JPH0495338A - Discharge lamp - Google Patents

Discharge lamp

Info

Publication number
JPH0495338A
JPH0495338A JP20409690A JP20409690A JPH0495338A JP H0495338 A JPH0495338 A JP H0495338A JP 20409690 A JP20409690 A JP 20409690A JP 20409690 A JP20409690 A JP 20409690A JP H0495338 A JPH0495338 A JP H0495338A
Authority
JP
Japan
Prior art keywords
discharge lamp
thin film
visible light
ultraviolet radiation
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20409690A
Other languages
Japanese (ja)
Other versions
JPH0719572B2 (en
Inventor
Toshio Matsushita
俊雄 松下
Yoshinori Shimizu
義則 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP20409690A priority Critical patent/JPH0719572B2/en
Publication of JPH0495338A publication Critical patent/JPH0495338A/en
Publication of JPH0719572B2 publication Critical patent/JPH0719572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To enhance light flux by forming on the inner or outer surface of a glass envelop an ultraviolet radiation reflecting layer which reflects ultraviolet radiation and which allows transmission of visible light therethrough. CONSTITUTION:A thin dielectric multilayed film 6 which roughly completely reflects ultraviolet radiation in the vicinity of 253.7nm which is the main exciting wavelength of mercury and which allows visible light of wavelength from 380 to 780nm to be roughly transmitted therethrough is formed on the inner surface of a glass envelop 2. As a result, ultraviolet radiation generated at the lighting of a discharge lamp from gas sealed in the glass envelope 2 is converted to visible light when applied to particles of fluorescent material in a fluorescent material particle layer 4. The visible light converted from the ultraviolet radiation is roughly completely transmitted through the thin dielectric multilayered film 6. Ultraviolet radiation transmitted through the fluorescent material particle layer 4 is roughly completely reflected by the thin dielectric multilayered film 6 and is therefore reflected by the thin dielectric film 6 until it is applied to the fluorescent material particles in the fluorescent material particle layer 4 and converted to visible light; i.e., the thin dielectric multilayered film 4 reflects ultraviolet radiation and also has complete wavelangth selectivity by which it allows transmission of visible light therethrough and is capable of converting roughly all ultraviolet radiation generated from the gas sealed in the glass envelop 2 to visible light.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、水銀の主励起波長である253゜7nm付
近の紫外線を可視光に変換する蛍光物質を有した放電ラ
ンプに係り、特にその発光効率を改良した蛍光ランプ及
び冷陰極放電ランプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a discharge lamp having a fluorescent substance that converts ultraviolet rays around 253°7 nm, which is the main excitation wavelength of mercury, into visible light. This invention relates to fluorescent lamps and cold cathode discharge lamps with improved efficiency.

[従来の技術] 一般に、蛍光ランプ、冷陰極放電ランプ等を含む放電ラ
ンプは、カラス外囲器と、このガラス外囲器の内面に塗
布された蛍光体粒子層とからなっており、カラス外囲器
内には、真空引きされた後ランプの種類によって多少種
類を異なるが、アルコン、クリプトン、ネオン、ヘリウ
ム等の希カスと、水銀蒸気とが封入されている。そして
、放電ランプでは、点灯時、主として水銀の主励起波長
である253.7nm付近の紫外線により、蛍光体粒子
層の蛍光体が励起され、波長3 B On、 m b)
ら780nmにわたる可視光に変換される。変換された
可視光はガラス外囲器を透過して外部に出るが、一方、
蛍光体粒子層を通過してガラス外囲器に到達した紫外線
はガラス外囲器によって略吸収される。
[Prior Art] Generally, discharge lamps including fluorescent lamps, cold cathode discharge lamps, etc. consist of a glass envelope and a phosphor particle layer coated on the inner surface of the glass envelope. After being evacuated, the envelope is filled with rare scum such as alcon, krypton, neon, helium, etc., and mercury vapor, although the type varies depending on the type of lamp. In a discharge lamp, when the lamp is lit, the phosphor in the phosphor particle layer is excited mainly by ultraviolet light around 253.7 nm, which is the main excitation wavelength of mercury, and the wavelength 3 B On, m b)
is converted into visible light over a wavelength of 780 nm. The converted visible light passes through the glass envelope and exits, but on the other hand,
The ultraviolet rays that have passed through the phosphor particle layer and reached the glass envelope are substantially absorbed by the glass envelope.

カラス外囲器によって吸収される紫外線を有効利用する
ため、例えba、米国特許第4.079.288号公報
を参照すれば、ガラス外囲器と蛍光体粒子層との間にA
l2O3からなる紫外線反射層を設けることにより、蛍
光体粒子層を透過した紫外線を反射させて蛍光体粒子を
励起させ、これにより、放電ランプの光束を向上さすこ
とが開示されている。
In order to effectively utilize the ultraviolet rays absorbed by the glass envelope, for example, referring to U.S. Pat. No. 4,079,288, A.
It is disclosed that by providing an ultraviolet reflection layer made of 12O3, ultraviolet light transmitted through the phosphor particle layer is reflected to excite the phosphor particles, thereby improving the luminous flux of the discharge lamp.

[発明が解決しようとする課題] しかしながら、従来の紫外線反射層は、ガラスバルブ内
面にAl2O3等の白色粉末を塗布したものであるため
、波長380nrnから780nmにわたる可視光をも
反射してしまう。このため、ガラスバルブの一部に蛍光
体粒子層及び紫外線反射層を塗布しない特定領域を設け
、この特定領域から反射光を放射する反射型放電ランプ
には、極めて有効であるが、反射型でない全周放射型放
電ランプでは、紫外線反射層による光束の向上がわずか
であり、紫外線を反射し且つ可視光を透過する紫外線反
射層が切望されている。
[Problems to be Solved by the Invention] However, since the conventional ultraviolet reflection layer is made by applying white powder such as Al2O3 to the inner surface of a glass bulb, it also reflects visible light having a wavelength of 380nrn to 780nm. For this reason, it is extremely effective for reflective discharge lamps in which a specific area is provided in a part of the glass bulb where no phosphor particle layer or ultraviolet reflection layer is coated, and the reflected light is emitted from this specific area, but it is not effective for reflective discharge lamps. In a full-circumference discharge lamp, the luminous flux is only slightly improved by the ultraviolet reflection layer, and there is a strong need for an ultraviolet reflection layer that reflects ultraviolet light and transmits visible light.

従って、この発明の目的は、紫外線を反射し且つ可視光
を透過する紫外線反射層をガラス外囲器内面又は外面に
形成することにより、光束の向上した放電ランプを提供
することにある。
Therefore, an object of the present invention is to provide a discharge lamp with improved luminous flux by forming an ultraviolet reflection layer that reflects ultraviolet rays and transmits visible light on the inner or outer surface of a glass envelope.

[課題を解決するための手段コ 本発明者等は、上述の事情に鑑み、まず、多層薄膜誘電
体反射鏡の技術に着目した。この多層薄膜誘電体反射鏡
の技術では、高屈折率と低屈折率の誘電体薄膜を交互に
層状に数層から数十層重ねた反射膜を形成することによ
り、吸収が少なく、また、任意の分光反射率を選定でき
、特定の波長に対して100%に近い反射率を得ること
ができる。
[Means for Solving the Problems] In view of the above-mentioned circumstances, the present inventors first focused on the technology of multilayer thin film dielectric reflecting mirrors. In this multilayer thin film dielectric reflector technology, by forming a reflective film consisting of several to tens of layers of dielectric thin films with high refractive index and low refractive index stacked alternately, absorption is reduced and arbitrary It is possible to select a spectral reflectance of 100% and obtain a reflectance close to 100% for a specific wavelength.

そして、鋭意研究の結果、上述の目的は、ガラス外囲器
の内面又は、ガラス外囲器の材質が紫外線をほぼ透過す
る材質からなる場合にガラス外囲器の外面に、水銀の主
励起波長である253.7nm付近の紫外線を略完全に
反射し且つ波長380nmから780nmにわたる可視
光を略透過する誘電体釜N薄膜を形成したことを特徴と
する放電ランプを提供することにより、解決される。
As a result of intensive research, the above purpose was to create a film with the main excitation wavelength of mercury on the inner surface of the glass envelope or, if the material of the glass envelope is made of a material that almost transmits ultraviolet rays, on the outer surface of the glass envelope. This problem is solved by providing a discharge lamp characterized by forming a dielectric pot N thin film that almost completely reflects ultraviolet rays around 253.7 nm and substantially transmits visible light with wavelengths from 380 nm to 780 nm. .

好適には、この放電ランプでは、誘電体多層薄膜が、T
iO2、Ta2O5及びZnSからなる群より選ばれた
少なくとも1つの物質からなる高屈折率層と、5j02
及びMgF2からなる群より選ばれた少なくとも1つの
物質からなる低屈折率層とを交互に層状として形成され
てなる。
Preferably, in this discharge lamp, the dielectric multilayer thin film has T
a high refractive index layer made of at least one substance selected from the group consisting of iO2, Ta2O5 and ZnS, and 5j02
and low refractive index layers made of at least one substance selected from the group consisting of MgF2 and MgF2.

また、この発明では、放電ランプが、発光の主要部分を
放電からの紫外放射によって励起される蛍光物質のフォ
トルミネセンスとする蛍光ランプであっても、グロー放
電の陽光性で発光する冷陰極放電ランプであってもよく
、蛍光体ランプの場合、誘電体多層薄膜がTlO2層と
5102層とを交互に層状に3層以上重ねた反射膜であ
ることが好ましく、一方、冷陰極放電ランプの場合、誘
電体多層薄膜が9層以上重ねた反射膜であることが好ま
しい。
In addition, in this invention, even if the discharge lamp is a fluorescent lamp in which the main part of the light emission is photoluminescence of a fluorescent substance excited by ultraviolet radiation from the discharge, the discharge lamp is a cold cathode discharge lamp that emits light by the sunlight of the glow discharge. In the case of a fluorescent lamp, the dielectric multilayer thin film is preferably a reflective film in which three or more layers of TlO2 layers and 5102 layers are stacked alternately, while in the case of a cold cathode discharge lamp. It is preferable that the reflective film is a reflective film in which nine or more dielectric multilayer thin films are stacked.

[作用] 例えば、ガラス外囲器の内面に、水銀の主励起波長であ
る253.7nm付近の紫外線を略完全に反射し且つ波
長380nmから780nmにわたる可視光を略透過す
る誘電体多層薄膜を形成したことにより、第1図の模式
図に示されるように、放電ランプの点灯時、ガラス外囲
器2内に封入されたガスから生した紫外線は、第1図中
2号aに示される如く、蛍光体位子N4の蛍光体粒子に
照射される場合には、可視光に変換される。変換された
可視光は誘電体多層薄膜6を略完全に透過する。一方、
蛍光体粒子N4を透過した紫外線は、第1図中2号すに
示される如く、誘電体多層薄膜6によって略完全に反射
されるので、蛍光体粒子層4の蛍光体粒子に照射されて
可視光に変換されるまて誘電対多N薄膜6て反射される
[Function] For example, on the inner surface of the glass envelope, a dielectric multilayer thin film is formed that almost completely reflects ultraviolet light around 253.7 nm, which is the main excitation wavelength of mercury, and almost transmits visible light with wavelengths from 380 nm to 780 nm. As a result, as shown in the schematic diagram of FIG. 1, when the discharge lamp is lit, the ultraviolet rays generated from the gas sealed in the glass envelope 2 are emitted as shown in item 2 a in FIG. , when the phosphor particles of the phosphor ion N4 are irradiated, it is converted into visible light. The converted visible light almost completely passes through the dielectric multilayer thin film 6. on the other hand,
The ultraviolet rays that have passed through the phosphor particles N4 are almost completely reflected by the dielectric multilayer thin film 6, as shown in No. 2 in FIG. The light that is converted into light is reflected by the dielectric thin film 6.

即ち、従来、ガラス外囲器2内に封入されたガスから生
じた紫外線の一部がガラス外囲器2で吸収されて透過損
失となっていたのが、本発明では、誘電体多層薄膜4が
、紫外線を反射し且つ可視光を透過さすという完全な波
長選択性を有するため、ガラス外囲器2内に封入された
ガスから生した紫外線の略全ては可視光に変換されると
いう理想的な放電ランプが実現される。
That is, in the past, part of the ultraviolet rays generated from the gas sealed in the glass envelope 2 was absorbed by the glass envelope 2, resulting in transmission loss, but in the present invention, the dielectric multilayer thin film 4 has perfect wavelength selectivity, reflecting ultraviolet rays and transmitting visible light, so almost all of the ultraviolet rays emitted from the gas sealed within the glass envelope 2 are ideally converted into visible light. A discharge lamp is realized.

このため、放電ランプの発光効率が驚異的な割合で改善
される。
As a result, the luminous efficiency of the discharge lamp is improved to an astonishing degree.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

まず、本発明者等は、誘電体多層薄膜について、水銀の
主励起波長である253.7nm付近の紫外線を完全に
反射し且つ波長380nmから780nmにわたる可視
光を透過するとの見地から検討した。
First, the present inventors investigated a dielectric multilayer thin film from the viewpoint that it completely reflects ultraviolet rays around 253.7 nm, which is the main excitation wavelength of mercury, and transmits visible light with wavelengths ranging from 380 nm to 780 nm.

まず、ガラス外囲器が高純度石英ガラスのような紫外線
透過物質からから構成される場合には、誘電体多層薄膜
がカラス外囲器の外面に形成されてもよいが、高純度で
ない場合には、紫外線を吸収するため、発光効率が悪く
なるので、ガラス外囲器の内面に誘電体多層薄膜を形成
することを前提とした。
First, if the glass envelope is made of an ultraviolet-transparent material such as high-purity quartz glass, a dielectric multilayer thin film may be formed on the outer surface of the glass envelope, but if the glass envelope is not made of high-purity material, Since this method absorbs ultraviolet rays, which reduces luminous efficiency, it was assumed that a dielectric multilayer thin film would be formed on the inner surface of the glass envelope.

高屈折率層としては、T i 02、Ta2O5、Zn
S等がよく、又、低屈折率層としては、5102、Mg
F2等がよい。
As the high refractive index layer, T i 02, Ta2O5, Zn
S, etc. are good, and as a low refractive index layer, 5102, Mg
F2 etc. is good.

次に、誘電体多層薄膜の作製方法としては、真空蒸着法
、気相法(CVD法)等の種々な方法が考えられるが、
を量産性に優れたディッピング法を選定することを前提
として、高屈折率層としてTiO2を、低屈折率層とし
てSiO2を選定し、高屈折率層−低屈折率層−高屈折
率層と積層することにより、何層重ねるかを検討した。
Next, various methods such as vacuum evaporation method, vapor phase method (CVD method), etc. can be considered as a method for producing a dielectric multilayer thin film.
On the premise of selecting a dipping method that is excellent in mass production, we selected TiO2 as the high refractive index layer and SiO2 as the low refractive index layer, and laminated the high refractive index layer - low refractive index layer - high refractive index layer. By doing this, we considered how many layers to add.

即ち、第1図に示されるように、放電ランプがガラス外
囲器2を有し、このガラス外囲器2の内面に塗布される
べき蛍光体粒子層4との間に誘電体多N薄M6が形成さ
れる。ガラス外囲器2をシリカ(Si02)のガラス基
板とし、光屈折率層のT i 02の屈折率をn、=2
. 76、低屈折率層のSiO2の屈折率をn、:=1
.48とし、構成を高屈折率層−低屈折率層の周期的多
層膜とする帯域フィルタと仮定し、次式に表される構成
とした。
That is, as shown in FIG. 1, a discharge lamp has a glass envelope 2, and a dielectric multi-N thin film is disposed between a phosphor particle layer 4 to be coated on the inner surface of the glass envelope 2. M6 is formed. The glass envelope 2 is a silica (Si02) glass substrate, and the refractive index of T i 02 of the optical refractive index layer is n, = 2.
.. 76, the refractive index of SiO2 of the low refractive index layer is n, :=1
.. 48, and the configuration is assumed to be a bandpass filter having a periodic multilayer film of a high refractive index layer and a low refractive index layer, and the configuration is expressed by the following equation.

NS/ (0,5H)(L −H)”L (0,5H)
/N。
NS/ (0,5H)(L -H)”L (0,5H)
/N.

Nsニガラス基板(n、=1.48) 0.5H:高屈折率層(n Hd :0. 125λ)
L:低屈折率層(nLd=0.25λ)H:高屈折率F
(n、d=0.25λ)NO=蛍光体粒子層 尚、dは膜厚てあり、入は波長(253,7nm)であ
る。
Ns glass substrate (n, = 1.48) 0.5H: High refractive index layer (n Hd: 0.125λ)
L: Low refractive index layer (nLd=0.25λ) H: High refractive index F
(n, d=0.25λ) NO=phosphor particle layer Note that d is the film thickness, and d is the wavelength (253.7 nm).

例えば、層数を9層という場合には、次のようになる。For example, when the number of layers is 9, it is as follows.

NS/ (0,5H)  (L −H) ”L (0,
5H) /N。
NS/ (0,5H) (L -H) ”L (0,
5H) /N.

即ち、構成例を具体的に構成材料とその膜厚て表すと次
のようになる。
That is, a specific example of the configuration, expressed in terms of constituent materials and their film thicknesses, is as follows.

ガラス基板/ (Ti02 : 12.2n−)(Si
02:45.6nm)  (Ti02:24.5n@)
(Si02:45.6r++w)  (Ti02:24
.5nw)(Si02 : 45.6n*)  (T1
02 : 24.5rv)(Si02:45.6n*)
   (T102:12.2ns)/蛍光体粒子層 このような構成の誘電体長N薄膜6の5層乃至15層に
ついて、波長253.7nmについて垂直入射おける反
射率を計算で求めた結果が第2図に示される。
Glass substrate/(Ti02: 12.2n-)(Si
02:45.6nm) (Ti02:24.5n@)
(Si02:45.6r++w) (Ti02:24
.. 5nw) (Si02: 45.6n*) (T1
02: 24.5rv) (Si02:45.6n*)
(T102: 12.2 ns) / Phosphor particle layer Figure 2 shows the results of calculating the reflectance at normal incidence for a wavelength of 253.7 nm for the 5th to 15th layers of dielectric length N thin film 6 with such a configuration. is shown.

第2図から明らかなように、誘電体多層薄膜6を9層以
上とするとき、波長253.7nmにおける反射率を約
97%以上とすることができる。
As is clear from FIG. 2, when the dielectric multilayer thin film 6 has nine or more layers, the reflectance at a wavelength of 253.7 nm can be about 97% or more.

また、当然のことながら、誘電体多層薄膜6を多層とす
るほど、反射率を100%に近づけることができるが、
第2図から明らかなように、13層及び15Nで反射率
が99%を越えており、経済的には13層で十分である
Also, as a matter of course, the more layers the dielectric multilayer thin film 6 has, the closer the reflectance can be to 100%.
As is clear from FIG. 2, the reflectance exceeds 99% with 13 layers and 15N, and 13 layers is economically sufficient.

次ここ、積層の下限値であるが、図示しないが、3層の
場合でも、253.7層mでの反射率は約82%であり
、この3層の場合、目に最も明るく感しるといわれる可
視領域の550%mでほぼ完全に透過し、380 n 
m 〜780 n mてほぼ10%以下の反射率を有す
るので、輝度の向上を図りながら、経済性を考えた場合
、3層で十分である。
Next, although it is not shown in the figure, the lower limit of lamination is about 82% even in the case of 3 layers, the reflectance at 253.7 layers m is about 82%, and in the case of these 3 layers, it feels the brightest to the eye Transmits almost completely at 550%m of the visible range, which is said to be 380nm.
Since it has a reflectance of approximately 10% or less at m to 780 nm, three layers are sufficient when economical efficiency is considered while improving brightness.

このように構成した誘電体多層薄膜60反射率曲線につ
いて述べる。
The reflectance curve of the dielectric multilayer thin film 60 constructed in this way will be described.

第3図乃至第6図には、誘電体多層薄膜6の層数を9層
乃至15層にしたときの反射率曲線が夫々示されている
3 to 6 show reflectance curves when the number of layers of the dielectric multilayer thin film 6 is 9 to 15, respectively.

第3図乃至第6図から明らかなように、可視光の領域、
即ち、381Dnm乃至780%mの波長における反射
率はいずれも2O%以下であり、はとんと透過すると言
える。
As is clear from FIGS. 3 to 6, the visible light region,
In other words, the reflectance at wavelengths from 381 Dnm to 780% m is all 20% or less, and it can be said that the film is highly transparent.

次に、このような誘電体多層薄膜6を形成した放電ラン
プの特性について述へる。
Next, the characteristics of a discharge lamp in which such a dielectric multilayer thin film 6 is formed will be described.

(実施例1) 放電ランプとして、グロー放電の陽光性で発光する冷陰
極放電ランプに、本発明の誘電体多層薄膜6を適用した
(Example 1) As a discharge lamp, the dielectric multilayer thin film 6 of the present invention was applied to a cold cathode discharge lamp that emits light by the sunlight of glow discharge.

色温度5500’ Kとし、外径8.0mmφ、全長2
60mmとする液晶表示装置の背面照明用冷陰極放電ラ
ンプに、ガラス外囲器2には紫外線透過の優れた高純度
石Tガラスを使用し、高屈折率層としてTiO2を、低
屈折率層としてS i 02を選定し層数を9層とする
誘電体多層薄M6をガラス外囲器2の内面にディッピン
グ法にて形成した。
Color temperature 5500'K, outer diameter 8.0mmφ, total length 2
In a cold cathode discharge lamp for back illumination of a liquid crystal display device with a diameter of 60 mm, high-purity stone T glass with excellent ultraviolet transmission is used for the glass envelope 2, TiO2 is used as a high refractive index layer, and TiO2 is used as a low refractive index layer. S i 02 was selected and a dielectric multilayer thin M6 having nine layers was formed on the inner surface of the glass envelope 2 by a dipping method.

誘電体多層薄膜6を形成しない従来の冷陰極ランプが、
25℃、30kHz、5 m Aの定格電流で、輝度を
4500n tであるのに対し、本発明の冷陰極放電ラ
ンプは、同一条件で、輝度を約6000n tとするこ
とができ、輝度半減期による寿命は約2万時閏と同一で
あった。
A conventional cold cathode lamp that does not form a dielectric multilayer thin film 6,
At 25°C, 30 kHz, and a rated current of 5 mA, the brightness is 4500 nt, whereas the cold cathode discharge lamp of the present invention can have a brightness of about 6000 nt under the same conditions, and has a brightness half-life of 4500 nt. The lifespan was approximately 20,000 hours long.

(実施例2) 次に、放電ランプとして、発光の主要部分を放電からの
紫外放射によって励起される蛍光物質のフォトルミネセ
ンスとする通常の低圧水銀ランプ、とりわけ、三波長型
高演色性蛍光ランプに、本発明の誘電体多層薄膜6を適
用した。
(Example 2) Next, as a discharge lamp, a normal low-pressure mercury lamp whose main part of light emission is photoluminescence of a fluorescent substance excited by ultraviolet radiation from a discharge, and in particular a three-wavelength high color rendering fluorescent lamp. The dielectric multilayer thin film 6 of the present invention was applied to this.

色温度3000°にとし、ガラス外囲器2をFL40S
Sバルブとする三波長型蛍光ランプに、高屈折率層とし
てTlO2を、低屈折率層として5102を選定し層数
を3層とする誘電体多層薄膜6をガラス外囲器2の内面
にディッピング法にて形成した。
The color temperature is set to 3000°, and the glass envelope 2 is set to FL40S.
In a three-wavelength fluorescent lamp with an S bulb, TlO2 is selected as the high refractive index layer and 5102 is selected as the low refractive index layer, and a dielectric multilayer thin film 6 having three layers is dipped on the inner surface of the glass envelope 2. Formed by law.

紫外線反射層として粒径0.3μmのα−A12O3粉
体をFL40SSバルブ内面に2 g / m 2塗布
した従来の放電ランプの光束が、35001mであるの
に対し、紫外線反射層の代わりに誘電体多層薄膜6を形
成したこと以外同一である本発明の蛍光ランプの光束は
、42O01mと極めて明るくてきた。
The luminous flux of a conventional discharge lamp in which 2 g/m2 of α-A12O3 powder with a particle size of 0.3 μm was coated on the inner surface of the FL40SS bulb as an ultraviolet reflection layer was 35001 m, whereas a dielectric material was used instead of the ultraviolet reflection layer. The luminous flux of the fluorescent lamp of the present invention, which is the same except that the multilayer thin film 6 is formed, is extremely bright at 42001 m.

又、その他のランプ特性、例えば、演色性、光束維持率
及びカラーシフト(変色)もほぼ従来の蛍光ランプと同
一であった。
In addition, other lamp characteristics such as color rendering, luminous flux maintenance rate, and color shift (color change) were almost the same as those of conventional fluorescent lamps.

尚、上述の説明では、冷陰極放電ランプと蛍光ランプに
ついてしたが、この発明は、その他の放電ランプ、例え
ば、熱陰極放電ランプ、高圧放電ランプ等の各種放電ラ
ンプに適用されてもよいことは言うまでもない。
Although the above description has been made regarding cold cathode discharge lamps and fluorescent lamps, it is understood that the present invention may be applied to various discharge lamps such as other discharge lamps, such as hot cathode discharge lamps and high-pressure discharge lamps. Needless to say.

[発明の効果] 以上説明したように、本発明によれば、紫外線を反射し
且つ可視光を透過する紫外線反射層をガラス外囲器に形
成することにより、光束の向上した放電ランプを提供す
ることができる。
[Effects of the Invention] As explained above, according to the present invention, a discharge lamp with improved luminous flux is provided by forming an ultraviolet reflection layer on a glass envelope that reflects ultraviolet rays and transmits visible light. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る放電ランプの断面の一部を示す
模式図、第2図は、第1図の誘電体多層薄膜の層数と反
射率との関係を示すグラフ図、第3図乃至第6図は、第
1図の誘電体多層薄膜の反射率曲線を示すグラフ図であ
る。 2°°ガラス外囲器、4・・蛍光体粒子層、6・誘電体
多層薄膜。 第1図
FIG. 1 is a schematic diagram showing a part of a cross section of a discharge lamp according to the present invention, FIG. 2 is a graph diagram showing the relationship between the number of layers and reflectance of the dielectric multilayer thin film in FIG. 1, and FIG. 6 to 6 are graphs showing reflectance curves of the dielectric multilayer thin film shown in FIG. 1. 2°° glass envelope, 4. Phosphor particle layer, 6. Dielectric multilayer thin film. Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)ガラス外囲器の内面又は、ガラス外囲器の材質が
紫外線をほぼ透過する材質からなる場合にガラス外囲器
の外面に、水銀の主励起波長である253.7nm付近
の紫外線を略反射し且つ波長380nmから780nm
にわたる可視光を略透過する誘電体多層薄膜を形成した
ことを特徴とする放電ランプ。
(1) Apply ultraviolet rays near 253.7 nm, which is the main excitation wavelength of mercury, to the inner surface of the glass envelope or the outer surface of the glass envelope when the material of the glass envelope is made of a material that almost transmits ultraviolet rays. Approximately reflective and wavelength 380nm to 780nm
A discharge lamp characterized by forming a dielectric multilayer thin film that substantially transmits visible light over a wide range.
(2)前記誘電体多層薄膜が、TiO2、Ta2O5及
びZnSからなる群より選ばれた少なくとも1つの物質
からなる高屈折率層と、SiO2及びMgF2からなる
群より選ばれた少なくとも1つの物質からなる低屈折率
層とを交互に層状として形成されてなることを特徴とす
る特許請求の範囲第1項に記載の放電ランプ。
(2) The dielectric multilayer thin film consists of a high refractive index layer made of at least one substance selected from the group consisting of TiO2, Ta2O5, and ZnS, and at least one substance selected from the group consisting of SiO2 and MgF2. The discharge lamp according to claim 1, characterized in that the discharge lamp is formed of alternating layers of low refractive index layers.
(3)前記放電ランプが、発光の主要部分を放電からの
紫外放射によって励起される蛍光物質のフォトルミネセ
ンスとする蛍光ランプであることを特徴とする特許請求
の範囲第1項又は第2項に記載の放電ランプ。
(3) The discharge lamp is a fluorescent lamp whose main part of light emission is photoluminescence of a fluorescent substance excited by ultraviolet radiation from a discharge. Discharge lamp described in.
(4)前記誘電体多層薄膜がTiO2層とSiO2層と
を交互に層状に3層以上重ねた反射薄膜からなることを
特徴とする特許請求の範囲第3項に記載の放電ランプ。
(4) The discharge lamp according to claim 3, wherein the dielectric multilayer thin film is made of a reflective thin film in which three or more TiO2 layers and SiO2 layers are stacked alternately.
(5)前記放電ランプが、グロー放電の陽光性で発光す
る冷陰極放電ランプであることを特徴とする特許請求の
範囲第1項又は第2項に記載の放電ランプ。
(5) The discharge lamp according to claim 1 or 2, wherein the discharge lamp is a cold cathode discharge lamp that emits light by the sunlight of glow discharge.
(6)前記誘電体多層薄膜がTiO2層とSiO2層と
を交互に層状に9層以上重ねた反射薄膜からなることを
特徴とする特許請求の範囲第5項に記載の放電ランプ。
(6) The discharge lamp according to claim 5, wherein the dielectric multilayer thin film is a reflective thin film in which nine or more TiO2 layers and SiO2 layers are stacked alternately.
JP20409690A 1990-07-31 1990-07-31 Discharge lamp Expired - Lifetime JPH0719572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20409690A JPH0719572B2 (en) 1990-07-31 1990-07-31 Discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20409690A JPH0719572B2 (en) 1990-07-31 1990-07-31 Discharge lamp

Publications (2)

Publication Number Publication Date
JPH0495338A true JPH0495338A (en) 1992-03-27
JPH0719572B2 JPH0719572B2 (en) 1995-03-06

Family

ID=16484730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20409690A Expired - Lifetime JPH0719572B2 (en) 1990-07-31 1990-07-31 Discharge lamp

Country Status (1)

Country Link
JP (1) JPH0719572B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011566A (en) * 1994-09-12 1996-04-20 타실로 다우너, 조아킴 베르너 Mercury vapor high pressure short arc discharge lamp, method and apparatus for exposing a semiconductor wafer to radiation emitted from the lamp
WO2003073055A1 (en) * 2002-02-28 2003-09-04 Shin-Etsu Handotai Co., Ltd. Temperature measuring system, heating device using it and production method for semiconductor wafer, heat ray insulating translucent member, visible light reflection membner, exposure system-use reflection mirror and exposure system, and semiconductor device produced by using them and vetical heat treating device
JP2008024564A (en) * 2006-07-24 2008-02-07 Matsushita Electric Ind Co Ltd Method for producing glass for lamp, glass for lamp, glass tube for lamp and lamp
EP1970939A2 (en) * 2007-03-14 2008-09-17 Jenn-Wei Mii Light illuminating element
KR101295700B1 (en) * 2011-08-08 2013-08-14 김우섭 Lamp of Exposure Apparatus in Photo Lithography System or LCD Hardening System

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011566A (en) * 1994-09-12 1996-04-20 타실로 다우너, 조아킴 베르너 Mercury vapor high pressure short arc discharge lamp, method and apparatus for exposing a semiconductor wafer to radiation emitted from the lamp
WO2003073055A1 (en) * 2002-02-28 2003-09-04 Shin-Etsu Handotai Co., Ltd. Temperature measuring system, heating device using it and production method for semiconductor wafer, heat ray insulating translucent member, visible light reflection membner, exposure system-use reflection mirror and exposure system, and semiconductor device produced by using them and vetical heat treating device
JP2008024564A (en) * 2006-07-24 2008-02-07 Matsushita Electric Ind Co Ltd Method for producing glass for lamp, glass for lamp, glass tube for lamp and lamp
EP1970939A2 (en) * 2007-03-14 2008-09-17 Jenn-Wei Mii Light illuminating element
US7919913B2 (en) 2007-03-14 2011-04-05 Mii Jenn-Wei Light illuminating element
EP1970939A3 (en) * 2007-03-14 2012-02-29 Jenn-Wei Mii Light illuminating element
KR101295700B1 (en) * 2011-08-08 2013-08-14 김우섭 Lamp of Exposure Apparatus in Photo Lithography System or LCD Hardening System

Also Published As

Publication number Publication date
JPH0719572B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
JP5069156B2 (en) Light emitting parts
US3931536A (en) Efficiency arc discharge lamp
JP2008052070A (en) Color wheel, visible light source, and projection image display device and method
JP2009116218A (en) Antireflective film, method of forming antireflective film and light-transmissive member
US2854600A (en) Low-pressure mercury-vapour discharge lamp
US7396271B2 (en) Method of making a plasma lamp
US20070138926A1 (en) Method for optimizing lamp spectral output
JPH0495338A (en) Discharge lamp
JP2003051284A (en) Fluorescence lamp and illumination instrument
US3528725A (en) Color temperature correction light transmitting filter
JPH0636348B2 (en) High color rendering fluorescent lamp
JPH03280345A (en) Reflex type ultraviolet lamp
JP3667414B2 (en) Cold cathode low pressure discharge lamp
JPS61250958A (en) Metal halide lamp
JPH09102298A (en) Cold electrode low-pressure discharge lamp
JPH02148559A (en) Metal halide lamp
JPH11265685A (en) Fluorescent lamp
JPH08129987A (en) Fluorescent lamp and its manufacture
NO140211B (en) ELECTRIC GAS DISCHARGE LAMP.
JPH10134767A (en) Metal halide lamp with transparent insulation coating film
JP2668828B2 (en) Short arc discharge lamp
JP2001307677A (en) Hid lamp
JP2626062B2 (en) Incandescent light bulb
JP2002040239A (en) Optical interference film structural body and halogen bulb
JPH06111792A (en) Bulb