JPH0495805A - Optical displacement detector - Google Patents

Optical displacement detector

Info

Publication number
JPH0495805A
JPH0495805A JP21456190A JP21456190A JPH0495805A JP H0495805 A JPH0495805 A JP H0495805A JP 21456190 A JP21456190 A JP 21456190A JP 21456190 A JP21456190 A JP 21456190A JP H0495805 A JPH0495805 A JP H0495805A
Authority
JP
Japan
Prior art keywords
light
signal
sum
amplifier
amplified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21456190A
Other languages
Japanese (ja)
Inventor
Masahiko Uto
宇都 正彦
Hiroyuki Hasegawa
浩幸 長谷川
Rikako Takei
武井 利佳子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP21456190A priority Critical patent/JPH0495805A/en
Publication of JPH0495805A publication Critical patent/JPH0495805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To improve the detecting accuracy of an optical displacement detector by providing a detecting means for detecting the sum of amplifying signals output from each amplifier, and a setting means for setting the amplifying ratio to hold the sum approximately constant for each amplifier. CONSTITUTION:An amplifying signal detecting part 9 is provided with an adder 23, an amplifier 25 and an A/D converter 27. A feedback ratio setting part 11A is comprised of a multiplexer 31 and eight resistors R1, R2,..., R8. When a signal of each element 1A-1D of a four-dividing photodetector 1 is amplified by each negative feedback amplifier circuit 3, a signal diverged from the output of the circuit 3 is added at 23 and amplified at 29. In this manner, a signal related to the sum of the outputs of each circuit 3 is obtained. The quantity of light of a luminous flux of an inspecting light reaching the device 1 differs depending on the reflectivity of an object to be measured. Since the feedback ratio is set for each circuit 3 so that the quantity of light appears constant even if the detecting quantity of light of the device 1 is changed, the errors due to the change of the quantity of light can be compensated without using a subtracter. Accordingly, the inspecting accuracy is improved more.

Description

【発明の詳細な説明】 預肌辺旦英 [産業上の利用分野] 本発明は光学式偏位検出器に関し、詳しくは分割受光素
子の各素子が検査光の光線束を受光して出力する出力信
号に基づき偏位を検出する光学式偏位検出器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical deviation detector, and more specifically, each element of a divided light-receiving element receives and outputs a beam of inspection light. The present invention relates to an optical deviation detector that detects deviation based on an output signal.

[従来の技術] 従来の光学式偏位検出器として、例えば非点収差法を適
用したフォーカシングサーボ機構に用いるフォーカスエ
ラー検出器がある。フォーカスエラー検出器は4分割受
光素子と演算回路とから主に構成される。作用は次のと
おりである。
[Prior Art] As a conventional optical deviation detector, there is a focus error detector used in a focusing servo mechanism to which an astigmatism method is applied, for example. The focus error detector is mainly composed of a four-part light receiving element and an arithmetic circuit. The action is as follows.

まず、被測定物から反射した検査光の光線束を対物レン
ズを介して収束し、その収束光をシリンドリカルレンズ
に通す。そして、シリンドリカルレンズを通過した光を
4分割受光素子で受光する。
First, a beam of inspection light reflected from the object to be measured is converged through an objective lens, and the converged light is passed through a cylindrical lens. Then, the light that has passed through the cylindrical lens is received by a four-part light receiving element.

次に、4分割受光素子の各素子が受光して出力する出力
信号をそれぞれ増幅し、各増幅信号を演算回路で演算す
る。演算回路は各増幅信号を加算したり減算したりする
。この演算回路を通過した信号をフォーカスエラー信号
として出力する。こうして得たフォーカスエラー信号の
大きさは被測定物に対する対物レンズの焦点のずれに対
応するので、フォーカスエラー信号に基づいて焦点を合
わせることができる。
Next, the output signals received and output by each element of the four-division light-receiving element are amplified, and each amplified signal is calculated by an arithmetic circuit. The arithmetic circuit adds or subtracts each amplified signal. The signal passed through this arithmetic circuit is output as a focus error signal. Since the magnitude of the focus error signal obtained in this way corresponds to the shift in focus of the objective lens with respect to the object to be measured, it is possible to adjust the focus based on the focus error signal.

このフォーカスエラー信号目上例えば被測定物の表面の
反射率の相違に起因する誤差が含まれる。反射率の相違
は4分割受光素子の受光量を変え、ひいてはフォーカス
エラー信号の大きさを変えてしまう。
This focus error signal includes an error caused by, for example, a difference in the reflectance of the surface of the object to be measured. The difference in reflectance changes the amount of light received by the four-split light receiving element, which in turn changes the magnitude of the focus error signal.

従来はこの誤差を補償するために演算回路の後に除算器
を加えている。演算回路からの信号をさらに各素子の増
幅信号の総和で除算した信号をフォーカスエラー信号と
して出力するのである。上記除算により、被測定物の表
面の反射率の相違などに起因する4分割受光素子の受光
量の変化を見かけ上なくすことができ、上記の誤差が補
償されたフォーカスエラー信号が得られる。
Conventionally, a divider is added after the arithmetic circuit to compensate for this error. A signal obtained by further dividing the signal from the arithmetic circuit by the sum of the amplified signals of each element is output as a focus error signal. By the above-mentioned division, it is possible to apparently eliminate a change in the amount of light received by the four-part light-receiving element due to a difference in reflectance on the surface of the object to be measured, and a focus error signal in which the above-mentioned error is compensated can be obtained.

[発明が解決しようとする課題] 上述したように上記従来のフォーカスエラー検出器は除
算器を用いて誤差を補償できるが、検出精度のより一層
の向上が難しいという問題がある。
[Problems to be Solved by the Invention] As described above, the conventional focus error detector described above can compensate for errors using a divider, but there is a problem in that it is difficult to further improve detection accuracy.

これは除算器の精度が一般的に高くないために、除算器
の精度に依存する検出精度の向上が妨げられるからであ
る。かといって、単に光源の発光量を制御して4分割受
光素子の受光量の変化を抑えても、光源によっては発光
量の調節範囲が狭いから、充分に誤差を補償できないこ
とがある。さらに、発光量の調節のために光源に大電流
をながせt′L 光源の寿命が短くなる。
This is because the accuracy of the divider is generally not high, which prevents improvement in detection accuracy that depends on the accuracy of the divider. However, even if the change in the amount of light received by the four-part light receiving element is suppressed by simply controlling the amount of light emitted from the light source, the adjustment range of the amount of light emitted is narrow depending on the light source, so it may not be possible to sufficiently compensate for errors. Furthermore, in order to adjust the amount of light emitted, a large current is passed through the light source, which shortens the life of the light source.

本発明の光学式偏位検出器は上記課題を解決し、この種
の光学式偏位検出器の検出精度の向上を図ることを目的
とする。
The optical deviation detector of the present invention aims to solve the above problems and improve the detection accuracy of this type of optical deviation detector.

楚用の構成 [課題を解決するための手段] 本発明の光学式偏位検出器は、 受光面を複数領域に分割した分割受光素子の各素子が検
査光の光線束を受光して出力する出力信号を、該各素子
に対応して設けられた増幅器で増幅し、該各増幅器が出
力する増幅信号を演算回路で演算して、偏位に応じた信
号を出力する光学式偏位検出器において、 前記各増幅器が出力する増幅信号の総和を検出する増幅
信号総和検出手段と、 該増幅信号総和検出手段が検出した増幅信号の総和に基
づいて、該総和を略一定に保つ増幅率を、前記各増幅器
に設定する増幅率設定手段とを備えることを特徴とする
Configuration for Chu [Means for Solving the Problems] The optical deviation detector of the present invention is characterized in that each element of a divided light receiving element whose light receiving surface is divided into a plurality of regions receives and outputs a beam of inspection light. An optical deviation detector that amplifies the output signal with an amplifier provided corresponding to each element, calculates the amplified signal output from each amplifier with an arithmetic circuit, and outputs a signal according to the deviation. amplified signal sum detection means for detecting the sum of amplified signals outputted by each of the amplifiers; and an amplification factor that keeps the sum substantially constant based on the sum of the amplified signals detected by the amplified signal sum detection means; The apparatus is characterized in that it includes an amplification factor setting means for setting each of the amplifiers.

[作用] 上記構成を有する本発明の光学式偏位検出器においては
、分割受光素子の各素子が検査光の光線束を受光して出
力する出力信号をそれぞれ増幅器で増幅する。この増幅
の際、各増幅器が出力する増幅信号の総和を増幅信号総
和検出手段が検出する。そして、検出した増幅信号の総
和に基づいて、増幅率設定手段が上記総和を略一定に保
つ増幅率を各増幅器に設定する。こうして設定された増
幅率に基づいて各増幅器は各素子の出力信号を増幅する
。演算回路は各増幅器が出力する増幅信号を演算回路で
演算して、偏位に応じた信号を出力する。即ち、被測定
物の反射率の相違などに起因して分割受光素子に到達す
る検査光の光線束の光量が変化しても、各増幅器の増幅
する増幅信号の総和を一定とする増幅率の設定により、
受光量が一定であるのと等価の出力が、除算器を用いな
くても得られる。
[Function] In the optical deviation detector of the present invention having the above configuration, each element of the divided light receiving element receives a beam of inspection light and outputs an output signal, which is amplified by an amplifier. During this amplification, the amplified signal sum detection means detects the sum of the amplified signals output from each amplifier. Then, based on the total sum of the detected amplified signals, the amplification factor setting means sets an amplification factor for each amplifier to keep the above-mentioned sum substantially constant. Each amplifier amplifies the output signal of each element based on the amplification factor thus set. The arithmetic circuit operates on the amplified signals output from each amplifier, and outputs a signal corresponding to the deviation. In other words, even if the intensity of the beam of inspection light that reaches the divided light-receiving element changes due to differences in the reflectance of the object to be measured, the amplification factor is such that the sum of the amplified signals amplified by each amplifier remains constant. Depending on the settings,
An output equivalent to a constant amount of received light can be obtained without using a divider.

[実施例] 以下本発明の光学式偏位検出器の一実施例として、非点
収差法を適用したフォーカシングサーボ機構に用いるフ
ォーカスエラー検出器を説明する。
[Example] As an example of the optical deviation detector of the present invention, a focus error detector used in a focusing servo mechanism to which an astigmatism method is applied will be described below.

第1図に実施例のフォーカスエラー検出器の回路図を示
す。フォーカスエラー検出器は、図示のように、4分割
受光素子1と、4個の負帰還増幅回路3と、演算回路5
と、出力部7と、増幅信号総和検畠部9と、帰還率設定
部]1とを備える。
FIG. 1 shows a circuit diagram of a focus error detector according to an embodiment. As shown in the figure, the focus error detector includes a four-part light receiving element 1, four negative feedback amplifier circuits 3, and an arithmetic circuit 5.
, an output section 7, an amplified signal summation inspection section 9, and a feedback rate setting section]1.

4分割受光素子]は4つの受光素子IA、IB。4-division light-receiving element] is four light-receiving elements IA and IB.

IC,IDをマトリックス上に組み合わせてなる。It is made by combining IC and ID on a matrix.

4個の負帰還増幅回路3はそれぞれオペアンプ]3と、
帰還率設定部1]とからなる。各オペアンプ13A、1
3B、13C,13Dの負側の入力端子には、4分割受
光素子]の各素子]A、1B、IC,IDの出力線がそ
れぞれ接続される。
Each of the four negative feedback amplifier circuits 3 is an operational amplifier] 3,
Feedback rate setting section 1]. Each operational amplifier 13A, 1
The negative input terminals of 3B, 13C, and 13D are connected to the output lines of each element A, 1B, IC, and ID of the four-division light receiving element, respectively.

帰還率設定部]]はオペアンプ13の帰還回路である。The feedback rate setting unit] is a feedback circuit of the operational amplifier 13.

その詳細は後述する。The details will be described later.

演算回路5は2つの差動増幅器15.17と、加算器1
9とからなる。ここで行なう演算は、次式(1)で示さ
れる。
The arithmetic circuit 5 includes two differential amplifiers 15 and 17 and an adder 1.
It consists of 9. The calculation performed here is shown by the following equation (1).

Se= (Sa十5c)−(Sb十Sd)  −(1)
ここで、Seは演算回路5の出力である。Sa。
Se = (Sa + 5c) - (Sb + Sd) - (1)
Here, Se is the output of the arithmetic circuit 5. Sa.

Sb、Sc、Sdはそれぞれ素子IA、  IB、  
IC,IDが接続された負帰還増幅回路3A、3B。
Sb, Sc, and Sd are elements IA, IB, respectively.
Negative feedback amplifier circuits 3A and 3B to which IC and ID are connected.

3C,3Dの出力である。These are 3C and 3D outputs.

演算回路5では上記式(1)と等価の演算をするために
、差動増幅器]5が、隣合う素子IA。
In the arithmetic circuit 5, in order to perform an arithmetic operation equivalent to the above equation (1), a differential amplifier]5 is connected to an adjacent element IA.

1Bに係る負帰還増幅回路3A、3Bの出力Sa。Output Sa of negative feedback amplifier circuits 3A and 3B related to 1B.

sbO差を出力する。差動増幅器17は別の隣合う素子
IC,IDに係る負帰還増幅回路3C93Dの出力Sc
、Sdの差を出力する。加算器19は差動増幅器]5と
差動増幅器17との出力線を抵抗器を介して並列接続し
てなり、差動増幅器]5.17の出力を加算した信号S
eを出力する。
Outputs the sbO difference. The differential amplifier 17 uses the output Sc of a negative feedback amplifier circuit 3C93D related to another adjacent element IC, ID.
, Sd is output. The adder 19 is formed by connecting the output lines of the differential amplifier] 5 and the differential amplifier 17 in parallel via a resistor, and generates a signal S obtained by adding the outputs of the differential amplifier] 5.17.
Output e.

出力部7はオペアンプ2]を備えた負帰還増幅回路であ
って、演算回路5で演算された信号Seを増幅して出力
する。
The output section 7 is a negative feedback amplifier circuit equipped with an operational amplifier 2, and amplifies and outputs the signal Se calculated by the calculation circuit 5.

増幅信号総和検出部9は加算器23と、増幅器25と、
AD変換器27とを備える。
The amplified signal sum detection section 9 includes an adder 23, an amplifier 25,
An AD converter 27 is provided.

加算器231よ 負帰還増幅回路3A、  3B、  
3C,3Dの出力線から分岐した分岐線を抵抗器を介し
て並列接続してなる。したがって、加算器23は、負帰
還増幅回路3A、3B、3C,3Dの出力の総和に関連
した信号を出力する。
Adder 231, negative feedback amplifier circuits 3A, 3B,
It is formed by connecting branch lines branched from the 3C and 3D output lines in parallel via resistors. Therefore, the adder 23 outputs a signal related to the sum of the outputs of the negative feedback amplifier circuits 3A, 3B, 3C, and 3D.

増幅器25はオペアンプ29を備えた負帰還増幅回路で
ある。オペアンプ29の負側の入力端子には加算器23
の出力線が接続される。増幅器25の出力線はAD変換
器27の入力端子に接続される。
The amplifier 25 is a negative feedback amplifier circuit including an operational amplifier 29. An adder 23 is connected to the negative input terminal of the operational amplifier 29.
output line is connected. The output line of amplifier 25 is connected to the input terminal of AD converter 27.

AD変換器27は増幅器25のアナログ圧力を3ビツト
のデジタル信号に変換する。AD変換器27の出力線は
負帰還増幅回路3A、  3B、  3C。
The AD converter 27 converts the analog pressure of the amplifier 25 into a 3-bit digital signal. The output lines of the AD converter 27 are negative feedback amplifier circuits 3A, 3B, and 3C.

3Dの帰還率設定部11A、  11B、  I IC
,1]Dの入力端子に接続される。
3D feedback rate setting units 11A, 11B, IIC
, 1] is connected to the input terminal of D.

帰還率設定部11Aはマルチプレクサ31と8本の抵抗
器R1,R2,・・・、R8とからなる。図では帰還率
設定部11B、IIC,IIDをブロックで示したが、
それぞれ帰還率設定部11Aについて図示した構成を備
える。上記のAD変換器27の出力線はマルチプレクサ
31の入力端子に接続される。抵抗器R1,R2,・・
・、R8の各抵抗値はそれぞれ相違する。そして、抵抗
器R1゜R2,・・・、R8とマルチプレクサ31と(
よ マルチプレクサ31に入力するデジタル信号の値が
大きくなるほど、つまり各負帰還増幅回路3の出力の総
和が犬きくなるほど、マルチプレクサ3]がオペアンプ
13の帰還路に接続する抵抗器Rの抵抗値が小さくなり
、逆に各負帰還増幅回路3の出力の総和が小さくなるほ
ど、マルチプレクサ31がオペアンプ]3の帰還路に接
続する抵抗器Rの抵抗値が大きくなる規則で接続される
The feedback rate setting section 11A includes a multiplexer 31 and eight resistors R1, R2, . . . , R8. In the figure, the feedback rate setting unit 11B, IIC, and IID are shown as blocks, but
Each feedback rate setting unit 11A has the configuration shown in the figure. The output line of the AD converter 27 described above is connected to the input terminal of the multiplexer 31. Resistors R1, R2,...
・The resistance values of R8 are different from each other. Then, the resistors R1゜R2,..., R8 and the multiplexer 31 (
The larger the value of the digital signal input to the multiplexer 31, that is, the larger the sum of the outputs of each negative feedback amplifier circuit 3, the smaller the resistance value of the resistor R that the multiplexer 3 connects to the feedback path of the operational amplifier 13. Conversely, the multiplexer 31 is connected in such a manner that the resistance value of the resistor R connected to the feedback path of the operational amplifier 3 increases as the sum of the outputs of the negative feedback amplifier circuits 3 becomes smaller.

上記構成のフォーカスエラー検出器は以下のように作用
する。
The focus error detector having the above configuration operates as follows.

4分割受光素子]には従来から知られているように検査
光の光線束が次の経路で到達する。まず、被測定物から
反射した検査光の光線束を対物レンズを介して収束し、
その収束光をシリンドリカルレンズに通す。シリンドリ
カルレンズは単一方向にのみレンズとして働き、他の方
向についてはレンズとして機能しないから、上記収束光
を一方向に収束し、他方向については収束せずにそのま
ま通過する。こうしてシリンドリカルレンズを通過した
光線束を4分割受光素子]で受光する。被測定物に対す
る対物レンズの焦点が合っていれば4分割受光素子]に
は第1図のように円形の光線束Sが写るが、近すぎれば
例えば光線束Sが縦長の楕円形に写り、遠すぎれば横長
の楕円形に写る。
As is conventionally known, the ray bundle of inspection light reaches the 4-split light receiving element through the following path. First, the beam of inspection light reflected from the object to be measured is converged through an objective lens.
The converged light is passed through a cylindrical lens. Since the cylindrical lens functions as a lens only in one direction and does not function as a lens in other directions, it converges the convergent light in one direction and passes the convergent light in the other direction without converging. The light beam that has passed through the cylindrical lens in this way is received by the four-divided light receiving element. If the objective lens is focused on the object to be measured, a circular beam S will appear on the four-split light receiving element as shown in Figure 1, but if it is too close, the beam S will appear as a vertically elongated ellipse, for example. If it's too far away, the image will look like a horizontal oval.

こうした経路を通って到達した検査光の光線束Sを4分
割受光素子]が受光すると、上記構成のフォーカスエラ
ー検出器の回路は次のように振舞う。まず基本的な振舞
いを説明する。4分割受光素子]の各素子IA、IB、
IC,IDが光線束Sを受光して出力する出力信号は各
負帰還増幅回路3A、3B、3C,3Dで増幅される。
When the four-divided light receiving element receives the beam S of the inspection light that has arrived through such a path, the circuit of the focus error detector having the above configuration behaves as follows. First, we will explain the basic behavior. Each element IA, IB,
The output signals outputted by the IC and ID upon receiving the beam S are amplified by the respective negative feedback amplifier circuits 3A, 3B, 3C, and 3D.

各負帰還増幅回路3の出力信号は演算回路5で演算さね
さらに出力部7で増幅されて、フォーカスエラ−信号と
して出力される。具体的には、例えば焦点が合っていれ
ば4分割受光素子]に円形の光線束Sが写るから、演算
回路5で式(1)と等価の演算処理がなされたフォーカ
スエラー信号の大きさはほぼゼロになる。ところが、近
すぎて例えば4分割受光素子1に光線束Sが縦長の楕円
形に写っていれば、フォーカスエラー信号の大きさが正
符号の大きさになる。速すぎて4分割受光素子]に光線
束Sが横長の楕円形に写っていれば、フォカスエラー信
号の大きさが負符号の大きさになる。
The output signal of each negative feedback amplifier circuit 3 is subjected to arithmetic operations in an arithmetic circuit 5, and further amplified in an output section 7, and outputted as a focus error signal. Specifically, for example, if the focus is correct, a circular beam S will be reflected on the 4-split light receiving element, so the magnitude of the focus error signal after the calculation process equivalent to equation (1) in the calculation circuit 5 is It becomes almost zero. However, if it is too close and, for example, the light beam S is reflected in a vertically elongated ellipse on the four-split light receiving element 1, the magnitude of the focus error signal becomes a magnitude with a positive sign. If the beam S is reflected in a horizontally elongated ellipse on the 4-split light receiving element], the magnitude of the focus error signal becomes a magnitude with a negative sign.

したがって、フォーカスエラー信号の大きさがほぼゼロ
になるように、対物レンズと被測定物との離間距離を調
節すれば、被測定物に対する対物レンズの焦点を合わせ
ることができる。
Therefore, by adjusting the distance between the objective lens and the object to be measured so that the magnitude of the focus error signal becomes approximately zero, the objective lens can be focused on the object to be measured.

このよう1こしてフォーカスエラー信号が基本的に得ら
れるが、上記構成では、各負帰還増幅回路3で4分割受
光素子]の各素子IA、  1B、  IC。
In this way, a focus error signal is basically obtained, but in the above configuration, each negative feedback amplifier circuit 3 divides each element IA, 1B, and IC of the four-divided light receiving element.

1Dの信号が増幅される際、各負帰還増幅回路3の出力
から分岐した信号が増幅信号総和検出部9の加算器23
で加算さ札 加算器23の出力が増幅器29で増幅され
る。こうして各負帰還増幅回路3の出力の総和1こ関連
した信号が得られる。
When a 1D signal is amplified, a signal branched from the output of each negative feedback amplifier circuit 3 is sent to the adder 23 of the amplified signal sum detection section 9.
The output of the adder 23 is amplified by the amplifier 29. In this way, a signal related to the sum of the outputs of each negative feedback amplifier circuit 3 is obtained.

この総和に関連した信号はAD変換器27で3ビツトの
デジタル信号に変換される。デジタル信号は各負帰還増
幅回路3の帰還率設定部]]のマルチプレクサ31に入
力される。、マルチプレクサ31はデジタル信号の値に
応じて8本の抵抗器R1、R2,・・・、R8のうちの
−の抵抗器Rをオペアンプ13の帰還路に接続する。既
述したようにデジタル信号の値が大きいと、抵抗値のツ
ノ\さな抵抗器Rが接続さね デジタル信号の値が小さ
いと、抵抗値の大きな抵抗器Rが接続される。
The signal related to this sum is converted into a 3-bit digital signal by an AD converter 27. The digital signal is input to the multiplexer 31 of the feedback rate setting section of each negative feedback amplifier circuit 3. , the multiplexer 31 connects the negative resistor R of the eight resistors R1, R2, . . . , R8 to the feedback path of the operational amplifier 13 according to the value of the digital signal. As mentioned above, when the value of the digital signal is large, the resistor R with a small resistance value is connected, and when the value of the digital signal is small, the resistor R with a large resistance value is connected.

したがって、各負帰還増幅回路3の出力の総和が大きく
なれば、抵抗値の小さい抵抗器Rが接続されて帰還率が
大きくなり、上記出力の総和を小さくする。一方、上記
出力の総和が小さくなれば、抵抗値の大きな抵抗器Rが
接続されて帰還率が小さくなり、上記出力の総和を大き
くする。このようにして抵抗器Rを切り換えて帰還率色
変更することにより、上記出力の総和か略一定に保たれ
る。
Therefore, when the sum of the outputs of each negative feedback amplifier circuit 3 becomes large, the resistor R having a small resistance value is connected, and the feedback ratio becomes large, thereby reducing the sum of the outputs. On the other hand, if the sum of the outputs becomes small, a resistor R having a large resistance value is connected, and the feedback rate becomes small, thereby increasing the sum of the outputs. By switching the resistor R and changing the feedback rate color in this way, the sum of the outputs can be kept substantially constant.

この結果、出力の総和か略一定に保たれる帰還率で各負
帰還増幅回路3A、3B、3C,3Dにより各素子IA
、IB、IC,IDの出力が増幅さね その増幅信号に
基づいてフォーカスエラー信号が得られる。
As a result, each element IA is operated by each negative feedback amplifier circuit 3A, 3B, 3C, and 3D with a feedback rate that is kept substantially constant depending on the sum of the outputs.
, IB, IC, and ID are amplified, and a focus error signal is obtained based on the amplified signals.

即ち、被測定物の反射率の相違などにより4分割受光素
子1に到達する検査光の光線束の光量が変化しても、各
増幅器の増幅する増幅信号の総和を一定とする帰還率の
設定により、受光量が一定であるのと等価の挙動があら
れれる。したがって、上記光量の変化による誤差が補償
されたフォーカスエラー信号が得られる。
In other words, even if the intensity of the beam of inspection light that reaches the four-split light receiving element 1 changes due to differences in reflectance of the object to be measured, etc., the feedback rate is set so that the sum of the amplified signals amplified by each amplifier remains constant. Therefore, behavior equivalent to a constant amount of received light can be obtained. Therefore, a focus error signal is obtained in which the error due to the change in the amount of light is compensated for.

以上説明した実施例のフォーカスエラー検出器によれば
、被測定物の反射率の相違などにより4分割受光素子]
に到達する検査光の光線束の光量が変化し、4分割受光
素子]の受光量が変化しても、上記光量乞見かけ土 一
定にする帰還率を各負帰還増幅回路3に設定するから、
上記光量の変化による誤差を除算器を用いずに補償でき
、検査精度の一層の向上を図ることができるという優れ
た効果を奏する。なお、検査光の光源の光!制御をしな
いから、光源の制御回路は簡略であるとともに、光源の
寿命は長い。
According to the focus error detector of the embodiment described above, the light receiving element is divided into four parts due to the difference in reflectance of the object to be measured.]
Even if the amount of the light beam of the inspection light that reaches the test light changes and the amount of light received by the four-division light receiving element changes, a feedback rate is set in each negative feedback amplifier circuit 3 to keep the amount of light apparently constant.
This has the excellent effect of being able to compensate for the error caused by the change in the amount of light without using a divider, and further improving the inspection accuracy. In addition, the light source of the inspection light! Since there is no control, the control circuit for the light source is simple and the life of the light source is long.

また、実施例では、帰還率の変更を抵抗器Rの切換によ
り実現する。抵抗器Rは一般的に固体間の誤差が極めて
小さいから、品質の高いフォーカスエラー検出器を実現
できる。
Furthermore, in the embodiment, changing the feedback factor is realized by switching the resistor R. Since the resistor R generally has an extremely small inter-solid error, a high quality focus error detector can be realized.

以上本発明の実施例について説明したが、本発明はこう
した実施例に何等限定されるものではなく、本発明の要
旨を逸脱しない範囲において、種々なる態様で実施し得
ることは勿論である。例えば、光学ディスク再生機には
ピックアップが光学ディスクの記録ピットのトラックを
正確にとらえてレーザー光の授受を行なうためのトラッ
キングサーボ機構があるが、このトラッキングサーボ機
構で使用される光学式偏位検出器に適用してもよい。ま
た、フォーカシングサーボ機構であってもフーコー法を
利用し、分割受光素子として受光面に素子が一列に配列
されたものを用いる機構に適用してもよい。さらに、光
源と4分割受光素子との間を弾性アームで連結してなり
、光源の微小偏位から力を検出する光学式力センサ(例
えば6軸カセンサ)に適用したものでもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments in any way, and it goes without saying that it can be implemented in various forms without departing from the gist of the present invention. For example, an optical disc player has a tracking servo mechanism that allows the pickup to accurately track the recording pits of the optical disc and send and receive laser light. May be applied to vessels. Further, the focusing servo mechanism may utilize the Foucault method and may be applied to a mechanism using divided light-receiving elements in which elements are arranged in a line on the light-receiving surface. Furthermore, the present invention may be applied to an optical force sensor (for example, a 6-axis force sensor) that connects a light source and a 4-split light receiving element with an elastic arm and detects force from minute deviations of the light source.

発明の効果 以上詳述したように、本発明の光学式偏位検出器によれ
ば、例えば被測定物の反射率の相違などにより分割受光
素子に到達する検査光の光線束の光量が変化し、分割受
光素子の受光量が変化しても、受光量が一定であるかの
ように増幅器の増幅率を設定するから、上記変化の影響
を除算器を用いずに高精度で排除でき、検査精度の一層
の向上を図ることができるという優れた効果を奏する。
Effects of the Invention As detailed above, according to the optical deviation detector of the present invention, the amount of light beam of the inspection light reaching the split light receiving element changes due to, for example, a difference in the reflectance of the object to be measured. Even if the amount of light received by the split light-receiving element changes, the amplification factor of the amplifier is set as if the amount of light received was constant, so the effects of the above changes can be eliminated with high precision without using a divider, making inspection easier. This has the excellent effect of further improving accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としてのフォーカスエラー検
出器の回路図である。 3]・・・マルチプレクサ R・・・帰還率切換用抵抗器
FIG. 1 is a circuit diagram of a focus error detector as an embodiment of the present invention. 3]... Multiplexer R... Feedback rate switching resistor

Claims (1)

【特許請求の範囲】 1 受光面を複数領域に分割した分割受光素子の各素子
が検査光の光線束を受光して出力する出力信号を、該各
素子に対応して設けられた増幅器で増幅し、該各増幅器
が出力する増幅信号を演算回路で演算して、偏位に応じ
た信号を出力する光学式偏位検出器において、 前記各増幅器が出力する増幅信号の総和を検出する増幅
信号総和検出手段と、 該増幅信号総和検出手段が検出した増幅信号の総和に基
づいて、該総和を略一定に保つ増幅率を、前記各増幅器
に設定する増幅率設定手段と を備えることを特徴とする光学式偏位検出器。
[Claims] 1. Each element of a divided light-receiving element whose light-receiving surface is divided into a plurality of regions receives a beam of inspection light and outputs an output signal, which is amplified by an amplifier provided corresponding to each element. In an optical deviation detector that calculates the amplified signals output from each of the amplifiers in an arithmetic circuit and outputs a signal according to the deviation, an amplified signal that detects the sum of the amplified signals output from each of the amplifiers. It is characterized by comprising: a sum detection means; and an amplification factor setting means for setting an amplification factor for each of the amplifiers to keep the sum substantially constant based on the sum of the amplified signals detected by the amplified signal sum detection means. Optical deviation detector.
JP21456190A 1990-08-13 1990-08-13 Optical displacement detector Pending JPH0495805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21456190A JPH0495805A (en) 1990-08-13 1990-08-13 Optical displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21456190A JPH0495805A (en) 1990-08-13 1990-08-13 Optical displacement detector

Publications (1)

Publication Number Publication Date
JPH0495805A true JPH0495805A (en) 1992-03-27

Family

ID=16657765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21456190A Pending JPH0495805A (en) 1990-08-13 1990-08-13 Optical displacement detector

Country Status (1)

Country Link
JP (1) JPH0495805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034264A1 (en) * 1997-12-26 1999-07-08 Citizen Watch Co., Ltd. Electronic timepiece with calendar month-end non-correction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999034264A1 (en) * 1997-12-26 1999-07-08 Citizen Watch Co., Ltd. Electronic timepiece with calendar month-end non-correction device
US6278661B1 (en) 1997-12-26 2001-08-21 Citizen Watch Co., Ltd. Electronic timepiece with calendar month-end non-correction device

Similar Documents

Publication Publication Date Title
JPH0147762B2 (en)
TW200405275A (en) Optical disc apparatus, control device and control signal generation circuit
JPH0495805A (en) Optical displacement detector
JP3865564B2 (en) Tracking servo device for optical information recording / reproducing device
JPH04113523A (en) Beam spot position detector and optical pickup
JPH01260348A (en) Surface inspector for glass disc
JP2005228366A (en) Optical disk recording and reproducing apparatus
JP2001067682A (en) Optical disk device
JPH041932A (en) Optical head
JPH01302546A (en) Displacement detecting method
JPH01173330A (en) Device for detecting focus error
JPS62264452A (en) Measuring method for focus deviation
JPS62256235A (en) Optical information processor
JPH08129766A (en) Method for correcting offset of tracking error signal in optical disk device
JPS6310328A (en) Tracking control circuit
JPS6040534A (en) Method and device for tracking control
JP2551570B2 (en) Focus error detector
JPS5942646A (en) Radial skew correcting device of disk device
JPS60169707A (en) Surface-state measuring device
JPS58218050A (en) Tracking controller
JPS59160830A (en) Focus controller
JPS6199946A (en) Optical information reproducing device
JPS6150224A (en) Control of optical information reproducer
JPS629542A (en) Optical pickup device
JPS59186139A (en) Control method of irradiated beam and beam detector