JPH0493799A - Solidification treatment of radioactive waste - Google Patents

Solidification treatment of radioactive waste

Info

Publication number
JPH0493799A
JPH0493799A JP20917290A JP20917290A JPH0493799A JP H0493799 A JPH0493799 A JP H0493799A JP 20917290 A JP20917290 A JP 20917290A JP 20917290 A JP20917290 A JP 20917290A JP H0493799 A JPH0493799 A JP H0493799A
Authority
JP
Japan
Prior art keywords
carbonate
water
ion
sodium carbonate
solubility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20917290A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsuura
松浦 宏之
Naomi Toyohara
尚実 豊原
Makoto Fujie
誠 藤江
Tatsuo Sato
龍男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20917290A priority Critical patent/JPH0493799A/en
Publication of JPH0493799A publication Critical patent/JPH0493799A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable producing a solidified body which is faborable for safety evalution by adding a quick lime or a slaked lime to powder waste body in order to solidify it, after addition of carbonate ion to the extent that exceeds the saturating solubility of a calcium carbonate, to the powder waste body. CONSTITUTION:Soluble carbonate ion having been existing in a condition of a sodium carbonate in dry powder waste body, dissolves, for the first time, as a sodium carbonate into water, when a plastic solidified body gets in contact with the water. At the same time, a quick lime or a slaked lime dissolves into water, reacts with the sodium carbonate to change itself to a calcium carbonate and to an almost insoluble condition into water. However, since the amount of the carbonate ion containing a radioactive nuclide, C-14, is extremely small, the carbonate ion reaches its solubility and there is some possibility for the ion to dissolve into water. Accordingly, a sodium carbonate is added to the extent well to exceed the solubility of the calcium carbonate, and therewith the carbonate ion containing the nuclide, C-14, co-percipitates with the added carbonate ion and can be changed to an almost insoluble one into water. Finally, by plastic solidification, leaching-out of the carbonate ion can be remarkably reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はたとえば沸騰水型原子炉(以下、BWRと記す
)を使用した原子力発電所から発生する放射性廃棄物を
プラスチックで固める放射性廃棄物の固化処理方法に関
する。
[Detailed Description of the Invention] [Objective of the Invention] (Field of Industrial Application) The present invention is aimed at converting radioactive waste generated from nuclear power plants using boiling water reactors (hereinafter referred to as BWR) into plastics. Concerning a method for solidifying radioactive waste.

(従来の技術) 従来、BWR原子力発電所から発生する放射性廃液は加
熱して濃縮処理され、さらにその発生量を低減するため
に、乾燥処理した後、不飽和ポリエステル樹脂のような
プラスチック材料で安定化されプラスチック固化されて
いる。この放射性廃液の処理法は減容率が高いことのた
めに、広く、とくにBWR原子力発電所で採用されてい
る。例えば、BWR原子力発電所から発生する濃縮廃液
の場合、廃液をセメント固化する場合に比較して、廃棄
物の発生量は1/6から1/10に減少する。
(Prior art) Conventionally, radioactive waste fluid generated from BWR nuclear power plants is heated and concentrated, and in order to further reduce the amount generated, it is dried and stabilized with a plastic material such as unsaturated polyester resin. It has been solidified into plastic. This radioactive waste liquid treatment method is widely used, especially in BWR nuclear power plants, because of its high volume reduction rate. For example, in the case of concentrated waste liquid generated from a BWR nuclear power plant, the amount of waste generated is reduced to 1/6 to 1/10 compared to the case where the waste liquid is solidified with cement.

ところで、最近、原子力発電所から発生する低レベル放
射性廃棄物の最終処分の具体化にともない、その安全性
評価が行われている。現在、わが国では、このような低
レベル放射性廃棄物は浅地層処分される予定であるが、
C−14のような長寿命の放射性核種が安全評価上重要
な意味を有することが明らかになっており、その処分場
での挙動が、環境への影Iip評価に重大な役割を果た
す。C−14は原子炉中に存在する0−17の(n、α
)反応により生成されるもので、原子炉−次系からター
ビン系を経て、放射性廃液に混じり込み、その廃液中で
の含有は避けられない。C−14は通常、原子炉水の放
射線分解によって発生する酸素で酸化されて、炭酸イオ
ンとして存在するものと考えられる。この炭酸イオンは
原子炉タービン系の復水浄化系の陰イオン交換樹脂に補
足され、この樹脂がカセイソーダにより再生処理される
場合に炭酸ナトリウムの形で再生廃液に取り込まれ、濃
縮廃液の主成分である硫酸ナトリウムに混入する。
Incidentally, recently, as the final disposal of low-level radioactive waste generated from nuclear power plants becomes more concrete, safety evaluations are being conducted. Currently, in Japan, such low-level radioactive waste is scheduled to be disposed of in shallow geological formations.
It has become clear that long-lived radionuclides such as C-14 have an important meaning in safety evaluation, and their behavior at the disposal site plays an important role in evaluating the environmental impact Iip. C-14 is 0-17 (n, α
) It is produced by a reaction, and is mixed into radioactive waste fluid from the reactor system through the turbine system, and its inclusion in the waste fluid is unavoidable. It is thought that C-14 is normally oxidized by oxygen generated by radiolysis of reactor water and exists as carbonate ions. These carbonate ions are captured by the anion exchange resin in the condensate purification system of the reactor turbine system, and when this resin is regenerated with caustic soda, it is incorporated into the recycled waste liquid in the form of sodium carbonate, and becomes the main component of the concentrated waste liquid. Contaminated with some sodium sulfate.

再生廃液は濃縮処理されたのち固化処理し、最終処分可
能な放射性廃棄物パッケージに処理される。
The recycled waste liquid is concentrated, solidified, and processed into radioactive waste packages that can be finally disposed of.

現在、これら廃液は、上記のプラスチック固化法により
安定化処理される。濃縮廃液は乾燥処理された後でプラ
スチック材料により、廃液主成分である硫酸ナトリウム
粉体が固定化されるが、この中に炭酸ナトリウムの形で
溶解しているC−14も取り込まれる。ところで、炭酸
ナトリウムの溶解度は7.1であるために、プラスチッ
ク固化体、あるいは、ペレットが最終処分後で水と接し
た場合、これら固化体から水溶性硫酸ナトリウムが溶解
し、これとともに炭酸イオンの中に含まれるC−14も
溶解する。すなわち、プラスチック固化体、ペレット固
化体にC−14は残留することなく、固化体外に溶解す
る。このため、固化体にC−14が残留することなく、
周辺の水相へ移行する。固化体の安全評価試験において
、このように固化体への残留量と水相への移行の割合は
分配係数として表現され、固化体への残留量が多く、水
相への移行量が少ない、分配係数が大きい状態が安全性
評価上有利なわけである。
Currently, these waste liquids are stabilized by the above-mentioned plastic solidification method. After the concentrated waste liquid is dried, sodium sulfate powder, which is the main component of the waste liquid, is immobilized using a plastic material, and C-14 dissolved in the form of sodium carbonate is also incorporated into this powder. By the way, the solubility of sodium carbonate is 7.1, so when plastic solidified bodies or pellets come into contact with water after final disposal, water-soluble sodium sulfate is dissolved from these solidified bodies, and along with this, carbonate ions are dissolved. The C-14 contained therein also dissolves. That is, C-14 does not remain in the plastic solidified body or the pellet solidified body, but dissolves outside the solidified body. Therefore, C-14 does not remain in the solidified body,
Transfers to the surrounding aqueous phase. In the safety evaluation test of solidified bodies, the ratio of the amount remaining in the solidified body and the amount transferred to the aqueous phase is expressed as a partition coefficient, and the amount remaining in the solidified body is large and the amount transferred to the aqueous phase is small. A state in which the distribution coefficient is large is advantageous in terms of safety evaluation.

(発明が解決しようとする課題) しかしながら、プラスチック固化体の分配係数はほぼゼ
ロと評価され、安全評価上好ましくない。セメント固化
体においては、C−14は炭酸カルシウムなどの不溶解
性の成分として固化体に取り込まれるためにほとんど周
辺の水相へc−14が移行することはほとんどない。従
って、セメント固化体の分配係数は大きく、安全性評価
上極めて好ましい。
(Problem to be Solved by the Invention) However, the distribution coefficient of the plastic solidified body is estimated to be almost zero, which is not preferable from a safety evaluation point of view. In a cement solidified body, C-14 is incorporated into the solidified body as an insoluble component such as calcium carbonate, so that almost no C-14 is transferred to the surrounding aqueous phase. Therefore, the solidified cement has a large distribution coefficient, which is extremely preferable in terms of safety evaluation.

ところで、セメント固化体に比較して減容性が高いプラ
スチック固化法であるが、C−14のような長寿命核種
の分配係数が小さく望ましくない課題がある。
By the way, although the plastic solidification method has a higher volume reduction property than cement solidification, there is an undesirable problem in that the distribution coefficient of long-lived nuclides such as C-14 is small.

本発明は上記課題を解決するためになされたもので、プ
ラスチック固化法の減容性に優れていることは保ち、C
−14のような長寿命核種に対する分配係数が大きく安
全評価上有利な放射性廃棄物の固化処理方法を提供する
ことにある。
The present invention was made to solve the above-mentioned problems, and it maintains the excellent volume reduction properties of the plastic solidification method.
It is an object of the present invention to provide a method for solidifying radioactive waste that has a large distribution coefficient for long-lived nuclides such as -14 and is advantageous in terms of safety evaluation.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は放射性濃縮廃液を乾燥処理した放射性廃棄物粉
体に炭酸カルシウムの飽和溶解度を上回る炭酸イオンを
炭酸ナトリウム粉体として添加したのち、生石灰または
消石灰を添加し、つぎに不飽和ポリエステル樹脂、重合
開始剤および促進剤を加えて混合し重合硬化させること
を特徴とする。
(Means for Solving the Problems) The present invention involves adding carbonate ions exceeding the saturation solubility of calcium carbonate as sodium carbonate powder to radioactive waste powder obtained by drying radioactive concentrated waste liquid, and then adding quicklime or slaked lime. Next, an unsaturated polyester resin, a polymerization initiator, and an accelerator are added, mixed, and polymerized and cured.

(作用) 濃縮廃液がプラスチック固化処理されると、廃棄物乾燥
粉体中で炭酸ナトリウムの状態で存在していた溶解性の
炭酸イオンは、プラスチック固化体が水と接触した場合
、プラスチック固化体に水が浸入し、最初は炭酸ナトリ
ウムとして水に溶解するが、それと同時に生石灰または
消石灰は水に溶解し、炭酸ナトリウムと反応して、炭酸
カルシウムに変化され、水にほとんど溶解しない状態に
なる。ところで、炭酸カルシウムの溶解度は0.001
4で、炭酸ナトリウムの溶解度に比べて約5万分の1小
さい溶解度である。しかし、C−14を含む炭酸イオン
の量はきわめて僅かであるので、このような前処理をし
ても、炭酸塩はその溶解度に達し、水に溶は込む可能性
がある。したがって、あらかじめ炭酸ナトリウムを炭酸
カルシウムの溶解度を十分に越える程度に加えておく必
要があり、こうすれば、加えられた炭酸イオンとともに
C−14を含む炭酸イオンも共沈し、水にほとんど溶解
しないものにすることができる。このような状態でプラ
スチック固化すれば固化体からの炭酸イオンの溶出、水
相への移行は極めて小さくなり、したがって、分配係数
が大きくなる。
(Function) When the concentrated waste liquid is subjected to plastic solidification treatment, the soluble carbonate ions that existed in the form of sodium carbonate in the dry waste powder are converted into solidified plastic when the solidified plastic comes into contact with water. When water enters, it initially dissolves in the water as sodium carbonate, but at the same time, quicklime or slaked lime dissolves in the water, reacts with the sodium carbonate, and is converted into calcium carbonate, which becomes almost insoluble in water. By the way, the solubility of calcium carbonate is 0.001
4, which is about 1/50,000 times smaller than the solubility of sodium carbonate. However, since the amount of carbonate ions containing C-14 is extremely small, even with such pretreatment, the carbonate may reach its solubility and dissolve into water. Therefore, it is necessary to add sodium carbonate in advance to an extent that sufficiently exceeds the solubility of calcium carbonate, and by doing so, carbonate ions containing C-14 will co-precipitate with the added carbonate ions, and will hardly dissolve in water. can be made into something. If the plastic is solidified in such a state, the elution of carbonate ions from the solidified body and the transfer to the aqueous phase will be extremely small, and therefore the partition coefficient will be large.

(実施例) C−14を含む炭酸塩の溶解した硫酸ナトリウムの25
%水溶液をBWR原子力発電所から発生する模擬の濃縮
廃液として準備し、これを乾燥処理し、粉体化した。
(Example) 25% of sodium sulfate dissolved in carbonate containing C-14
% aqueous solution was prepared as a simulated concentrated waste liquid generated from a BWR nuclear power plant, which was dried and powdered.

以上のようにして準備した模擬濃縮廃液乾燥粉体でプラ
スチック固化体を製作した。プラスチック固化体はプラ
スチック材料としてBWRJjK子力発電所の固化処理
に用いられているものと同等の不飽和ポリエステル樹脂
を用いた。不飽和ポリエステル樹脂にまず重合開始剤で
ある有機過酸化物を樹脂に対して約1%加えた。その後
で乾燥処理した模擬濃縮廃液の乾燥粉体を樹脂と粉体の
比が40 : 60になるように混合した。これに模擬
放射性廃棄物乾燥粉体に対して0.4%の濃度になるよ
うに炭酸ナトリウム粉体を添加した。さらに、模擬濃縮
廃液乾燥粉体に対して、消石灰を0.8%加え均一に混
合した。混合が完了した後で、重合促進剤の有機金属化
合物を不飽和ポリエステル樹脂に対して0.5%の割合
で加えた。約1週間の後で不飽和ポリエステル樹脂は完
全に硬化したプラスチック固化体となった。この固化体
を削り、固化体の粉体をつくり、これを水相中に浸漬し
分配係数の測定を行った。測定の結果は以下の通りであ
る。
A plastic solidified body was manufactured using the simulated concentrated waste liquid dry powder prepared as described above. For the plastic solidified body, an unsaturated polyester resin equivalent to that used in the solidification process of the BWRJJK power plant was used as the plastic material. First, an organic peroxide as a polymerization initiator was added to the unsaturated polyester resin in an amount of about 1% based on the resin. Thereafter, dry powder of the dried simulated concentrated waste liquid was mixed at a ratio of resin to powder of 40:60. Sodium carbonate powder was added to this so that the concentration was 0.4% based on the simulated radioactive waste dry powder. Furthermore, 0.8% of slaked lime was added to the simulated concentrated waste liquid dry powder and mixed uniformly. After the mixing was completed, a polymerization accelerator organometallic compound was added at a rate of 0.5% based on the unsaturated polyester resin. After about one week, the unsaturated polyester resin became a fully cured plastic solid. This solidified material was shaved to produce a powder of the solidified material, which was immersed in an aqueous phase to measure the distribution coefficient. The measurement results are as follows.

水相中(7)C−14濃度: 3.2 X 10− μ
Ci/*R固化体中(7)C−14濃度: 2.6 X
 10− μCi/wlfi分配係数(固化体中のC−
14濃度/水相中のC−14濃度)=812mffi/
g このように本実施例では水相中へのC−14移行量の大
幅な減少により大きい分配係数を示す。つまり、C−1
4の保持能力が高いため、安全評価上有利な固化体とな
る。なお、従来例では分配係数がほぼゼロと小さく本実
施例により分配係数は大幅に改善されたことが認められ
る。
(7)C-14 concentration in aqueous phase: 3.2 x 10-μ
(7)C-14 concentration in Ci/*R solidified body: 2.6
10- μCi/wlfi distribution coefficient (C-
14 concentration/C-14 concentration in aqueous phase) = 812 mffi/
g As described above, this example shows a large distribution coefficient due to a significant decrease in the amount of C-14 transferred into the aqueous phase. In other words, C-1
Since the retention capacity of No. 4 is high, the solidified material is advantageous in terms of safety evaluation. Note that in the conventional example, the distribution coefficient was as small as almost zero, and it is recognized that the distribution coefficient was significantly improved by this embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、放射性廃棄物の固化体が最終処分され
た後で、水と接触するような事態が生じても、廃棄物固
化体中の炭酸イオンは水相に移行することがない。した
がって、炭酸イオン中に含まれるC−14も水相に移行
することなくはとんど固化体中に残留し、分配係数の大
きな安全評価上極めて有利なプラスチック固化体を製作
することができる。もちろん、このように前処理された
放射性濃縮廃液は乾燥処理し、余分な水分が完全に除去
された状態で固化体に処理されるために。
According to the present invention, even if a situation such as contact with water occurs after the solidified radioactive waste is finally disposed of, the carbonate ions in the solidified waste will not migrate to the aqueous phase. Therefore, C-14 contained in carbonate ions also remains in the solidified body without transferring to the aqueous phase, making it possible to produce a plastic solidified body with a large distribution coefficient and extremely advantageous in terms of safety evaluation. Of course, the radioactive concentrated waste liquid pretreated in this way is dried and processed into a solidified product with excess moisture completely removed.

従来の減容性は保たれ、廃棄物発生量の少ない固化処理
法である有利性を維持することができる。
The conventional volume reduction properties can be maintained, and the advantage of being a solidification treatment method that generates a small amount of waste can be maintained.

(8733)代理人 弁理士 猪 股 祥 晃(ほか1
名)
(8733) Agent: Yoshiaki Inomata, patent attorney (and 1 others)
given name)

Claims (1)

【特許請求の範囲】[Claims]  放射性濃縮廃液を乾燥処理した放射性廃棄物粉体に炭
酸カルシウムの飽和溶解度を上回る炭酸イオンを炭酸ナ
トリウム粉体として添加したのち、生石灰または消石灰
を添加し、つぎに不飽和ポリエステル樹脂、重合開始剤
および促進剤を加えて混合し、重合硬化させることを特
徴とする放射性廃棄物の固化処理方法。
Carbonate ions exceeding the saturation solubility of calcium carbonate are added as sodium carbonate powder to radioactive waste powder obtained by drying radioactive concentrated waste liquid, then quicklime or slaked lime is added, and then unsaturated polyester resin, polymerization initiator and A method for solidifying radioactive waste, characterized by adding an accelerator, mixing, and polymerizing and curing.
JP20917290A 1990-08-09 1990-08-09 Solidification treatment of radioactive waste Pending JPH0493799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20917290A JPH0493799A (en) 1990-08-09 1990-08-09 Solidification treatment of radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20917290A JPH0493799A (en) 1990-08-09 1990-08-09 Solidification treatment of radioactive waste

Publications (1)

Publication Number Publication Date
JPH0493799A true JPH0493799A (en) 1992-03-26

Family

ID=16568528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20917290A Pending JPH0493799A (en) 1990-08-09 1990-08-09 Solidification treatment of radioactive waste

Country Status (1)

Country Link
JP (1) JPH0493799A (en)

Similar Documents

Publication Publication Date Title
US4363757A (en) Method for noncontaminating solidification for final storage of aqueous, radioactive waste liquids
EP0124965A1 (en) Process for the encapsulation of ion exchange resins
US3557013A (en) Process for solidifying radioactive wastes by addition of lime to precipitate fluoride
JPH0631850B2 (en) How to dispose of radioactive liquid waste
Kaneko et al. Development of high volume reduction and cement solidification technique for PWR concentrated waste
JPS61240199A (en) Method and device for manufacturing radioactive waste solidified body
US4424148A (en) Process for preparing wastes for non-pollutant disposal
US5498828A (en) Solidification agents for radioactive waste and a method for processing radioactive waste
JPH0493799A (en) Solidification treatment of radioactive waste
JPH09101398A (en) Method and device for treating radioactive waste
Bradbury et al. Cementitious near-field sorption data bases for performance assessment of a L/ILW repository in a Palfris Marl host rock
Christensen Leaching of cesium from cement solidified BWR and PWR bead resins
JPH0493798A (en) Stabilizing treatment of radioactive waste
CH647886A5 (en) METHOD FOR PROCESSING RADIOACTIVE SOLUTIONS.
RU2397558C1 (en) Method of cleaning and decontamination of equipment on nuclear power plants (versions)
US4582637A (en) Reprocessing of irradiated nuclear fuel
RU2763146C1 (en) Method for immobilising liquid radioactive waste
JPH04115198A (en) Solidifying method for radioactive waste
US5143653A (en) Process for immobilizing radioactive ion exchange resins by a hydraulic binder
JPS623698A (en) Solidifying processing method of radioactive waste
JPS6191600A (en) Method of solidifying radioactive concentrated waste liquor
JPS6186692A (en) Method of solidifying spent radioactive ion exchange resin
Lerch et al. Treatment and immobilization of intermediate level radioactive wastes
JP3074073B2 (en) Solidification of radioactive waste
CA1205097A (en) Process for preparing wastes for non-pollutant disposal