JPH0495321A - Diagnostic apparatus for switch operation - Google Patents

Diagnostic apparatus for switch operation

Info

Publication number
JPH0495321A
JPH0495321A JP2202894A JP20289490A JPH0495321A JP H0495321 A JPH0495321 A JP H0495321A JP 2202894 A JP2202894 A JP 2202894A JP 20289490 A JP20289490 A JP 20289490A JP H0495321 A JPH0495321 A JP H0495321A
Authority
JP
Japan
Prior art keywords
current
circuit
signal
control
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2202894A
Other languages
Japanese (ja)
Other versions
JP2722793B2 (en
Inventor
Hiromi Iwai
岩井 弘美
Kazuo Shibata
柴田 和郎
Nobuyasu Harada
信康 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2202894A priority Critical patent/JP2722793B2/en
Publication of JPH0495321A publication Critical patent/JPH0495321A/en
Application granted granted Critical
Publication of JP2722793B2 publication Critical patent/JP2722793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

PURPOSE:To accurately diagnose the operation of switch equipment and also enable diagnosis using substantially one unit by detecting the operation of contact parting or a controlling electromagnetic switch and the operation of contact parting or the current of the controlling electromagnetic coil using respective independent current sensors, and, when two currents are generated simultaneously, preferring the processing of the electromagnetic coil current generated earlier. CONSTITUTION:A diagnostic unit main body has two insulating amplifiers each of which isolates the current sensor side portion from the micro signal side diagnosing unit main body side portion of switch equipment under large current environment and two comparing circuits connected to the respective insulating amplifiers, and the sets of insulating amplifiers and comparing circuits are each connected to a current sensor so as to constitute an input circuit for a preference circuit. The preference circuit comprises an Ic signal G1 and an Io signal gate G2, both of which are always in such a state that signals can be passed therethrough, and a self-holding circuit H1 which when an Ic signal is passed therethrough holds the signal and opens the gate G2, and a self-holding circuit H2 which when an Io signal is passed therethrough holds the signal and opens the gate G1. Therefore a signal that has arrived at either of the G1, G2 eariler is first output to the gate circuit of the next stage.

Description

【発明の詳細な説明】 〔産業上の利用分野j この発明は、王に電磁力を利用して開閉動作を行わせる
開閉機器6例えばt窒遮断器の轡械的不具合を、閉極w
J作や開極動作時に閉魯候作もしくは制御用あるいは開
@I←f′「もしくは制御用電磁コイルに流れる電流の
阪杉から常時自切虻視し、動作不良を未然に防止しよう
とする開閉接話の動作診断装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention solves mechanical malfunctions in switching devices 6, such as nitrogen circuit breakers, which perform switching operations using electromagnetic force.
At the time of J operation or opening operation, the closed operation or control or open @I←f' or the self-disconnection is constantly monitored from the Sakasugi of the current flowing in the control electromagnetic coil to prevent malfunctions. The present invention relates to a device for diagnosing opening/closing operation.

〔従来の技術〕[Conventional technology]

近年、電力供給信頼性確保のため(こytt機器の信頼
性に対しで強い要求がある。そこで、at運転中の変電
機器を常時監視し、故障の兆トを事前に捕らえて1大事
故の発生を防止したり1機器の余寿命を推測するための
データを得たりする予防保全技術の開発が鋏慧推進され
ている。変電機器を構成する開閉機器の動作エネルギー
源として。
In recent years, in order to ensure the reliability of power supply (there is a strong demand for the reliability of Kotto equipment), we constantly monitor the substation equipment during AT operation, catch any signs of failure in advance, and prevent a major accident from occurring. The development of preventive maintenance technology to prevent occurrences and to obtain data for estimating the remaining life of a piece of equipment is being promoted.As an operating energy source for switching equipment that makes up substation equipment.

開発機器の種類により、電磁力、圧IIA空気、油圧力
やスプリング力などが利用されており、これらの力の出
し入れを制御するために開閉機器の操作装置内にziコ
イルが設けられ、任意の時刻に遠方から′WL:Eiコ
イルlこ動作指令を送り、開閉機器を動作させている。
Depending on the type of equipment being developed, electromagnetic force, pressure IIA air, hydraulic pressure, spring force, etc. are used. In order to control the input and output of these forces, a zi coil is installed in the operating device of the switching equipment, and any At the specified time, a command to operate the 'WL: Ei coil is sent from a distance to operate the opening/closing equipment.

このようlこ操作される開閉機器のうち、遮断器の不具
合について、生豆公共機関、!気事業者。
Among the switching equipment that is operated in this way, a malfunction of the circuit breaker is reported by Namame public institutions! Care business operator.

製造者を構成メンバとする電気協同研死会でまとめた調
査結果(こよれば、開極不能と開極不能とで不具合全体
の55%(こ通している。才だ、この調査結果は、遮断
器の種類に関係なく機械系の事故が多いことを示してい
る。このことから、開閉機器の事故件数を減少させるた
めには、開閉動作時に計測可能な関係諸量を監視して、
これらの諸量が正常か否かを訃断する動作診断が極めて
有効である。
The results of a survey compiled by the Electric Cooperative Research Association, whose members include manufacturers (according to this, 55% of all defects are due to failure to open and failure to open). This shows that there are many mechanical accidents regardless of the type of circuit breaker.From this, in order to reduce the number of accidents involving switching equipment, it is necessary to monitor various measurable quantities during switching operations.
Operation diagnosis that determines whether these quantities are normal or not is extremely effective.

従来の動作診断の方法としては、例えば、(1)閉極時
間(ZC)や開極時間(to)を監視する方法。
Conventional operation diagnosis methods include, for example, (1) a method of monitoring closing time (ZC) and opening time (to);

(2)可勤王接点のストロークを監視する方法、(3)
閉極の位置や開極の位置を監視する方法などがある。本
発明が対象とする動作診断装置は、上記+21.+31
項をもほぼカバーすることのできる(1)項のように、
電磁コイル電流の波形を監視する方法によるものである
(2) Method of monitoring the stroke of a movable contact, (3)
There are methods of monitoring the position of closed poles and the position of open poles. The operation diagnostic device to which the present invention is directed is the above-mentioned +21. +31
Like term (1), which can almost cover the term
This method is based on monitoring the waveform of the electromagnetic coil current.

第7図に代表的な閉極操作用型出コイル電流の波形と、
開閉機器の主接点およびこの主接点と連動する。大地電
位にある補助開閉器の接点(以下補助接点と記す)の動
作状況とを示す。なお、にで、「操作」は主接点を1つ
の位置から隣りの位置へ移動させることを意味し、「制
御」は開閉機器の操作装置を動作させるための電磁コイ
ルなどを操作目的(閉極か開極か)Iこ従って付勢ある
いは消勢することを意味するものとする。図に2いて1
時間tcは閉極制御電流コイルの電流(以下では閉極操
作電流とも記す)が流れはじめてから開閉機器の主接点
が閉極するまでの時間を示し1時間tc’は補助接点中
のa接点が閉極するまでの時間を示す。課電中の動作診
断には、主接点の閉極時点の情報が入手しにくいため、
補助接点から得られる時間tc’を用いることが多い。
Figure 7 shows a typical waveform of the molded coil current for closing operation, and
Interlocks with the main contact of the switching device and this main contact. The operating status of the auxiliary switch contact (hereinafter referred to as auxiliary contact) at ground potential is shown. In addition, "operation" means moving the main contact from one position to the next, and "control" means moving the main contact from one position to the next, and "control" means moving the main contact from one position to the next. (or opening) I therefore means energizing or deenergizing. 2 and 1 in the figure
Time tc is the time from when the current in the closing control current coil (hereinafter also referred to as closing operation current) begins to flow until the main contact of the switching device is closed, and 1 hour tc' is the time when the a contact among the auxiliary contacts is closed. Indicates the time until the pole closes. For operation diagnosis while power is being applied, it is difficult to obtain information on when the main contact is closed.
The time tc' obtained from the auxiliary contact is often used.

なお、近年、操作電流の0N−OFFを電子部品を用い
て行う方法が取り入れられだし、この場合には、閉極終
端の位置を位置検出接点で検出し、その検出信号を電子
部品に送って閉極操作電流の遮断が行われる。この場合
には、従来の機械的スイッチにみられるような、インダ
クタンスの大きい閉極操作用電磁コイルの電流を遮断す
る際のアーク時間のばらつき幅かほとんどなくなり、遮
断までの時間Tcを診断のための時間として用いること
ができる。
In addition, in recent years, a method has been adopted that uses electronic components to turn the operating current ON and OFF.In this case, the position of the closed terminal is detected by a position detection contact, and the detection signal is sent to the electronic component. The closing operation current is interrupted. In this case, there is almost no variation in the arcing time when interrupting the current of the electromagnetic coil for closing operation, which has a large inductance, as seen in conventional mechanical switches, and the time Tc until interrupting is used for diagnosis. It can be used as the time of

第8図は閉極操作用電磁コイルを部分的にレアショート
させ、レアショー8層数のコイル全層数に対する割合す
なわちレアショート率を変えながら、各レアショート率
において操作電圧を羽−叩。
In FIG. 8, the electromagnetic coil for closing operation is partially short-circuited, and the operating voltage is adjusted at each layer short-circuit rate while changing the ratio of the number of eight layers to the total number of layers in the coil, that is, the short-circuit rate.

110 Vと変化させたときの閉極時間tcと閉極操作
電流の継続時間Tcとの関係を求めた結果を示す。tc
とTcとはばらつきのない比例関係を示し、tcの代り
にTcで動作診断が可能なことが分る。
The results of determining the relationship between the closing time tc and the duration time Tc of the closing operation current when the voltage is changed to 110 V are shown. tc
It can be seen that Tc and Tc show a proportional relationship with no variation, and that it is possible to diagnose the operation using Tc instead of tc.

第9図に従来の動作診断装置構成の一例を示す。FIG. 9 shows an example of the configuration of a conventional operation diagnostic device.

図の左側に開閉機器の操作・制御回路を示し、図の右側
に動作診断装置の構成を示す。開路状態にある開閉機器
を閉極するためにスイッチSW1を閉じると、直流電源
の正極母iPから投入制御電流が開閉機器の補助接点中
のb接点52Bと、 S!i開閉器のb接点CYBと、
閉極制御電流を所定値に抑えるための直列抵抗SRIと
、閉極制御用N6コイルCCと電流れて直流電源の負極
母線Nに至る。このときの投入制御電流は電流センナS
lにより検出される。開閉機器の閉極行程が進み、補助
接点中のa接点52Aが閉じると、1伍開閉器の動作コ
イルCYが励磁されてそのb接点CYBが開き、a接点
CYAが閉じて1出開閉器を自己保持する。このとき投
入′1!i′l制御電流が遮断され、この遮断までに電
流センサS1から動作診断装置本体に入力された電流は
図の最上段に示すような人力波形を示す。この入力波形
は絶縁アンプで増幅され、外部から侵入する雑音防止の
ために設定されたしきい僅より大きい部分が比較回路を
通ってゲート回路に入力され、このゲート回路で入力波
形が矩形波化された後、計数回路でこの矩形波とクロ、
ツクパルスとのAND回路により矩形波のサンプリング
か行われて継続時間計数が進行する。比較回路への入力
波形がしきい値以下になり、計数回路からの出力が停止
すると、ラッチ回路に積算されたサンプリング回数すな
わち閉極制御電流の継続時間がドライブ回路lこより表
示回路に入力されるとともに、この継続時間が許容限界
内にあるか否かが判定回路を介して表示回路に表示され
る。
The left side of the figure shows the operation/control circuit for the switching equipment, and the right side of the figure shows the configuration of the operation diagnostic device. When the switch SW1 is closed to close the open-circuit switching device, the input control current is applied from the positive terminal terminal iP of the DC power supply to the b contact 52B among the auxiliary contacts of the switching device, and the S! b contact CYB of i switch,
The current flows through the series resistor SRI for suppressing the closing control current to a predetermined value and the N6 coil CC for closing control, and reaches the negative bus N of the DC power supply. The closing control current at this time is the current sensor S
Detected by l. When the closing stroke of the switching device progresses and the A contact 52A among the auxiliary contacts closes, the operating coil CY of the 1st-stage switch is energized, its B contact CYB opens, and the A contact CYA closes, opening the 1st-stage switch. maintain self. At this time, input '1! The i'l control current is cut off, and the current input from the current sensor S1 to the main body of the operation diagnosis apparatus until this cutoff shows a manual waveform as shown in the top row of the figure. This input waveform is amplified by an isolated amplifier, and the portion slightly larger than a threshold set to prevent noise from entering from the outside is input to the gate circuit through a comparison circuit, and this gate circuit converts the input waveform into a rectangular wave. After that, the counting circuit converts this square wave and the black,
Sampling of the square wave is performed by the AND circuit with the check pulse, and the duration counting progresses. When the input waveform to the comparator circuit becomes less than the threshold value and the output from the counting circuit stops, the number of samplings accumulated in the latch circuit, that is, the duration of the closing control current, is input to the display circuit from the drive circuit. At the same time, whether or not this duration is within the permissible limit is displayed on the display circuit via the determination circuit.

閉極制御電流遮断後、所定の時間経過した時点で外部か
ら計数回路とラッチ回路とにリセット信号を与えると、
動作診断装置は初めの状態に復帰する。なお、図におい
て、操作・制御回路中のMCは閉極操作用tfEtコイ
ル、例えば閉極操作用電磁石の巻線を示す。
If a reset signal is given to the counting circuit and latch circuit from the outside after a predetermined period of time has passed after the closing control current is cut off,
The operation diagnostic device returns to its initial state. In the figure, MC in the operation/control circuit indicates a tfEt coil for closing operation, for example, a winding of an electromagnet for closing operation.

開極′IItlJ御電流の継続時間が正常か否かの診断
には、同一回路構成の動作診断装置本体をもう1台用い
る。
For diagnosing whether the duration time of the opening 'IItlJ control current is normal or not, another operation diagnostic device body having the same circuit configuration is used.

第10図に閉極制御電流と開極制御電流とを共通のtK
てンサを用いて計測する場合の動作診断の方法を示す。
Figure 10 shows the closing control current and opening control current at a common tK.
This section describes a method for diagnosing operation when measuring using a sensor.

この場合(こは、共通の電流センサS3か から出力される電流が閉極制御電流である州開唖制御電
流であるかを判別するために、閉極制御回路、開極制御
回路における直列抵抗SRI、SR2のそれぞれ直流電
源正極母線P側の端子と負極母線Nとの間に分圧抵抗R
1,R2が接続され、閉極時あるいは開極時に分圧抵抗
R1,R2に印加される矩形波の直流電圧をそれぞれ異
なる値VC,VTに分圧し、この分圧された電圧をそれ
ぞれ比較回路Ds 、 Dzに入力し、しきい値として
Vc 、 VTの中間値に設定された。たとえば(VC
+VT ) /2と比較して、比較回路Dtからは例え
ば負極性の電圧を、D!からは正極性の電圧をそれぞれ
サイリスタのアノードゲート、カソードゲート番こ入力
して@9図と同様の動作診断が行われる。この場合には
動作診断装置本体は1台で済む。
In this case, in order to determine whether the current output from the common current sensor S3 is a closed control current or an open control current, the series resistance in the closed control circuit and the open control circuit is A voltage dividing resistor R is connected between the terminal on the positive electrode bus P side of the DC power supply and the negative electrode bus N of SRI and SR2, respectively.
1 and R2 are connected, and the rectangular wave DC voltage applied to the voltage dividing resistors R1 and R2 at the time of closing or opening is divided into different values VC and VT, respectively, and these divided voltages are applied to the respective comparison circuits. Ds and Dz were input, and the threshold value was set to an intermediate value between Vc and VT. For example (VC
+VT ) /2, for example, a negative polarity voltage is output from the comparator circuit Dt, D! From then on, positive voltages are input to the anode gate and cathode gate numbers of the thyristor, respectively, and an operation diagnosis similar to that shown in Figure @9 is performed. In this case, only one operation diagnostic device is required.

第11図は第10図における共通のセンサとしてホール
変流器を用いる場合のホール変流器の構成例を示すもの
である。この例では、ホール変流器はホール素子に磁界
を与えるための巻線を2個装備し、一方の巻線を閉極操
作もしくは制御用tiミコイル電流が、また他方の巻線
を開極操作もしくは制御用電磁コイルの電流が通過する
。また、2つの電流がそれぞれの巻線を通過したときに
ホール素子に加わる磁界の方向は同方向としてホール素
子からの出力電圧を常に同一極性としている。
FIG. 11 shows an example of the configuration of a Hall current transformer when the Hall current transformer is used as a common sensor in FIG. 10. In this example, the Hall current transformer is equipped with two windings for applying a magnetic field to the Hall element, one winding is used for closing operation or control tim coil current, and the other winding is used for opening operation. Or the current of the control electromagnetic coil passes through it. Further, when two currents pass through the respective windings, the directions of the magnetic fields applied to the Hall element are the same, so that the output voltage from the Hall element always has the same polarity.

閉極操作もしくは制御電流(Ic)と開極操作もしくは
制御電流(10)との値が大きく異なる場合には、2個
の巻線の巻数fle 、 noをIcXnc=IoXn
If the values of the closing operation or control current (Ic) and the opening operation or control current (10) are significantly different, the number of turns fle and no of the two windings is IcXnc=IoXn
.

となるようIこし、電流Ic 、 Ioの継続時間の計
数開始時点がIcとIOとでほぼ同一となるようにして
いる。
In order to achieve this, the counting start point of the duration of the currents Ic and Io is made to be almost the same for Ic and IO.

〔発明が解決しようとする課題J 以上に説明したように、従来は、閉極操作もしくは制御
用1伍コイルの電流と開極操作もしくは制御用電磁コイ
ルの電流とをそれぞれ別の電流センサで検出するもので
は、電流センサ毎に動作診断装置本体を必要とし、開閉
機器の閉極動作と開極動作とが開閉機器の機構上同時に
は起こり得ないにもかかわらず、動作診断装置本体が不
必要に多くなるという欠点があった。
[Problem to be Solved by the Invention J] As explained above, conventionally, the current of one coil for closing operation or control and the current of an electromagnetic coil for opening operation or control are detected by separate current sensors. The operation diagnosis device itself is required for each current sensor, and even though the closing and opening operations of the switching device cannot occur at the same time due to the mechanism of the switching device, the operation diagnosis device itself is unnecessary. The disadvantage is that there are many

また、前記2つの電流を共通の電流センサで検出するも
のでは、電流検出が1つの電流センサで可能となる反面
、任意の時点に検出された電流が閉極、開極いずれの側
の電流であるかを判別するために、電流センサ、動作診
断装置本体のほかに付刀口回路を必要とし、診断装置全
体として複雑になる欠点があった。
In addition, in the case where the two currents are detected by a common current sensor, current detection can be done with one current sensor, but on the other hand, the current detected at any given time can be the current of either the closed pole or the open pole. In order to determine whether there is a diagnosing device, an additional circuit is required in addition to the current sensor and the main body of the operation diagnosing device, which has the disadvantage that the diagnosing device as a whole becomes complicated.

この発明の目的は、閉極、開極1則電伍コイルの電流を
それぞれ別のtiセンサを用いて検出する場合にも動作
診断装置の本体は実質1台で済み、また動電流を共通の
電流センサで検出する場合にも、任意の時点で検出され
た電流が閉極、開極いずれの側の電流であるかを判別す
るための新たな付刀口回路を必要とせず、かつ診断装置
の本体が従来と同様に実質1台で済む動作診断装置の構
成を提供することである。
The purpose of this invention is to detect the current of a closed pole and open pole power coil using separate ti sensors, so that the main body of the operation diagnostic device is essentially one unit, and that the dynamic current can be detected using a common Even in the case of detection with a current sensor, there is no need for a new additional circuit to determine whether the current detected at any point in time is a closed or open current, and the diagnostic equipment is easy to use. It is an object of the present invention to provide a configuration of an operation diagnostic device in which substantially only one main body is required as in the conventional case.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明においては、閉極
操作もしくは制御用1母コイルの電流と開極操作もしく
は制御用電磁コイルの電流とをそれぞれ別の電流センサ
を用いて検出するものでは、動作診断装置を、前記2つ
の電流が同時に発生した場合lこ、先に発生した方の電
磁コイル電流の処理を優先させる回路を備えた装置とし
、2つの電流を共通の電流センサで検出するものでは、
電流センサが、ホール素子に磁界を与える巻線を2個備
えたホール変流器きして形成さn、前記2つの電流をホ
ール素子の出力電圧が互いに迎の極性となるようにそれ
ぞれの巻扉に流すようにした装置とするものとする。
In order to solve the above problems, the present invention does not detect the current of one mother coil for closing operation or control and the current of the electromagnetic coil for opening operation or control using separate current sensors. The operation diagnostic device is equipped with a circuit that prioritizes processing of the electromagnetic coil current that occurs first when the two currents occur simultaneously, and the two currents are detected by a common current sensor. So,
The current sensor is formed by a Hall current transformer having two windings that apply a magnetic field to the Hall element, and the two currents are connected to each winding so that the output voltages of the Hall element have opposite polarities. It shall be a device that allows water to flow through the door.

〔作用〕[Effect]

電力系統の運用上の要求から、開閉機器は閉極後直ちに
開極動作に移行可能である必要があり、この場合には閉
極操作もしくは制御電流の継続中に開極操作もしくは制
御電流が時間的に1なって流れる場合がある。従来の経
験から、開極動作と開極動作との間に時間間隔がなく、
開閉機器が実質同一状態で動作する場合には、開閉機器
の動作すなわち閉極速度、開極速度もしくは前記各電流
の継続時間のいずれか一方のみが非正常となることはな
く、大発明は、このような場合にいずれか一方の操作も
しくは制御N1流が監袂できれば、開閉機器が動作特性
の面で正常な状態にあるか否かの正しい診断が可能であ
ることに着目したものである。従って、診断装置内ζこ
、元(こ発生した1!伍コイル電流の処理を優先させる
回路を設けることにより、動作診断が正しく行われると
ともに、診断装置本体は!!質1台で済ませることがで
きる。
Due to the operational requirements of power systems, switching equipment must be able to switch to opening operation immediately after closing, and in this case, the opening operation or control current must be maintained for a period of time while the closing operation or control current continues. There are cases where the target becomes 1 and flows. From conventional experience, there is no time interval between the opening operations;
When the switching equipment operates in substantially the same state, the operation of the switching equipment, that is, either the closing speed, the opening speed, or the duration of each of the currents does not become abnormal. The present invention focuses on the fact that if either one of the operation or control flow N1 can be supervised in such a case, it is possible to correctly diagnose whether or not the switching device is in a normal state in terms of operating characteristics. Therefore, by providing a circuit in the diagnostic device that prioritizes the processing of the generated 1! can.

また、2つの[4を共通の電流センサで検出する場合に
は、1流センサを、ホール素子に磁界を与える巻線を2
個備えたホール変流器として形成すれば、前記2つの1
!流をホール素子の出力電圧が互いに逆の極性となるよ
うlこそれぞれの巻線に流fようにするのみで、任意の
時点ζこ検出された電流が閉極、開極いずれの側のIc
流であるかの判別が可能になり、判別のための新たな付
加回路を必要とすることなく、かつ従来と同様に、動作
診断装置本体を実質1台で済ませることができる。
In addition, when detecting two [4] with a common current sensor, the first current sensor is connected to the second winding that provides the magnetic field to the Hall element.
If formed as separate Hall current transformers, the two
! By simply making the current flow through each winding so that the output voltages of the Hall elements have opposite polarities, the detected current at any given time will be Ic on either the closed or open side.
This makes it possible to determine whether or not the current is present, and there is no need for a new additional circuit for the determination, and as in the past, it is possible to use only one operation diagnostic device.

〔笑施例〕[LOL example]

第1図に閉極操作もしくは制御用1凪コイルのIL流(
Ic )と開極操作もしくは制御用II磁ココイル電流
(10)とをそれぞれ別の電流センサを用いて検出する
場合の動作診断装置の一実施例を示す。
Figure 1 shows the IL flow of a 1-calm coil for closing operation or control (
An embodiment of the operation diagnostic device is shown in which the Ic) and the II magnetic cocoil current (10) for opening operation or control are detected using separate current sensors.

この構成による診断装置本体は、高電圧、大電流環墳下
の電流七ンサ偵と微小信号側の診断装置本体側とを絶縁
する2個の絶縁アンプと、このそれぞれの絶縁アンプに
接げされる2個の比較回路とを有し、一方の絶縁アンプ
と比較回路との組を一方の電流センサに接続し、他方の
絶縁アンプと比較回路との組を他方の電流センサに接続
してそれぞれ優先回路への入力回路を構成している。各
比較回路には、外部から侵入する雑音防止のためのしき
い値Vl、 V2が電流Ic 、 Ioに対応して設定
されている。各電流センサSl、82にはともにホール
変流器が用いられ、変流器巻線の巻数を、電流センサか
らの出力電圧が診断装置内で処理し易い値となるように
設定している〇 優先回路は、第2図に示すように、常時スルー状態にあ
るIc信号用ゲー)Gl、常時スルー状態ζこあるIo
信号用ゲートG2.Ic信号か通過したときにこの信号
を保持するとともにゲートG2を開とする自己保持回路
H1,Io信号が通過したときにこの信号を保持すると
ともにゲー1−Glを開とする自己保持回路H2Fこよ
り構成されている。
The main body of the diagnostic device with this configuration has two isolation amplifiers that insulate the current detector under the high voltage and large current ring from the small signal side of the main body of the diagnostic device, and is connected to each of the isolation amplifiers. One pair of isolated amplifier and comparison circuit is connected to one current sensor, and the other pair of isolated amplifier and comparison circuit is connected to the other current sensor to give priority to each. It constitutes the input circuit to the circuit. In each comparison circuit, threshold values Vl and V2 are set corresponding to the currents Ic and Io to prevent noise from entering from the outside. A Hall current transformer is used for each current sensor Sl, 82, and the number of turns of the current transformer winding is set so that the output voltage from the current sensor becomes a value that is easy to process within the diagnostic device. As shown in Fig. 2, the priority circuit includes the Ic signal gate Gl which is always in the through state, and the Io which is always in the through state.
Signal gate G2. A self-holding circuit H1 holds this signal and opens gate G2 when the Ic signal passes, and a self-holding circuit H2F holds this signal and opens gate G2 when the Io signal passes. It is configured.

従って、優先回路のゲートGl、G2のいずれかに先に
到達した信号が優先的に次段のゲート回路へ出力される
。また、優先回路における自己保持回路の自己保持動作
は、判定回路9表示回路をそれぞれ、優先された信号に
対応して動作させるのlこ利用される(第1図参照)。
Therefore, the signal that reaches either gate Gl or G2 of the priority circuit first is output preferentially to the gate circuit at the next stage. Further, the self-holding operation of the self-holding circuit in the priority circuit is used to operate the display circuit of the judgment circuit 9 in response to each prioritized signal (see FIG. 1).

第3図に開閉機器が閉極後直ちに開極する場合のIc 
、 Ioの波形を示す。開閉機器の主接点閉成とほぼ同
時にIOが流れはじめるが、Icの流れはじめの時点と
の間には通常01秒以上の時間差があり、優先回路にお
ける自己保持回路の自己保持動作によるIo(l!r号
の阻止には十分時間的な余裕が存在する。なお、優先回
路が無いとした場合には、計数回路に入力される信号波
形はIc+Io で示した波形のようになり、正常な診
断が不可能となる。
Figure 3 shows Ic when the switchgear opens immediately after closing.
, Io waveforms are shown. IO starts to flow almost simultaneously with the closing of the main contact of the switching device, but there is usually a time difference of 01 seconds or more between the time when Ic starts flowing, and Io(l) due to the self-holding operation of the self-holding circuit in the priority circuit. There is sufficient time to stop !r.If there is no priority circuit, the signal waveform input to the counting circuit will be as shown by Ic+Io, and normal diagnosis will be possible. becomes impossible.

@4図および第5図にそれぞれ、  Icと10とを共
通のセンサで検出する場合の本発明による電流センサ構
成の一実施例と、この電流センサを用いる動作診断装置
構成の一実施例とを示す。
@Figures 4 and 5 respectively show an example of the current sensor configuration according to the present invention when Ic and 10 are detected by a common sensor, and an example of the operation diagnostic device configuration using this current sensor. show.

電流センサS3は、空隙を有する鉄心1と、この鉄心に
巻装される2@の巻線2,3と、鉄心1の空隙に挿入さ
れるホール素子4とを備えてなり。
The current sensor S3 includes an iron core 1 having a gap, 2@ windings 2 and 3 wound around the iron core, and a Hall element 4 inserted into the gap of the iron core 1.

巻線2は閉極制御用電磁コイルCCに接続され、巻線3
は開極制御用宣伝コイルTCに接続されている。巻@2
 、3の巻き方向は、それぞれの巻線にIc 、 Io
が流れたときに鉄心中に生じる磁力線の方向が互いに逆
向きとなるようになっており、これにより、ホール素子
4の出力電圧の極性がIcとIOとで逆の極性となる。
Winding 2 is connected to the closing control electromagnetic coil CC, and winding 3
is connected to the advertising coil TC for opening control. Volume @2
, 3, the winding direction is Ic, Io for each winding.
The directions of the lines of magnetic force generated in the iron core when .

また、巻線2,3のそれぞれの巻数nc 、 noは、
診断装置内で処理がし易い電圧がホール素子4から出力
されるように決められ、はぼIc X nc=Io X
 noの関係を満たしている。
In addition, the number of turns nc and no of windings 2 and 3 are as follows:
A voltage that can be easily processed within the diagnostic device is determined to be output from the Hall element 4, and Ic X nc=Io X
Satisfies the relationship no.

いま、このように、2個の巻線を有するホール変流器と
して形成された電流センサにIcが流れた場合の出力電
圧の極性を正極性、  Ioが流れた場合の出力電圧の
極性を負極性とすれば、絶縁アンプ(第5図)により増
幅されたIcによる正極性の出力電圧は、しきい値+V
Iを設定された比較回路に入力され、また、絶縁アンプ
により増幅されたIOによる負極性の出力電圧は、しき
い値−■2を設定された比較回路番こ入力される。そし
て、それぞれのしきい値を超えた波形部分がゲート回路
に入力される。比較回路からの出力は同時lこ判定回路
1表示回路に入力され、この入力を生じた元の電流Ic
 、 Ioに対応した利足9衷示が行われる。
Now, the polarity of the output voltage when Ic flows through the current sensor formed as a Hall current transformer with two windings is positive, and the polarity of the output voltage when Io flows is negative. If the positive polarity output voltage from Ic amplified by the isolation amplifier (Fig. 5) is equal to the threshold value +V
The negative output voltage from IO, which is input to the comparator circuit set to I and amplified by the isolation amplifier, is input to the comparator circuit set to threshold value -2. Then, the waveform portions exceeding the respective thresholds are input to the gate circuit. The output from the comparator circuit is input to the simultaneous I/O determination circuit 1 display circuit, and the original current Ic that caused this input is
, Kashi 9 is shown corresponding to Io.

第6図に動作診断装置内各回路の動作を示す。FIG. 6 shows the operation of each circuit in the operation diagnosis device.

なお、第5図に示す診断装置では、Icと10とが時間
的に1なる場合lこは、動作診断がIc、I。
Note that in the diagnostic device shown in FIG. 5, when Ic and 10 become 1 in time, the operation diagnosis is Ic and I.

それぞれによるセンサ出力電圧の差の波形に対して行わ
れ、センサの出力電圧がIc1lllとIo@とでほぼ
等しい大きさとなるように巻@2 、3の巻数が設定さ
れている場合には1診断される波形の継続時間が短くな
り、正しい診断ができない。しかし、ホール素子に印加
する伝界をIcと10とで大きく異ならせ、Icfこよ
る愚弄をIOによる6界より大幅に大きくすると、セン
サ出力電圧の差の成形の継続時間は、Ic単独の場合の
出力電圧の波形の継続時間に近似し、診断の精度により
、共通の電流センサを用いた診断装置でも個別センサを
用いた診断装置と同様の機能を持たせることができる。
This is performed on the waveform of the difference in sensor output voltage due to each, and if the number of turns @2 and 3 is set so that the sensor output voltage is approximately equal in magnitude to Ic1ll and Io@, 1 diagnosis is performed. The duration of the waveform detected becomes short, making it impossible to make a correct diagnosis. However, if the conduction field applied to the Hall element is made to be significantly different between Ic and 10, and the Icf-induced interference is made significantly larger than the 6 field due to IO, the duration of shaping the difference in sensor output voltage will be longer than when Ic is used alone. Due to the accuracy of the diagnosis, even a diagnostic device using a common current sensor can have the same function as a diagnostic device using individual sensors.

〔発明の効果〕 以上(こ述べたよう(こ1本発明1こおいては、閉極操
作もしくは制御用電磁コイルの電流と開極操作もしくは
制御用宣伝コイルの電流とをそれぞれ別の電流センサを
用いて検出するものでは、動作診断装置を、前記2つの
電流が同時に発生した場合に、先に発生した万の電磁コ
イル電流の処理を優先させる回路を備えた装置とし、2
つの電流を共通の電流センサで検出するものでは、電流
センサが、ホール素子に伝界を与える巻線を2個備えた
ホールf流器として形成され、前記2つの電流をホール
素子の出力電圧が互いに逆の極性となるようにそれぞれ
の巻線に流すようにした装置としたので、電流センサが
個別の場合、閉極後直ちlこ開極動作に移行する場合の
動作診断が、先に発生した方の電磁コイル電流の処理を
優先することにより行われ、少なくとも一方の動作診断
が可能となるため、冥質同−状態で動作する他方の動作
の良否の判定を高いf[で行うことができ、かつ診断装
置本体を1台で済ませることができる。また。
[Effects of the Invention] As stated above, in the present invention, the current of the electromagnetic coil for closing operation or control and the current of the advertising coil for opening operation or control are detected by separate current sensors. In the case where the detection is performed using
In the case where two currents are detected by a common current sensor, the current sensor is formed as a Hall f current device having two windings that provide a conduction field to the Hall element, and the two currents are detected by the output voltage of the Hall element. Since the device is designed to flow current to each winding with opposite polarity, when the current sensor is individual, the operation diagnosis when switching to open operation immediately after closing can be performed first. This is done by prioritizing the processing of the generated electromagnetic coil current, and it is possible to diagnose the operation of at least one of them, so it is possible to judge the quality of the operation of the other one operating in the same state with a high f[. can be used, and only one diagnostic device is required. Also.

2つの11LRを共通の電流センサで検出するものでは
、2つの電流を判別するための付加回路を必要とせず、
診断装置を複雑化することなく1台の診断装置で動作診
断が可能であり、また、電流センサの設計諸元の設定l
こより、閉極後直ちに開極動作に移行する場合の動作診
断も可能になる。
The one that detects two 11LRs with a common current sensor does not require an additional circuit to distinguish between the two currents.
Operation diagnosis can be performed with a single diagnostic device without complicating the diagnostic device, and the design specifications of the current sensor can be set easily.
This also makes it possible to diagnose the operation when switching to opening operation immediately after closing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は閉極操作もしくは制御用電磁コイルの電流と開
極操作もしくは制御用電磁コイルの電流とをそれぞれ別
の電流センサを用いて検出する場合の1本発明による動
作診断装置構成の一実施例を示すブロック回路図、WJ
2図は第1図の動作診断装置における優先回路の構成を
示すブロック回路図、第3図は閉極彼直ちに開極動作が
行われる場合の閉極操作電流と開極制御電流、ならびに
両電流の和の波形と主接点動作との時間関係を示す波形
図、第4図は閉極操作もしくは制御用電磁コイルの電流
と開極操作もしくは制御用電磁コイルの電流とを共通の
電流センサで検出する場合の。 本発明による電流センサ構成の一実施例を示す説明図、
第5図は本発明による電流センサのめ力を用いて開閉機
器の動作診断を行う動作診断装置構成の一実施例を示す
ブロック回路図、第6図は第5図に示す動作診断装置に
おける各回路の動作を示す図、第7図は本発明による動
作診断装置が処理の対象とする電磁コイル電流波形の一
例と、この波形と開閉機器の主接点、補助接点の動作時
点との時間関係を示す説明図、第8図は閉極操作電流コ
イルを部分的にレアショートさせたときの各レアショー
ト率における閉極峙関tcと閉極操作電流の継続時間T
cとの関係の一例を、操作電圧をパラメータとして求め
たtc−Tc関係図、#!9図は閉極操作もしくは制御
用taミコイルtRと開極操作もしくは制御用買出コイ
ルの電流とを作・制御回路の構成ならびに動作診断装置
における各回路の動作と合わせて示す図、第1O図は閉
極操作もしくは制御用!磁コイルの電流と開極操作もし
くは制御用電磁コイルの電流とを共通の電流センナで検
出する場合の、従来の動作診断装置構成の一例を示す回
路図、第11図は第10図の動作診断装置における電流
センサの構成例を示す説明図である。 CC・・・閉極操作もしくは制御用電磁コイル、TC−
゛°開極操作もしくは制御用1伍コイル、SL、S2.
S3・・・電流センサ、2.3・・・巻線、4・・・ホ
ール素子。             −1\代理人舟
理士 山 口  巖   −二、−(ン′ (G) 第 図 第 図 第 図 ○ OOO0Q  0 0 0 .O■のさLj) Ln り(” v 第11 図
FIG. 1 shows one implementation of the configuration of an operation diagnostic device according to the present invention in which the current of the electromagnetic coil for closing operation or control and the current of the electromagnetic coil for opening operation or control are detected using separate current sensors. Block circuit diagram showing an example, WJ
Figure 2 is a block circuit diagram showing the configuration of the priority circuit in the operation diagnostic device shown in Figure 1, and Figure 3 shows the closing operation current and opening control current when the opening operation is performed immediately after the closing operation, as well as both currents. A waveform diagram showing the time relationship between the waveform of the sum of and the main contact operation. Figure 4 shows the current of the electromagnetic coil for closing operation or control and the current of the electromagnetic coil for opening operation or control detected by a common current sensor. If you do. An explanatory diagram showing an example of a current sensor configuration according to the present invention,
FIG. 5 is a block circuit diagram showing an embodiment of the configuration of an operation diagnosis device for diagnosing the operation of a switching device using the force of a current sensor according to the present invention, and FIG. 6 shows each of the components of the operation diagnosis device shown in FIG. FIG. 7, which is a diagram showing the operation of the circuit, shows an example of the electromagnetic coil current waveform processed by the operation diagnosis device according to the present invention, and the time relationship between this waveform and the operating points of the main contacts and auxiliary contacts of the switching device. The explanatory diagram shown in FIG. 8 shows the closing relation tc and the duration T of the closing operation current at each layer short-circuit rate when the closing operation current coil is partially short-circuited.
A tc-Tc relationship diagram showing an example of the relationship between c and #! using the operating voltage as a parameter. Figure 9 is a diagram showing the current of the terminal coil tR for closing operation or control and the current of the input coil for opening operation or control, together with the configuration of the production/control circuit and the operation of each circuit in the operation diagnostic device, Figure 1O. is for closing operation or control! A circuit diagram showing an example of the configuration of a conventional operation diagnosis device when the current of the magnetic coil and the current of the electromagnetic coil for opening operation or control are detected by a common current sensor. Figure 11 is a circuit diagram showing the operation diagnosis of Figure 10. It is an explanatory view showing an example of composition of a current sensor in an apparatus. CC... Electromagnetic coil for closing operation or control, TC-
゛°One-stage coil for opening operation or control, SL, S2.
S3... Current sensor, 2.3... Winding wire, 4... Hall element. -1\Agent Boatman Iwao Yamaguchi -2, -(n' (G) Figure Figure Figure ○ OOO0Q 0 0 0 .

Claims (1)

【特許請求の範囲】 1)閉極操作もしくは制御用電磁コイルおよび開極操作
もしくは制御用電磁コイルの電流をそれぞれ別の電流セ
ンサで検出し、検出された電流をそれぞれ処理して課電
中の開閉機器の開閉動作が正常であったか否かを診断す
る動作診断装置であって、前記2つの電流が同時に発生
した場合に、先に発生した方の電磁コイル電流の処理を
優先させる回路を備えたことを特徴とする開閉機器の動
作診断装置。 2)閉極操作もしくは制御用電磁コイルおよび開極操作
もしくは制御用電磁コイルの電流を共通の電流センサで
検出し、検出された電流をそれぞれ処理して課電中の開
閉機器の開閉動作が正常であったか否かを診断する動作
診断装置であって、前記電流センサが、ホール素子に磁
界を与える巻線を2個備えたホール変流器として形成さ
れ、前記2つの電流をホール素子の出力電圧が互いに逆
の極性となるようにそれぞれの巻線に流すようにしたこ
とを特徴とする開閉機器の動作診断装置。
[Scope of Claims] 1) The currents of the electromagnetic coil for closing operation or control and the electromagnetic coil for opening operation or control are detected by separate current sensors, and the detected currents are processed respectively to determine whether the current is being applied. An operation diagnostic device for diagnosing whether the opening/closing operation of a switching device is normal or not, and includes a circuit that prioritizes processing of the electromagnetic coil current that occurs first when the two currents occur simultaneously. An operation diagnostic device for opening/closing equipment characterized by: 2) The currents of the electromagnetic coil for closing operation or control and the electromagnetic coil for opening operation or control are detected by a common current sensor, and the detected currents are processed to ensure that the opening/closing operation of the switching equipment under energization is normal. The current sensor is formed as a Hall current transformer equipped with two windings that apply a magnetic field to the Hall element, and the two currents are converted to the output voltage of the Hall element. A device for diagnosing operation of switching equipment, characterized in that the current is applied to each winding so that the polarities are opposite to each other.
JP2202894A 1990-07-31 1990-07-31 Switching device operation diagnostic device Expired - Fee Related JP2722793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202894A JP2722793B2 (en) 1990-07-31 1990-07-31 Switching device operation diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202894A JP2722793B2 (en) 1990-07-31 1990-07-31 Switching device operation diagnostic device

Publications (2)

Publication Number Publication Date
JPH0495321A true JPH0495321A (en) 1992-03-27
JP2722793B2 JP2722793B2 (en) 1998-03-09

Family

ID=16464964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202894A Expired - Fee Related JP2722793B2 (en) 1990-07-31 1990-07-31 Switching device operation diagnostic device

Country Status (1)

Country Link
JP (1) JP2722793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070838A (en) * 2009-09-24 2011-04-07 Chugoku Electric Power Co Inc:The Circuit breaker monitoring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489124A (en) * 1987-09-30 1989-04-03 Toshiba Corp Operation watch device of power switch
JPH01212374A (en) * 1988-02-19 1989-08-25 Fuji Electric Co Ltd Control current monitor apparatus of breaker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489124A (en) * 1987-09-30 1989-04-03 Toshiba Corp Operation watch device of power switch
JPH01212374A (en) * 1988-02-19 1989-08-25 Fuji Electric Co Ltd Control current monitor apparatus of breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070838A (en) * 2009-09-24 2011-04-07 Chugoku Electric Power Co Inc:The Circuit breaker monitoring device

Also Published As

Publication number Publication date
JP2722793B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
US6225807B1 (en) Method of establishing the residual useful life of contacts in switchgear and associated arrangement
KR101932287B1 (en) Method for diagnosing an operating state of a contactor and contactor for implementing said method
US6313636B1 (en) Method for determining switchgear-specific data at contacts in switchgear and/or operation-specific data in a network connected to the switchgear and apparatus for carrying out the method
CA1088196A (en) Fault indicator responsive to flow of fault current in a conductor when power flow is in one direction only
JP4282852B2 (en) Circuit breaker opening or closing electromagnet control device
CA2198950C (en) Fault indicator having auxiliary fault sensing winding
DE19511795A1 (en) Electromechanical switching device
KR101663195B1 (en) Device for the safe switching of a photovoltaic system
US6211665B1 (en) Solenoid motion detection circuit
DE19947105C2 (en) Method and associated arrangements for switching electrical load circuits
WO2020043515A1 (en) Switching device
DE69733566T2 (en) CURRENT LIMITING CIRCUIT
JPH0495321A (en) Diagnostic apparatus for switch operation
EP3312549B1 (en) An electrical assembly
EP0827251B1 (en) Electrical low voltage switchgear
DE19707729A1 (en) Electromechanical switch-gear e.g. for circuit breaker
JPH01212374A (en) Control current monitor apparatus of breaker
DE4429950A1 (en) Semi automatic test facility for leakage current detection
DE4412305A1 (en) Self-monitoring residual current circuit breaker
CN117292977A (en) New energy vehicle, intelligent contactor and contact adhesion treatment method thereof
EP1693678B1 (en) Method for measuring a residual current and corresponding current sensitive residual current measuring device
JP2004354173A (en) Leak detection device
SU542218A1 (en) Alarm device
JP2728581B2 (en) Lightning impulse current meter
CN116449192A (en) Relay diagnosis circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees