JPH049353A - Production of dicyclopentadiene methacrylate - Google Patents

Production of dicyclopentadiene methacrylate

Info

Publication number
JPH049353A
JPH049353A JP2111333A JP11133390A JPH049353A JP H049353 A JPH049353 A JP H049353A JP 2111333 A JP2111333 A JP 2111333A JP 11133390 A JP11133390 A JP 11133390A JP H049353 A JPH049353 A JP H049353A
Authority
JP
Japan
Prior art keywords
acid
salt
solvent
reaction
methacrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2111333A
Other languages
Japanese (ja)
Inventor
Satoshi Teshigahara
聡志 勅使川原
Tomomi Ishigaki
石垣 知巳
Yoshiaki Kano
加納 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2111333A priority Critical patent/JPH049353A/en
Publication of JPH049353A publication Critical patent/JPH049353A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject compound in high yield by reacting dicyclopentadiene with methacrylic acid in a solvent in the presence of phosthotungstic acid or its acidic salt having heteropolyacid structure and free from physically adsorbed water. CONSTITUTION:The objective compound expressed by formula and useful for the production of a new acrylate polymer having excellent physical and chemical properties such as transparency, heat-resistance, thermal stability, solvent resistance and dielectric properties is produced by reacting dicyclopentadiene with methacrylic acid. The above reaction is carried out in a solvent in the presence of phosphotungstic acid or its acidic salt having heteropolyacid structure and free from physically adsorbed water, especially its salt with one or more metals selected from copper, chromium, manganese and sodium while preferably adding a polymerization inhibitor to the reaction system to obtain the objective compound in high conversion and selectivity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シンクロペンタジエンメタクリレートの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing synchropentadiene methacrylate.

本発明で得られるシンクロペンタジエンメタクリレート
は、透明性、耐熱性、熱安定性、耐溶剤性、誘電特性等
の物理的、化学的特性に優れた新規なアクリレート系重
合体を製造するのに用いられる極めて有用な化学物質で
ある。
The synchropentadiene methacrylate obtained in the present invention can be used to produce a new acrylate polymer with excellent physical and chemical properties such as transparency, heat resistance, thermal stability, solvent resistance, and dielectric properties. It is an extremely useful chemical substance.

その具体的用途としては、光硬化性樹脂、熱硬化性樹脂
、アクリル系塗料、アクリル系接着材の改質用途などが
挙げられる(例えば、特開昭61−159408号公報
参照)。
Specific uses thereof include modifying photocurable resins, thermosetting resins, acrylic paints, and acrylic adhesives (see, for example, Japanese Patent Laid-Open No. 159408/1983).

(従来の技術) シンクロペンタジエンメタクリレートの製造方法として
は、シンクロペンタジエンとメタクリル酸とを、三弗化
ホウ素のエーテル錯体の存在下、反応させる方法が知ら
れている(特開昭54−97695号−、ケミカル・ア
ブストラクト63−9055頁(1966年))。これ
とは別に、弗素含有イオン交換樹脂を触媒として用いる
方法もある(特開昭56−59736号)。
(Prior Art) As a method for producing synchropentadiene methacrylate, a method is known in which synchropentadiene and methacrylic acid are reacted in the presence of an ether complex of boron trifluoride (JP-A-54-97695- , Chemical Abstracts, pp. 63-9055 (1966)). Apart from this, there is also a method using a fluorine-containing ion exchange resin as a catalyst (Japanese Patent Application Laid-open No. 59736/1983).

しかし、前者は、装置の腐食の問題があり、煩雑な後処
理を必要とし、後者は、シンクロペンタジエン(以下、
DCPDと略記することがある)に対して過剰量のメタ
クリル酸を必要とし、効率的でないという欠点があった
However, the former has problems with equipment corrosion and requires complicated post-treatment, and the latter uses synchropentadiene (hereinafter referred to as
This method requires an excessive amount of methacrylic acid (sometimes abbreviated as DCPD) and has the drawback of being inefficient.

これに対して、特開昭56−59735号に開示されて
いる、タングステンのへテロポリ酸を触媒として用いて
シンクロペンタジエンメタクリレートを製造する方法で
は、上記の装置の腐食および反応の非効率性は改善され
る。
On the other hand, in the method for producing synchropentadiene methacrylate using tungsten heteropolyacid as a catalyst, which is disclosed in JP-A No. 56-59735, the corrosion of the above-mentioned equipment and the inefficiency of the reaction are improved. be done.

(発明が解決しようとする課題) ところが特開昭56−59735号に記載の方法では、
シンクロペンタジエンメタクリレートの収率が約50%
と低かった。
(Problem to be solved by the invention) However, in the method described in JP-A No. 56-59735,
The yield of synclopentadiene methacrylate is approximately 50%.
It was low.

そこで本発明の目的は、タングステンのへテロポリ酸を
用いてシンクロペンタジエンとメタクリル酸とから、高
転化率及び高選択率で、従って高収率でシンクロペンタ
ジエンメタクリレートを、製造する方法を提供すること
にある。
Therefore, an object of the present invention is to provide a method for producing synchropentadiene methacrylate from synchropentadiene and methacrylic acid using a tungsten heteropolyacid with high conversion and high selectivity, and therefore with high yield. be.

(課題を解決するための手段) 本発明は、シンクロペンタジエンとメタクリル酸との反
応用触媒として、物理吸着水を除去したリンタングステ
ン酸又はその酸性塩を用いることにより、上記目的を達
成した。
(Means for Solving the Problems) The present invention has achieved the above object by using phosphotungstic acid or an acid salt thereof from which physically adsorbed water has been removed as a catalyst for the reaction between synchlopentadiene and methacrylic acid.

以下、本発明について詳説する。The present invention will be explained in detail below.

本発明において触媒としてヘテロポリ酸構造を有するリ
ンタングステン酸(H3PW、□O,。) 又はその酸
性塩を用いる。酸触媒としての活性を有する必要がある
ため、酸性塩であり、リンタングステン酸の金属塩であ
ることが好ましい。酸性塩は、例えば組成式MX/II
IHI−0[PW、204.I  C但し、Mは金属原
子を表し、mは、金属原子の原子価を表し、Xは0より
大きく2又は2より小さい数である)で表すことができ
る。塩を形成するための金属としては、特に銅、クロム
、マンガン及びナトリウムであることが好ましい。酸性
塩の具体例としては、NaH2PW12040、Na2
HPWt20+o、CLIHPW12010、CLIH
2[PWt20<o] 2 、CrHIl[PW120
40] 3、MnH4[:PW1204゜コ。等を挙げ
ることができる。
In the present invention, phosphotungstic acid (H3PW, □O, .) having a heteropolyacid structure or an acid salt thereof is used as a catalyst. Since it is necessary to have activity as an acid catalyst, it is an acid salt, and preferably a metal salt of phosphotungstic acid. The acidic salt has, for example, the composition formula MX/II
IHI-0 [PW, 204. IC (where M represents a metal atom, m represents a valence of the metal atom, and X is a number greater than 0 and 2 or less than 2). Particularly preferred metals for forming the salt are copper, chromium, manganese and sodium. Specific examples of acid salts include NaH2PW12040, Na2
HPWt20+o, CLIHPW12010, CLIH
2[PWt20<o] 2 , CrHIl[PW120
40] 3, MnH4[:PW1204゜co. etc. can be mentioned.

リンタングステン酸の酸性塩は、水溶液中で金属のハロ
ゲン塩、炭酸塩、酢酸塩、硫酸塩等と反応させ、沈澱ま
たは蒸発乾固させることにより得ることができる。
The acidic salt of phosphotungstic acid can be obtained by reacting with a metal halide, carbonate, acetate, sulfate, etc. in an aqueous solution, followed by precipitation or evaporation to dryness.

本発明において触媒として用いるリンタングステン酸又
はその酸性塩は物理吸着水を有さないものである。リン
タングステン酸は潮解性を有し、一般に多量の物理吸着
水を有する。シンクロペンタジエンとメタクリル酸から
シンクロペンタジエンメタクリレートを製造する際には
、この物理吸着水を除去したリンタングステン酸又はそ
の酸性塩を用いることで、高収率でシンクロペンタジェ
ンメタクリレートを製造することができる。リンタング
ステン酸の物理吸着水の除去は、例えば常圧では80℃
以上に加熱することにより行うことができる。この温度
は、リンタングステン酸及び酸性塩の種類により異なる
が、熱分析をすることにより容易に求めることができる
。又、リンタングステン酸は、多量の結晶水も有する。
The phosphotungstic acid or its acid salt used as a catalyst in the present invention does not have physically adsorbed water. Phosphortungstic acid has deliquescent properties and generally has a large amount of physically adsorbed water. When producing synclopentadiene methacrylate from synclopentadiene and methacrylic acid, synclopentadiene methacrylate can be produced in high yield by using phosphotungstic acid or its acid salt from which this physically adsorbed water has been removed. Physically adsorbed water of phosphotungstic acid can be removed at, for example, 80°C at normal pressure.
This can be done by heating above. This temperature varies depending on the type of phosphotungstic acid and acid salt, but can be easily determined by thermal analysis. Phosphortungstic acid also has a large amount of water of crystallization.

例えばHsPW1204−では、1ユニツト当たり最大
29コの結晶水を有する。そして加熱条件によっては物
理吸着水に次いで結晶水も離脱することがある。シンク
ロペンタジエン及びメタクリル酸の転化率並びにシンク
ロペンタジエンメタクリレートの選択率を考慮すると結
晶水の数が、リンタングステン酸1ユニツト当たり1〜
20コ、好ましくは3〜lOコであることが特に好まし
い。結晶水の数と加熱処理条件との関係は、熱分析を行
うことにより求めることかできる。例えばH3PW、、
O,、の場合、常圧で約150〜300°C1好ましく
は200〜300°Cで加熱することにより所望の数の
結晶水を有するH3PW、□040を得ることができる
For example, HsPW1204- has a maximum of 29 crystal waters per unit. Depending on the heating conditions, water of crystallization may also be released next to physically adsorbed water. Considering the conversion rate of synchropentadiene and methacrylic acid and the selectivity of synchropentadiene methacrylate, the number of water of crystallization is 1 to 1 per unit of phosphotungstic acid.
It is particularly preferred that the number is 20, preferably 3 to 10. The relationship between the number of water of crystallization and the heat treatment conditions can be determined by thermal analysis. For example, H3PW,
In the case of O,, H3PW, □040, having a desired number of water of crystallization can be obtained by heating at about 150 to 300°C, preferably 200 to 300°C, at normal pressure.

尚、上記加熱脱水処理は、減圧下でも行うことかでき、
但し、加熱温度は、減圧度に応じて、常圧の場合よりも
低くすることができる。
In addition, the above heating dehydration treatment can also be performed under reduced pressure.
However, the heating temperature can be lower than that at normal pressure depending on the degree of pressure reduction.

また、リンタングステン酸の酸性塩は、反応の前に、脱
水処理されたリンタングステン酸と、金属のハロゲン塩
、炭酸塩、酢酸塩又は硫酸塩とを反応系内へ導入するこ
とにより形成させることもできる。
Furthermore, the acid salt of phosphotungstic acid may be formed by introducing dehydrated phosphotungstic acid and a metal halide, carbonate, acetate, or sulfate into the reaction system before the reaction. You can also do it.

触媒の使用量は、シンクロペンタジェンとメタクリル酸
の合計重量に対して0.1〜5wt%が好ましく、1〜
3wt%とすることか特に好ましい。この使用範囲を越
えて多量に使用すると、シンクロペンタジエンのカチオ
ン重合が促進することかあり、好ましくない。
The amount of the catalyst used is preferably 0.1 to 5 wt%, and 1 to 5 wt% based on the total weight of synclopentadiene and methacrylic acid.
It is particularly preferable to set the content to 3 wt%. If it is used in an amount exceeding this usage range, the cationic polymerization of synchropentadiene may be accelerated, which is not preferable.

反応温度は、406C〜90℃、好ましくは60〜80
℃の範囲が好ましい。40°C未満では反応を十分に進
行させるのに長時間を要することになる。また、100
°C以上では、シンクロペンタジエンのカチオン重合お
よび生成したメタクリレートの重合が促進されるので好
ましくない。反応時間は、通常2〜10時間の範囲とす
ることが適当である。
The reaction temperature is 406C to 90C, preferably 60 to 80C.
A range of 0.degree. C. is preferred. If the temperature is lower than 40°C, it will take a long time for the reaction to proceed sufficiently. Also, 100
If the temperature is above .degree. C., the cationic polymerization of synchropentadiene and the polymerization of the produced methacrylate are promoted, which is not preferable. It is appropriate that the reaction time is usually in the range of 2 to 10 hours.

本発明の反応は、溶媒中で行う。リンタングステン酸が
シンクロペンタジエン及びメタクリル酸に溶解せず、不
均一な系になり、反応が進行しないからである。そこで
、溶媒としては、リンタングステン酸又はその酸性塩を
溶解するものを用いる。例えば、メチルエチルケトン、
メチルイソブチルケトン等のケトン類、酢酸エチル、酢
酸イソプロピル等のエステル類等を挙げることができる
The reaction of the present invention is carried out in a solvent. This is because phosphotungstic acid is not dissolved in synchlopentadiene and methacrylic acid, resulting in a non-uniform system, and the reaction does not proceed. Therefore, a solvent that dissolves phosphotungstic acid or its acid salt is used as the solvent. For example, methyl ethyl ketone,
Examples include ketones such as methyl isobutyl ketone, and esters such as ethyl acetate and isopropyl acetate.

溶媒の使用量は、シンクロペンタジエンの仕込み重量1
00に対して20〜100(重量比)とすることが、リ
ンタングステン酸又はその酸性塩を溶解し、反応を進行
させるという観点から好ましい。
The amount of solvent used is 1 by weight of synchropentadiene.
It is preferable to set the ratio to 20 to 100 (weight ratio) to 0.00 from the viewpoint of dissolving phosphotungstic acid or its acid salt and allowing the reaction to proceed.

シンクロペンタジエンとメタクリル酸の使用量は、実質
的に等量とすることが、高収率を挙げるために好ましい
。例えば、シンクロペンタジエン1に対してメタクリル
酸をモル比で0.8〜1.2の範囲内にすることが適当
である。
It is preferable that the amounts of synclopentadiene and methacrylic acid used are substantially equal in order to obtain a high yield. For example, it is appropriate that the molar ratio of methacrylic acid to 1 part of synchropentadiene be within the range of 0.8 to 1.2.

シンクロペンタジエン及びメタクリル酸並びに生成する
メタクリレートは、熱的に不安定な物質であるため重合
禁止剤を添加して反応を行うのが好ましい。重合禁止剤
としては、ヒドロキノン、メトキシフェノール、カテコ
ール類、フェノチアジン、ナフトール類等が挙げられる
。その使用量は、反応基質の合計重量に対して100〜
500Oppmが好ましい。この範囲以上の添加は、反
応液の着色および触媒活性の劣化が著しくなるので好ま
しくなく、この範囲以下の添加では効果がでない。
Since synchronopentadiene, methacrylic acid, and the methacrylate produced are thermally unstable substances, it is preferable to carry out the reaction by adding a polymerization inhibitor. Examples of the polymerization inhibitor include hydroquinone, methoxyphenol, catechols, phenothiazine, naphthols, and the like. The amount used is 100 to 100% based on the total weight of reaction substrates.
500 Oppm is preferred. Addition in excess of this range is undesirable, as coloring of the reaction liquid and deterioration of catalyst activity will become significant, while addition in below this range will not be effective.

また、酸素含有気体を反応液に吹き込んでも良く、その
量には特に限定はない。このとき、上記重合禁止剤のう
ち、アルコール系のものを併用することが特に好ましい
Further, an oxygen-containing gas may be blown into the reaction liquid, and the amount thereof is not particularly limited. At this time, among the above-mentioned polymerization inhibitors, it is particularly preferable to use alcohol-based ones together.

反応は、回分式、半回分式及び連続式のいずれの方法で
も実施される。但し、回分式及び半回分式が好ましい。
The reaction is carried out in any of the batch, semi-batch and continuous methods. However, batch type and semi-batch type are preferred.

回分式の場合は、触媒を溶解した溶媒にメタクリル酸及
びシンクロペンタジエンを供給するか、シンクロペンタ
ジエン、メタクリル酸及び溶媒の混合液に、触媒を溶解
した溶媒を供給するか、あるいは、触媒、メタクリル酸
及び溶媒の混合液に、シンクロペンタジエンを滴下する
ことができる。特に、触媒、メタクリル酸及び溶媒の混
合液に、シンクロペンタジエンを滴下する方法が、シン
クロペンタジエンの重合を抑制できるという観点から好
ましい。
In the case of a batch method, methacrylic acid and synchropentadiene are supplied to a solvent in which the catalyst is dissolved, or a solvent in which the catalyst is dissolved is supplied to a mixture of synchropentadiene, methacrylic acid, and a solvent, or the catalyst, methacrylic acid Synchropentadiene can be added dropwise to the mixture of the compound and the solvent. In particular, a method in which synchropentadiene is dropped into a mixed solution of a catalyst, methacrylic acid, and a solvent is preferred from the viewpoint of suppressing polymerization of synchropentadiene.

反応は、常圧下またはオートクレーブ中で加圧下で行う
ことができる。
The reaction can be carried out under normal pressure or under pressure in an autoclave.

反応終了後は、例えば以下のようにして生成物を回収す
ることができる。反応液容量に対して5〜10倍量のノ
ルマルヘキサンに投入し、重合物を沈澱濾過する。回収
されるる液は、純水で洗浄後、5wt%炭酸水素ナトリ
ウム水溶液等のアルカリ水溶液で洗浄、さらに純水で洗
浄した後、低沸点成分を減圧除去することにより高純度
の粗製品か高収率で回収される。
After the reaction is completed, the product can be recovered, for example, as follows. The reaction solution is poured into 5 to 10 times the volume of normal hexane, and the polymer is precipitated and filtered. The recovered liquid is washed with pure water, then washed with an alkaline aqueous solution such as a 5 wt % sodium bicarbonate aqueous solution, further washed with pure water, and then the low-boiling components are removed under reduced pressure to produce a high-purity crude product or a high-yield product. recovered at a rate.

さらに必要であれば、減圧蒸留することにより更に高純
度の製品を回収することができる。
Furthermore, if necessary, a product of even higher purity can be recovered by distillation under reduced pressure.

得られるメタクリレートは、重合性が高いためできるか
ぎり短時間で蒸留を行うことが好ましく、薄膜蒸留等の
方法を用いることが好ましい。この際、重合禁止剤を添
加して行うのがよい。重合禁止剤としては、ターシャリ
ブチルカテコール、Nニトロンフェニルアミン、N−ニ
トロソヒドロキシルアミン塩、フェノチアジン、ジ−β
−ナフトール、N、N−ジ−β−ナフチル−P−フエニ
レンジアミン等が挙げられ、これらの単独または2種以
上の併用がよい。
Since the obtained methacrylate has high polymerizability, it is preferable to distill it in as short a time as possible, and it is preferable to use a method such as thin film distillation. At this time, it is preferable to add a polymerization inhibitor. Polymerization inhibitors include tert-butylcatechol, N-nitron phenylamine, N-nitrosohydroxylamine salt, phenothiazine, di-β
-naphthol, N,N-di-β-naphthyl-P-phenylenediamine, etc., and these may be used alone or in combination of two or more.

以上の本発明の方法により、一般式(I)で表わされる
メタクリレートを高収率で得ることができる。尚、一般
式(I)のメタクリレートは、具体的には、以下の化合
物である。
By the method of the present invention described above, the methacrylate represented by general formula (I) can be obtained in high yield. In addition, the methacrylate of general formula (I) is specifically the following compound.

(発明の効果) 本発明によれば、高い転化率かつ高い選択率でシンクロ
ペンタジエンメタクリレートを合成でき、その結果高収
率でシンクロペンタジエンメタクリレートを得ることか
できる。
(Effects of the Invention) According to the present invention, synchropentadiene methacrylate can be synthesized with a high conversion rate and high selectivity, and as a result, synchropentadiene methacrylate can be obtained with a high yield.

(実施例) 以下、実施例により本発明をさらに説明する。(Example) The present invention will be further explained below with reference to Examples.

但し、本発明はこれに限定されるものではない。However, the present invention is not limited to this.

参考例1 撹拌器及び温度計を備えた100−のガラス製フラスコ
中で、市販のH3PW、20..5、Ogを純水25−
に完全に溶解した。この溶液に、塩基性炭酸銅(Cu(
OH)2・CH3COO)0.08 gを溶解した水溶
液10−を滴下した。滴下終了後、室温で2時間攪拌し
、ついで120℃で加熱し、蒸発乾固して水分及び炭酸
を除去した。
Reference Example 1 In a 100-mm glass flask equipped with a stirrer and a thermometer, commercially available H3PW, 20. .. 5. Og in pure water 25-
completely dissolved in. Add basic copper carbonate (Cu(
An aqueous solution 10- in which 0.08 g of OH)2.CH3COO) was dissolved was added dropwise. After the dropwise addition was completed, the mixture was stirred at room temperature for 2 hours, then heated at 120°C and evaporated to dryness to remove water and carbonic acid.

このようにして、定量的にリンタングステン酸の銅の酸
性塩(CuH4[PW12040] 2)を得た。
In this way, a copper acid salt of phosphotungstic acid (CuH4[PW12040] 2) was obtained quantitatively.

参考例2 参考例1における塩基性炭酸銅の代わりに酢酸銅(CL
I(CH3COO)2 ・H20)0.072 gを用
いた以外は参考例1と同様にしてリンタングステン酸の
銅の酸性塩(CuH4[PWl 204612 )を得
た。
Reference Example 2 Copper acetate (CL) was used instead of basic copper carbonate in Reference Example 1.
A copper acid salt of phosphotungstic acid (CuH4[PWl 204612 ) was obtained in the same manner as in Reference Example 1 except that 0.072 g of I(CH3COO)2 .H20) was used.

参考例3 塩基性炭酸銅(CLI(OH)2 ・CuC03)0.
16 g (リンタングステン酸と等モル量)を用いた
以外は参考例2と同様にしてリンタングステン酸の銅の
酸性塩(CuHPW+ 204 G )を得た。
Reference Example 3 Basic copper carbonate (CLI(OH)2 ・CuC03) 0.
A copper acid salt of phosphotungstic acid (CuHPW+ 204 G) was obtained in the same manner as in Reference Example 2 except that 16 g (equimolar amount of phosphotungstic acid) was used.

参考例4 参考例1における塩基性炭酸銅の代わりに炭酸ナトリウ
ム0.038 gを用いた以外は参考例1と同様にして
リンタングステン酸のナトリウムの酸性塩(Nal(2
PWl 2040)を得た。
Reference Example 4 An acid salt of sodium phosphotungstic acid (Nal(2
PWl 2040) was obtained.

参考例5及び6 参考例2における酢酸銅の代わりに酢酸クロム(Cr(
CHaCOO)2” H20)0.16 g (参考例
5)又は酢酸マンガン(Mn(CH3COO)264H
20)0.089 g(参考例6)を用いた以外は参考
例1と同様にしてリンタングステン酸のクロムの酸性塩
(CrHs [PW12040] a)及びマンガンの
酸性塩(MnH* [PW+□04o] 2)を得た。
Reference Examples 5 and 6 Chromium acetate (Cr(
CHaCOO)2” H20) 0.16 g (Reference Example 5) or manganese acetate (Mn(CH3COO)264H
20) Chromium acid salt of phosphotungstic acid (CrHs [PW12040] a) and manganese acid salt (MnH* [PW+□04o ] 2) was obtained.

実施例1 冷却装置、撹拌器、温度計を備えた200−の四つロフ
ラスコにメタクリル酸28.7 g (0,33mob
)、メチルエチルケトン24yd、ノ1イトロキノン0
.03 g、触媒として参考例2で調製したリンタング
ステン酸の銅の酸性塩1.0gを加え、攪拌して均一溶
液とした。
Example 1 28.7 g of methacrylic acid (0.33 mob
), methyl ethyl ketone 24yd, noitroquinone 0
.. 03 g, and 1.0 g of the copper acid salt of phosphotungstic acid prepared in Reference Example 2 as a catalyst were added and stirred to form a homogeneous solution.

70°Cのオイルバス中で、滴下ロートを用いてシンク
ロペンタジエン44 g (0,33mol)を2時間
かけて滴下した。滴下終了後、更に5時間反応させた。
In a 70°C oil bath, 44 g (0.33 mol) of synchropentadiene was added dropwise using a dropping funnel over 2 hours. After the dropwise addition was completed, the reaction was continued for an additional 5 hours.

反応終了後、放冷し、未反応物及びメチルエチルケトン
をロータリーエバポレーターで減圧下除去した。残渣を
をn−ヘキサン中に投入し、重合物を沈澱ろ過した。ろ
液を回収し、5wt%Na2CO3水溶液及び純水で洗
浄した後、n−ヘキサンを減圧除去し、粗製品を回収し
た。
After the reaction was completed, the mixture was allowed to cool, and unreacted substances and methyl ethyl ketone were removed under reduced pressure using a rotary evaporator. The residue was poured into n-hexane, and the polymer was precipitated and filtered. The filtrate was collected and washed with a 5 wt % Na2CO3 aqueous solution and pure water, and then n-hexane was removed under reduced pressure and a crude product was collected.

この粗製品のガスクロマトグラフィによる分析により収
率、転化率および選択率を求めた。その結果を表1に示
す。
The yield, conversion rate, and selectivity were determined by analyzing this crude product by gas chromatography. The results are shown in Table 1.

実施例2 リンタングステン酸の銅の酸性塩を300℃で12時間
加熱処理した以外は実施例1と同様にして反応を行った
。結果を表1に示す。
Example 2 A reaction was carried out in the same manner as in Example 1, except that the copper acid salt of phosphotungstic acid was heat-treated at 300° C. for 12 hours. The results are shown in Table 1.

実施例3〜8 触媒として、参考例3で調製したリンタングステン酸の
銅の酸性塩(実施例3)、参考例1で調製したリンタン
グステン酸の銅の酸性塩(実施例4)、市販のリンタン
グステン酸(H3PW、204゜)(実施例5)、参考
例5で調製したリンタングステン酸のクロムの酸性塩(
実施例7)又は参考例6で調製したリンタングステン酸
のマンガンの酸性塩(実施例8)をそれぞれ300℃で
12時間加熱処理したもの、若しくは参考例4で調製し
たリンタングステン酸のナトリウムの酸性塩(実施例6
)を触媒として用いた以外、実施例1と同様にして反応
を行った。結果を表1に示す。
Examples 3 to 8 As a catalyst, the acidic copper salt of phosphotungstic acid prepared in Reference Example 3 (Example 3), the acidic copper salt of phosphotungstic acid prepared in Reference Example 1 (Example 4), and the commercially available Phosphotungstic acid (H3PW, 204°) (Example 5), chromium acid salt of phosphotungstic acid prepared in Reference Example 5 (
Example 7) or the manganese acid salt of phosphotungstic acid prepared in Reference Example 6 (Example 8) heat-treated at 300°C for 12 hours, or the acid salt of sodium phosphotungstic acid prepared in Reference Example 4 Salt (Example 6
) was used as a catalyst, but the reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

比較例 市販のリンタングステン酸を加熱処理することなくその
まま触媒として用いた以外は、実施例1と同様にして反
応を行った。結果を表1に示す。
Comparative Example A reaction was carried out in the same manner as in Example 1, except that commercially available phosphotungstic acid was used as a catalyst without heat treatment. The results are shown in Table 1.

実施例9 メタクリル酸28.7 g (0,33moA ) 、
メチルエチルケトン24−、ハイドロキノン0.03g
、触媒として市販のリンタングステン酸(H3PW、 
、0.、)を300°Cで12時間加熱処理したものを
1.0gと塩基性炭酸銅(Cu(CH3COO)、 ”
 H2O)を0.1 gの均一溶液を用いた以外は実施
例1と同様にして反応を行った。結果を表1に示す。
Example 9 28.7 g (0.33 moA) of methacrylic acid,
Methyl ethyl ketone 24-, hydroquinone 0.03g
, commercially available phosphotungstic acid (H3PW,
,0. ,) heated at 300°C for 12 hours and 1.0g of basic copper carbonate (Cu(CH3COO)).
The reaction was carried out in the same manner as in Example 1 except that a homogeneous solution of 0.1 g of H2O) was used. The results are shown in Table 1.

Claims (2)

【特許請求の範囲】[Claims] (1)シンクロペンタジエンとメタクリル酸とを反応さ
せて一般式( I ) ▲数式、化学式、表等があります▼( I ) で表わされるジシクロペンタジエンメタクリレートを製
造する方法であって、上記反応を、溶媒、及びヘテロポ
リ酸構造を有し、かつ物理吸着水を有さないリンタング
ステン酸又はその酸性塩の存在下、行うことを特徴とす
る上記方法。
(1) A method for producing dicyclopentadiene methacrylate represented by the general formula (I) ▲Mathematical formula, chemical formula, table, etc.▼(I) by reacting synchronopentadiene and methacrylic acid, in which the above reaction is carried out, The above method is characterized in that it is carried out in the presence of a solvent and phosphotungstic acid or an acid salt thereof having a heteropolyacid structure and not having physically adsorbed water.
(2)リンタングステン酸の酸性塩が、銅、クロム、マ
ンガン及びナトリウムから成る群から選ばれる少なくと
も1種の金属塩である請求項1記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the acid salt of phosphotungstic acid is at least one metal salt selected from the group consisting of copper, chromium, manganese, and sodium.
JP2111333A 1990-04-26 1990-04-26 Production of dicyclopentadiene methacrylate Pending JPH049353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2111333A JPH049353A (en) 1990-04-26 1990-04-26 Production of dicyclopentadiene methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2111333A JPH049353A (en) 1990-04-26 1990-04-26 Production of dicyclopentadiene methacrylate

Publications (1)

Publication Number Publication Date
JPH049353A true JPH049353A (en) 1992-01-14

Family

ID=14558550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2111333A Pending JPH049353A (en) 1990-04-26 1990-04-26 Production of dicyclopentadiene methacrylate

Country Status (1)

Country Link
JP (1) JPH049353A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007514A1 (en) * 2009-07-15 2011-01-20 パナソニック株式会社 Analysis reagent and analysis device having the analysis reagent carried therein
JP2011047835A (en) * 2009-08-28 2011-03-10 Panasonic Corp Analysis reagent and analysis device
CN113083337A (en) * 2019-12-23 2021-07-09 万华化学集团股份有限公司 Catalyst for methacrylic acid production and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007514A1 (en) * 2009-07-15 2011-01-20 パナソニック株式会社 Analysis reagent and analysis device having the analysis reagent carried therein
JP2011047835A (en) * 2009-08-28 2011-03-10 Panasonic Corp Analysis reagent and analysis device
CN113083337A (en) * 2019-12-23 2021-07-09 万华化学集团股份有限公司 Catalyst for methacrylic acid production and preparation method and application thereof
CN113083337B (en) * 2019-12-23 2022-04-19 万华化学集团股份有限公司 Catalyst for methacrylic acid production and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4745214A (en) Process for the preparation of an aqueous solution of unsaturated quaternary ammonium salts
AU2002224131A1 (en) Process for producing 5-(3-cyanophenyl)-3-formylbenzoic acid compound
JPS63255273A (en) Purification of glycidyl acrylate or glycidyl methacrylate
JPH049353A (en) Production of dicyclopentadiene methacrylate
JP2818652B2 (en) Method for producing isobornyl (meth) acrylate
JP3885249B2 (en) Purification method of glycidyl (meth) acrylate
JPS62120354A (en) Production of high-purity sulfoalkyl (meth)acrylate salt
JP4520612B2 (en) Method for producing 3,3&#39;-diallyl-4,4&#39;-dihydroxydiphenylsulfone
JP3654305B2 (en) Method for purifying glycidyl acrylate or glycidyl methacrylate
JPS6163643A (en) Novel azoamide compound and its preparation
JPH02172969A (en) Production of dithiol di(meth)acrylate
JP2677687B2 (en) Method for producing 3,5-diiodosalicylic acid
JPS62255450A (en) Production of glycerin monoacrylate or methacrylate
JPS60215650A (en) Preparation of glycerol acrylate for methacrylate
JPH02255639A (en) Production of 4,4&#39;-(1,6-hexamethylenedioxy)-bis-benzoic acid
JP2007308457A (en) Manufacturing method of 2-methyl-2-adamantanol and magnesium chloride salt thereof
JPH0840979A (en) Production of 2-hydroxycyclohexyl (meth)acrylate
JPS5829925B2 (en) Purification method for recovered solvent used in the production of halogenated phenyl glycols
JPH04316536A (en) Production of alicyclic diester compound
JPS58174346A (en) Preparation of acrylic or methacrylic acid ester
JPH0334957A (en) Production of dipentaerythritol hexaester compound
JPH04316535A (en) Production of alicyclic ester compound
JPS60161962A (en) Preparation of polythioalkylene dimercaptan
JPH03167151A (en) Production of polyhydroxybenzophenones
JPS5922906A (en) Manufacture of polymeric oxime