それを各サイズ毎に篩分けし、
その場合の篩下積算重量%を求めた実験6の結果
を示したもので、各領域内毎の平均Ig.lossも同グ
ラフ中に併記した。 この第10図の結果から、最初に用いた原試料
と比べ、A,B領域即ち右側の領域から採取した
試料は小径の物が多く、左側領域ではその逆にな
つている事が判る。 又第11図に示すグラフは、上記実験6と同様
に各領域毎にホツパー10より採取した試料につ
き、各種サイズ毎のIg.lossを求めた実験7の結果
を示し、この第11図から、採取試料の径とはさ
ほど関係なく密度の小さい物から大きい物がこの
順序で左右に分かれている事が判る。 <発明の効果> 以上述べて来た如く、本発明装置によれば、揺
動テーブルを、左右及び前後に傾斜し、多数横設
したリツフルの右端に堰を設け、リツフル間の溝
内を右進しようとする粉粒体をそこで停止させる
為に、下位のリツフルを越えて下段の溝内へ移行
する粉粒体の量が増えると共に、同一溝内に於い
ても左右に帯状に密度別、粒径別に分別され、か
つ上記堰が斜め方向に渡設され、下段の溝ほど右
方向へ長く設定されているので、各溝の右端寄り
に集まつた大密度、小径の物はその下段の溝で更
に分別されているという事を繰返すので、揺動テ
ーブルの前辺部に至つた粉粒体は、密度別、粒径
別に十分に左右に分別されるものである。 従つて揺動板の両傾斜角度、振動状況、原粉粒
体の供給量等を、対象とする原粉粒体に応じ適宜
変化させれば、原粉粒体中に2種あるいはそれ以
上の密度や径が異なる物が入つている場合でも、
それら各構成物主体の物として採取出来るもので
あり、例えば実施例で試料として用いた未燃炭分
を相当量含む石炭灰から未燃炭分が少ない石炭灰
を分別する事が出来、その後の再利用に寄与する
ものである。
[Table] In terms of particle size in Table 1 above, -44 means less than 44, +297 means more than 297, 44-53 means 44 or more and less than 53.
The same applies to other ranges indicated by ~. In other words, for the sake of explanation, this experiment ignored the widths of the weir 2 and the ripple 3, and moved the groove closest to the front side of the swing table 1 in the left and right direction, as shown in FIG. divided into five equal parts by a partition plate 9, and each area is designated A, B, C, D, and E from the right side, and the groove is directed upward from the groove directly above the groove in which the partition plate 9 is provided,
Make each groove sequentially, ,,,,
Various experiments were conducted. First, the coal ash shown in Table 1 above is supplied to the left end of the groove, α = 9.4°, β = 28.9°, amplitude approximately 15
mm, the frequency of vibration N = 3.5 times/sec. was kept constant, the hourly supply amount F (Kg/h.) was varied, and the sample fell downward beyond the Ritzful that was set up on the front side of the swing table. Samples were taken from each area of A, B,... above, and the unburned coal contained in each sample was burned at 800℃ for 1 hour in an electric furnace, and the Ig.loss at that time was
The graph in FIG. 5 shows the results of Experiment 1, in which the unburned coal content in each region was calculated using values. Note that the numbers written next to each point in FIG. 5 indicate the collection ratio in each collection area, assuming that the total amount of each supplied sample is 1. From the graph shown in Figure 5, it can be seen that regardless of the hourly supply amount F, the sample collected from the right side of the rocking table has less unburned coal, but as the amount of F decreases, the entire sample shifts to the right side. , it can be seen that the separation between coal ash and unburned coal becomes more rapid. Next, the test supply point, α, β, and amplitude are the same as those in Experiment 1, and the results of Experiment 2 were determined in the same way by changing the vibration frequency N and keeping F = 0.709 Kg/h. This is shown in the graph of FIG. The numbers written next to each point in FIG. 6 indicate the sampling rate in that area, as in the case of FIG. 5. From FIG. 6, it can be seen that the larger the frequency N is, the larger the left and right spread becomes. Next, in the graph shown in Figure 7, the sample supply point, amplitude and F are the same as in Experiment 2, N = 3.5S -1 , β = 28.9°
This figure shows the results of Experiment 3 in which α was held constant and α was varied variously.The numbers written next to each point in FIG. 7 indicate the sampling rate in that area, as in the case of FIG. 5. From FIG. 7, it can be seen that if α is too large, the sample will shift to the left side, resulting in a small lateral spread and poor sorting efficiency, so it is necessary to set α to a value that is not too large. Next, the graph shown in Figure 8 shows α=9.4° and F=
This shows the results of Experiment 4, which was conducted under the same conditions as Experiment 3 above, except that β was kept constant at 2.4 Kg/h. From this Figure 8, we can see that if the front-to-back slope is too large, the horizontal spread of the sample will be small, and even in region A, where the highest density of materials is thought to be gathered, there is still a considerable amount of unburned coal. It can be seen that the sorting efficiency is not good. Next, the graph shown in Figure 9 shows that the sample supply point, amplitude, frequency, F and α are the same as in Experiment 4, and β=
At a constant angle of 22.4°, after some sorting operation, the sample moves from groove to groove and to the groove below the groove, and when a small amount starts to fall from there to the hopper 10 below, the sample is separated for each sample in each groove. This figure shows the results of Experiment 5, in which Ig.loss was determined for each groove and each area of the sample. From FIG. 9, it can be seen that although there are some places where the samples are reversed, the slope in the figure becomes steeper as the samples are located in the lower grooves, that is, the specific gravity selection has been sufficiently performed. Next, FIG. 10 shows that under the same conditions as in Experiment 5 above, the samples collected in the hopper 10 after passing through the bottom riffle were sieved for each size.
This graph shows the results of Experiment 6 in which the integrated weight % under the sieve in that case was calculated, and the average Ig.loss for each region is also shown in the same graph. From the results shown in FIG. 10, it can be seen that compared to the original sample used first, the samples taken from areas A and B, that is, the right area, had many smaller diameters, and the opposite was true for the left area. Also, the graph shown in FIG. 11 shows the results of Experiment 7, in which Ig.loss for each size was determined for the samples collected from the hopper 10 in each region, as in Experiment 6, and from this FIG. 11, It can be seen that the samples are divided into left and right in this order from the smallest density to the largest density, regardless of the diameter of the collected sample. <Effects of the Invention> As described above, according to the device of the present invention, the swing table is tilted left and right and front and back, and a weir is provided at the right end of a large number of horizontally installed ritzfuls. In order to stop the powder and granules that are about to advance there, the amount of powder and granules that move beyond the lower rift and into the lower groove increases, and even within the same groove, it is divided into bands on the left and right according to density. Particles are sorted by size, and the weir is installed diagonally, and the lower grooves are longer to the right, so particles with high density and small diameter that gather near the right end of each groove are collected in the lower tier. Since the process of further separation by the grooves is repeated, the powder and granules that have reached the front side of the swing table are sufficiently separated into left and right sides according to density and particle size. Therefore, if the angle of inclination of the rocking plate, the vibration condition, the supply amount of raw powder and granules, etc. are changed appropriately depending on the target raw powder and granules, two or more kinds of particles can be mixed in the raw powder and granules. Even if there are objects with different densities and diameters,
It can be collected as a substance consisting mainly of these components, and for example, it is possible to separate coal ash with a small amount of unburned coal from the coal ash that contains a considerable amount of unburned coal, which was used as a sample in the example, and then reuse it. This contributes to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の揺動テーブルの形状を示
す平面図、第2図は第1図−線に於ける拡大
断面図、第3図は本発明装置の一例を示す一部切
欠斜視図、第4図は本発明実施例に示す各実験を
説明する為に揺動テーブルの各部に番号及び記号
を付した模式図、第5図は石炭灰と未燃炭との分
別状態が原試料の供給量を変えた場合にどの様に
変化するかを示すグラフ、第6図は同振動数の変
えた場合のグラフ、第7図は同αを変えた場合の
グラフ、第8図は同βを変えた場合のグラフ、第
9図は同採取試料の採取場所を変えた場合のグラ
フ、第10図は各採取場所についての粒径毎の量
の分布状態を示すグラフ、第11図は各採取場所
についての粒径毎の石炭灰と未燃炭との分別状態
を示すグラフ。 図中、1:揺動テーブル、2:堰、3:リツフ
ル。
Fig. 1 is a plan view showing the shape of the swing table of the device of the present invention, Fig. 2 is an enlarged sectional view along the line shown in Fig. 1, and Fig. 3 is a partially cutaway perspective view showing an example of the device of the present invention. , Fig. 4 is a schematic diagram with numbers and symbols attached to each part of the swing table to explain each experiment shown in the examples of the present invention, and Fig. 5 shows the state of separation of coal ash and unburned coal in the original sample. A graph showing how it changes when the supply amount is changed. Figure 6 is a graph when the same frequency is changed. Figure 7 is a graph when the same α is changed. Figure 8 is a graph when the same β is changed. Figure 9 is a graph when the sampling location of the same sample is changed. Figure 10 is a graph showing the distribution of amount by particle size at each sampling location. Figure 11 is a graph showing the distribution of the amount for each particle size at each sampling location. A graph showing the separation status of coal ash and unburned coal by particle size at the collection location. In the figure, 1: Swing table, 2: Weir, 3: Ritzful.

Claims (1)

【特許請求の範囲】[Claims] 1 短形の板状体から成り、その右辺側が左辺側
よりも高くなる様に傾斜し、更にその後辺側が前
辺側よりも高くなる様に傾斜した揺動テーブルの
後辺部の中途から右下角部方向へ向け所要高さの
堰を渡設し、同堰よりも左側には略同間隔下にそ
の高さが堰よりも小である複数のリツフルを略平
行に横設し、上記揺動テーブルを横方向に微小周
期振動する如く構成したことを特徴とする粉粒体
の乾式密度別選別装置。
1 A rocking table consisting of a rectangular plate-shaped body, tilted so that the right side is higher than the left side, and further tilted so that the rear side is higher than the front side. A weir of the required height is installed across the lower corner, and on the left side of the weir, a plurality of ritzfuls whose height is smaller than that of the weir are placed horizontally at approximately the same distance below the weir, and the above-mentioned oscillator is 1. A dry density sorting device for powder and granular materials, characterized in that a moving table is configured to vibrate minutely periodically in the lateral direction.
JP8777988A 1988-04-09 1988-04-09 Dry type screening device for particulate material by density Granted JPH01258780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8777988A JPH01258780A (en) 1988-04-09 1988-04-09 Dry type screening device for particulate material by density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8777988A JPH01258780A (en) 1988-04-09 1988-04-09 Dry type screening device for particulate material by density

Publications (2)

Publication Number Publication Date
JPH01258780A JPH01258780A (en) 1989-10-16
JPH049596B2 true JPH049596B2 (en) 1992-02-20

Family

ID=13924469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8777988A Granted JPH01258780A (en) 1988-04-09 1988-04-09 Dry type screening device for particulate material by density

Country Status (1)

Country Link
JP (1) JPH01258780A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467224B1 (en) * 2004-06-18 2005-01-24 김윤호 Grader

Also Published As

Publication number Publication date
JPH01258780A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
US5032256A (en) Method and apparatus for air separation of material
CN100387353C (en) Dry-process separating bed, combined type dry-process separator adopting the separating bed and separating device
KR830002053B1 (en) Air elutriation device for recovering char fines in discharge waste from iron oxido reclucing kiln
JP3263342B2 (en) Wind separator
US4646759A (en) Vibrating trough tobacco separator and classifier
US2068783A (en) Apparatus for separating materials
US6927354B1 (en) Tribocharging and electrostatic separation of mixed electrically insulating particles
CN213967041U (en) Soil detects uses quick soil screening plant
JPH049596B2 (en)
US2984622A (en) Process and device for screening and filtering moist goods
RU2331480C1 (en) Screener
US3667601A (en) Apparatus for the dry separation of granular materials
US4029573A (en) Waste segregating apparatus
US2995244A (en) Separating apparatus
SU1740064A1 (en) Segregation table
US4278537A (en) Apparatus for separating heavy solids and light solids from a mixture thereof
US3599791A (en) Hydraulic sorting apparatus
FR2425279A1 (en) Granular material sorting machine - has sloping porous vibratory table with baffle at one end dividing air flow into opposite directions
CN220371615U (en) Food particle grading vibration conveyor
Suhm Oscillating air column method for the dry separation of fine and subsieve particle sizes
JP3485572B2 (en) Apparatus and method for separation and classification of particles forming a granular product
JPH0624644B2 (en) Solid separation device
SU581992A1 (en) Discharge device of pneumatic classifier
SU1685555A1 (en) Separator for concentrating of fine-grained friable materials
JP2003340376A (en) Gravity concentration apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term