JPH0493206A - Molding processing apparatus - Google Patents

Molding processing apparatus

Info

Publication number
JPH0493206A
JPH0493206A JP20923190A JP20923190A JPH0493206A JP H0493206 A JPH0493206 A JP H0493206A JP 20923190 A JP20923190 A JP 20923190A JP 20923190 A JP20923190 A JP 20923190A JP H0493206 A JPH0493206 A JP H0493206A
Authority
JP
Japan
Prior art keywords
iron
resin
cobalt
chromium
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20923190A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fujii
康弘 藤井
Yasuhiko Ota
太田 靖彦
Masumi Saruwatari
益巳 猿渡
Yasuko Honchi
本地 靖子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP20923190A priority Critical patent/JPH0493206A/en
Publication of JPH0493206A publication Critical patent/JPH0493206A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a molding processing apparatus where thermoplastic polyimide resin can prevent oxidation reaction by contact of thermoplastic resin with a metallic part by specifying the quality of the material of a part with which the resin is contacted at a high temperature. CONSTITUTION:Such a change of physical properties of resin that discoloration into black and an increase of viscosity can be solved by making use of the quality of the material having iron content of 0-80wt.%, preferably the quality of the material having the iron content of 0-50wt.% is desirable and further preferably an alloy other than iron is desirous for a main component. Then as for hardness of the metallic quality of the material, it is necessary that brinnel hardness (HB) is at least 115. The hardness can be improved by reducing the iron content and increasing content of a metal such as nickel, chromium, cobalt, molybdenum or tungsten and titanium. Stainless steel, an iron group ultra-alloy and an iron/nickel/cobalt/chromium alloys are mentioned among matters consisting basically of iron as a matter used preferably and a nickel group ultra-alloy, a cobalt group ultra-alloy and a cobalt/chromium/tangsten alloys are mentioned as a nonferrous metal.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は熱可塑性ポリイミド樹脂の成形加工機器に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a molding equipment for thermoplastic polyimide resin.

〔従来の技術] 近年、熱可塑性ポリイミド樹脂やその成型方法が報告さ
れている。しかし、熱可塑性ポリイミド樹脂の熔融成型
機器に関する報告は少なり、−船釣な成型加工機器が用
いられているのが現状である。熱可塑性ポリイミド樹脂
は従来の熱可塑性樹脂に比べ成型加工温度が高いために
、これまでの成型加工では稀にしか起こらなかった加工
機器の熱変形や高温下での金属と樹脂との反応等が発生
する。
[Prior Art] In recent years, thermoplastic polyimide resins and methods for molding the same have been reported. However, there are few reports regarding melt molding equipment for thermoplastic polyimide resins, and at present, molding equipment that is carried out by boat is being used. Because thermoplastic polyimide resin has a higher molding temperature than conventional thermoplastic resins, it is prone to thermal deformation of processing equipment and reactions between metal and resin at high temperatures, which rarely occur in conventional molding processes. Occur.

[発明が解決しようとする課題] 本発明の目的は高温下で熱可塑性ポリイミド樹脂が成形
加工機器金属部との接触による酸化反応を防止できる成
形加工機器を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a molding device that can prevent an oxidation reaction of a thermoplastic polyimide resin due to contact with a metal part of the molding device at high temperatures.

〔課題を解決するための手段] 本発明者らは、上記目的を達成するため鋭會検討し、つ
いに本発明に到った。
[Means for Solving the Problems] In order to achieve the above object, the present inventors made intensive studies and finally arrived at the present invention.

即ち、本発明は熱可塑性ポリイミド樹脂を成形加工する
成形加工機器において、該樹脂が高温で接触する部分の
材質を鉄分の含有率が0〜80重量%であり、且つブリ
ネル硬度(Hl)が115以上である金属材料からなる
ことを特徴とする成形加工機器である。
That is, the present invention provides a molding equipment for molding thermoplastic polyimide resin, in which the material of the part that comes into contact with the resin at high temperature has an iron content of 0 to 80% by weight and a Brinell hardness (Hl) of 115. This is a forming processing device characterized by being made of the above metal material.

熱可塑性ポリイミド樹脂は周知の押出成型法により繊維
、フィルム、シート、電線被覆、棒、板及び管材等を製
造することができる。しかしながら、熱可塑性ポリイミ
ド樹脂は従来の熱可塑性樹脂よりも押出温度が高温であ
るために、押出機と熱可塑性ポリイミド樹脂の接触部に
おいて酸化反応が起こる。
Thermoplastic polyimide resins can be used to produce fibers, films, sheets, wire coatings, rods, plates, pipe materials, etc. by the well-known extrusion molding method. However, since the extrusion temperature of thermoplastic polyimide resin is higher than that of conventional thermoplastic resins, an oxidation reaction occurs at the contact portion between the extruder and the thermoplastic polyimide resin.

この金属と熱可塑性ポリイミド樹脂との酸化反応は、金
属による熱可塑性ポリイミド樹脂の酸化なのか、熱可塑
性ポリイミド樹脂による金属の酸化なのかは分かってい
ない。しかし、高温下で金属と熱可塑性ポリイミド樹脂
との接触によって熱可塑性ポリイミド樹脂のゲル化によ
る増粘及び熱可塑性ポリイミド樹脂中への金属の浸入が
発生していることは分かっている。この反応は金属との
接触部分の樹脂の変色、フローテスターによる粘度測定
、蛍光X綿による樹脂中の金属元素分析によって確認で
きる。
It is not known whether this oxidation reaction between the metal and the thermoplastic polyimide resin is an oxidation of the thermoplastic polyimide resin by the metal or an oxidation of the metal by the thermoplastic polyimide resin. However, it is known that contact between metal and thermoplastic polyimide resin at high temperatures causes thickening of the thermoplastic polyimide resin due to gelation and penetration of metal into the thermoplastic polyimide resin. This reaction can be confirmed by discoloration of the resin at the part in contact with the metal, viscosity measurement using a flow tester, and metal elemental analysis in the resin using fluorescent X cotton.

樹脂の変色は鉄を多く含む金属素材との接触時に発生す
る。また、樹脂への金属の浸入は構造金属材料全体で多
少の差は有るが確認できる。
Discoloration of resin occurs when it comes into contact with metal materials containing a large amount of iron. In addition, the infiltration of metal into the resin can be confirmed although there are some differences among the structural metal materials as a whole.

樹脂中の金属元素分析の結果から、樹脂変色部分からは
押出機材質に起因する金属元素が検出され、特に鉄が最
も多く検出されることから、加工機器の金属材と熱可塑
性ポリイミド樹脂の高温下での接触による酸化反応は鉄
が関係していることが分かった。
According to the results of metal element analysis in the resin, metal elements caused by the extruder material were detected in the discolored parts of the resin, and iron was detected the most, indicating that the high temperature of the metal materials of processing equipment and thermoplastic polyimide resin. It was found that iron is involved in the oxidation reaction due to contact below.

熱可塑性ポリイミド樹脂が高温下で溶融状態で鉄含有率
が80重量%を越える材質と接触した場合には、熱可塑
性ポリイミド樹脂の接触面は黒色に変色し樹脂への鉄元
素の浸入が金属元素分析によって確認され、粘度も増加
する。また、鉄含有率が50〜80重量%の材質との接
触では変色はi認できないが、金属元素分析によって鉄
の浸入は僅かに確認でき、粘度の増加も僅かに見られる
。更に、鉄含有率が0〜50重量%の材質との接触の場
合は、熱可塑性ポリイミド樹脂の変色も無く、樹脂への
鉄の浸入も蛍光X線による検出限界以下の検出値に収ま
り、粘度の増加は殆ど認められない。
If thermoplastic polyimide resin comes into contact with a material with an iron content of more than 80% by weight in a molten state at high temperatures, the contact surface of the thermoplastic polyimide resin will turn black and iron elements will penetrate into the resin, resulting in metallic elements. Confirmed by analysis, the viscosity also increases. In addition, no discoloration can be observed upon contact with a material having an iron content of 50 to 80% by weight, but a slight intrusion of iron can be confirmed by metal elemental analysis, and a slight increase in viscosity can be observed. Furthermore, in the case of contact with a material with an iron content of 0 to 50% by weight, there is no discoloration of the thermoplastic polyimide resin, iron infiltration into the resin is within the detection limit of fluorescent X-rays, and the viscosity is Almost no increase was observed.

このことから、商品価値を下げる黒変色及び粘度が増加
するという樹脂物性の変化は鉄含有率が0〜80重量%
の材質を用いることで解決でき、好ましくは鉄含有率0
〜50重量%の材質が望ましく、更に好ましくは主成分
が鉄以外の合金が望まれる。
From this, changes in resin physical properties such as black discoloration and increased viscosity that reduce commercial value occur when iron content is between 0 and 80% by weight.
This can be solved by using a material with iron content of 0.
A material with a content of ~50% by weight is desirable, and more preferably an alloy whose main component is other than iron.

また、成型加工機器の金属材質の硬度については、ブリ
ネル硬度(H,)が115より低い場合は高温下での長
期耐久性に欠け、連続使用時に変形および熱可塑性ポリ
イミド樹脂接触部の粗面化現象が起こり好ましくない。
In addition, regarding the hardness of the metal material of the molding equipment, if the Brinell hardness (H,) is lower than 115, it will lack long-term durability under high temperatures, and will deform and roughen the surface of the contact area with thermoplastic polyimide resin during continuous use. An undesirable phenomenon occurs.

金属材質の硬度は鉄含有率を減らし、ニッケル、クロム
、コバルト、モリブデン、タングステン及びチタン等の
金属の含有率を増加させることで向上させることができ
る。また、これによって鉄含有率が低下し高温下での金
属材質との熱可塑性ポリイミド樹脂の接触による変色や
鉄元素の樹脂中への浸入を防ぐことができる。
The hardness of the metal material can be improved by decreasing the iron content and increasing the content of metals such as nickel, chromium, cobalt, molybdenum, tungsten, and titanium. In addition, this reduces the iron content and prevents discoloration due to contact of the thermoplastic polyimide resin with metal materials at high temperatures and infiltration of iron elements into the resin.

機械用構造材料として用いられる金属材としては鉄を基
本とした物及び非鉄金属を基本とした物に大別できる。
Metal materials used as structural materials for machinery can be broadly classified into those based on iron and those based on non-ferrous metals.

鉄を基本とした物としては、機械構造用炭素@(S35
C,345C等)、機械構造用マンガン鋼・マンガン/
クロム鋼及びクロムE(S門3、SMnC5,5Cr3
等)、機械構造用クロム/モリブデン鋼・ニッケル鋼・
ニッケル/クロム鋼及びニンケル/クロム/モリフ゛デ
ン鋼(SC)13.5N65.5NC3、SNC門5等
)、窒化鋼(SACMI等)、ステンレス鋼(SUS3
04.511S316.5US440.5lll(33
0等)、鉄基超合金(Irlco1oy901、D97
9.5590等)及び鉄/ニッケル/コバルト/クロム
系超合金(N153、N156等)等が挙げられる。非
鉄金属を基本とする物はニッケル基赳合金(Haste
lloy 、 1ncone1等)、コバルト基超合金
(S816、HS151 、N1vc。
Carbon for machine structures (S35) is a material based on iron.
C, 345C, etc.), manganese steel/manganese for machine structures/
Chrome steel and chromium E (S gate 3, SMnC5, 5Cr3
etc.), chromium/molybdenum steel, nickel steel,
Nickel/chromium steel and Nickel/chromium/molybdenum steel (SC) 13.5N65.5NC3, SNC gate 5, etc.), nitriding steel (SACMI, etc.), stainless steel (SUS3
04.511S316.5US440.5lll (33
0, etc.), iron-based superalloys (Irlco1oy901, D97
9.5590, etc.) and iron/nickel/cobalt/chromium-based superalloys (N153, N156, etc.). Items based on nonferrous metals include nickel-based alloys (Haste).
lloy, 1ncone1, etc.), cobalt-based superalloys (S816, HS151, N1vc.

等)及びコバルト/クロム/タングステン合金(Ste
llite)等が挙げられ、この他に表面被覆としてニ
ッケルやクロム等を用いたメツキも挙げられる。 これ
らの機械構造用鋼の中で熱可塑性ポリイミド樹脂の成型
加工機器用に好ましく用いられる物としては、鉄を基本
とする物の中ではステンレス鋼、鉄基超合金及び鉄/ニ
ッケル/コバルト/クロム系超合金が挙げられ、非鉄金
属を基本とする物の中ではニッケル基赳合金、コバルト
基超合金及びコバルト/クロム/タングステン合金が挙
げられる。また、ニッケル及びクロム等を用いたメツキ
による表面被覆も挙げられる。
etc.) and cobalt/chromium/tungsten alloys (Ste
llite), and plating using nickel, chromium, etc. as a surface coating. Among these mechanical structural steels, stainless steel, iron-based superalloys, and iron/nickel/cobalt/chromium are preferred for use in thermoplastic polyimide resin molding equipment. Examples include nickel-based superalloys, cobalt-based superalloys, and cobalt/chromium/tungsten alloys among those based on nonferrous metals. Another example is surface coating by plating using nickel, chromium, or the like.

〔実施例] 以下、実施例により本発明を更に詳しく説明する。〔Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

熱可塑性ポリイミド樹脂は、下記一般式CI)及び(I
I)で表される繰り返し構造を有する三井東圧化学■製
NEW−TPI4450パウダー及びLARK−TPI
#450パウダーを用いた。
The thermoplastic polyimide resin has the following general formulas CI) and (I
NEW-TPI4450 powder and LARK-TPI manufactured by Mitsui Toatsu Chemical Co., Ltd. having the repeating structure represented by I)
#450 powder was used.

実施例1〜10、比較例1〜4 一般式(1)及び(II)で表される熱可塑性ポリイミ
ド樹脂のパウダーを第1表に示す金属素材よりなる板状
試料間に挟み込み、窒素雰囲気下で第1表に示す条件で
溶融・保持・冷却固化させ、樹脂の変色状態を目視観察
し、金属元素分析は島津製作所製EPMA−CIを用い
て行った。更に、これらの樹脂を1−角に切り出し第1
表に示す温度条件下で、1津製作所製フローテスターC
FT500Aを用いて窒素雰囲気下で熔融粘度を測定し
た。結果を第1表に示す。
Examples 1 to 10, Comparative Examples 1 to 4 Powders of thermoplastic polyimide resins represented by general formulas (1) and (II) were sandwiched between plate-shaped samples made of metal materials shown in Table 1, and heated under a nitrogen atmosphere. The resin was melted, held, and cooled to solidify under the conditions shown in Table 1, and the state of discoloration of the resin was visually observed, and metal elemental analysis was performed using EPMA-CI manufactured by Shimadzu Corporation. Furthermore, these resins were cut into 1-angle pieces.
Under the temperature conditions shown in the table, flow tester C manufactured by Ichitsu Seisakusho
Melt viscosity was measured in a nitrogen atmosphere using FT500A. The results are shown in Table 1.

参考例1.2 NEW−TP I#450及びLARK−TP 1#4
50のパウダーを用い、第1表に示す温度条件下で、1
津製作所製フローテスターCFT−50OAを用いて窒
素雰囲気下で溶融粘度を測定した。
Reference example 1.2 NEW-TP I#450 and LARK-TP 1#4
50 powder under the temperature conditions shown in Table 1.
Melt viscosity was measured in a nitrogen atmosphere using a flow tester CFT-50OA manufactured by Tsu Seisakusho.

結果を第1表に示す。The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明による成型加工機器を用いることによって、熱可
塑性ポリイミド樹脂を高温下で成形加工する際に、成型
加工機器の樹脂接触部分の金属と該樹脂が反応しあい、
該樹脂の金属接触部分の黒色変化及び該樹脂のゲル化に
よる粘度の増加を抑制できる。
By using the molding equipment according to the present invention, when molding thermoplastic polyimide resin at high temperatures, the metal of the resin contacting part of the molding equipment reacts with the resin,
It is possible to suppress the blackening of the metal contact portion of the resin and the increase in viscosity due to gelation of the resin.

Claims (1)

【特許請求の範囲】 1、熱可塑性ポリイミド樹脂を成形加工する成形加工機
器において、該樹脂が高温で接触する部分の材質を鉄分
の含有率が0〜80重量%であり、且つブリネル硬度(
H_B)が115以上である金属材料からなることを特
徴とする成形加工機器。 2、該金属材料が成形機器要部全体を構成してなる請求
項1記載の成形加工機器。 3、該金属材料が成形機器要部の該樹脂接触部に被膜を
形成されてなる請求項1記載の成形加工機器。
[Claims] 1. In the molding equipment for molding thermoplastic polyimide resin, the material of the part that comes into contact with the resin at high temperature must have an iron content of 0 to 80% by weight, and a Brinell hardness (
A forming processing device characterized by being made of a metal material having H_B) of 115 or more. 2. The molding equipment according to claim 1, wherein the metal material constitutes the entire main part of the molding equipment. 3. The molding equipment according to claim 1, wherein the metal material is coated on the resin contacting part of the main part of the molding equipment.
JP20923190A 1990-08-09 1990-08-09 Molding processing apparatus Pending JPH0493206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20923190A JPH0493206A (en) 1990-08-09 1990-08-09 Molding processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20923190A JPH0493206A (en) 1990-08-09 1990-08-09 Molding processing apparatus

Publications (1)

Publication Number Publication Date
JPH0493206A true JPH0493206A (en) 1992-03-26

Family

ID=16569530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20923190A Pending JPH0493206A (en) 1990-08-09 1990-08-09 Molding processing apparatus

Country Status (1)

Country Link
JP (1) JPH0493206A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753545A2 (en) 1995-07-13 1997-01-15 Basf Aktiengesellschaft Goniochromatic brilliant pigments based on transparent non-metallic platy substrates
WO2001030920A1 (en) 1999-10-28 2001-05-03 Merck Patent Gmbh Intensely coloured interference pigments
WO2001030921A1 (en) 1999-10-28 2001-05-03 Merck Patent Gmbh Interference pigments with great color strength

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753545A2 (en) 1995-07-13 1997-01-15 Basf Aktiengesellschaft Goniochromatic brilliant pigments based on transparent non-metallic platy substrates
WO2001030920A1 (en) 1999-10-28 2001-05-03 Merck Patent Gmbh Intensely coloured interference pigments
WO2001030921A1 (en) 1999-10-28 2001-05-03 Merck Patent Gmbh Interference pigments with great color strength

Similar Documents

Publication Publication Date Title
EP0014335B2 (en) Homogeneous ductile brazing foils
US7285151B2 (en) Material for coating and product coated with the material
EP2224031B1 (en) Wear resistant alloy
US5545373A (en) High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability
EP0051461A1 (en) Homogeneous ductile brazing foils
JPH0555594B2 (en)
US3459539A (en) Nickel-chromium-iron alloy and heat treating the alloy
CA1296929C (en) Corrosion and wear resistant steel
JP2004510582A (en) Method for producing heat exchanger and brazing composition useful therefor
Wang et al. Effects of Nb/Cr on the cryogenic impact toughness of the deposited metal of ENiCrFe-9
JPH0493206A (en) Molding processing apparatus
Cieslak et al. The welding metallurgy of custom age 625 PLUS alloy
EP2198065B1 (en) A dispersion strengthened steel as material in a roller for a roller hearth furnace
US2544336A (en) Weld composition
US4191562A (en) Wear-resistant nickel-base alloy
EP0384013A1 (en) Method for strengthening coldworked nickel-base alloys
US2881069A (en) Niobium base high temperature alloys
US2815280A (en) Alloy steel and article made therefrom
CA1075047A (en) Corrosion-resistant matrix-strengthened alloy
Buckman Jr et al. Precipitation strengthened tantalum base alloys
JP3213368B2 (en) Hydrogen embrittlement resistant structural alloy
JPS602641A (en) Amorphous nickel alloy having high resistance to pitting corrosion, crevice corrosion and general corrosion
US3992198A (en) Ductile chromium-containing ferritic alloys
DE60016420T2 (en) CHROME BASED ALLOY WITH EXCELLENT BALANCE BETWEEN STRENGTH AND DUCTILITY AT HIGH TEMPERATURES
Kaneyama et al. Effect of Boron and Tungsten Addition on Superplasticity and Grain Growth in Electrodeposited Nickel Alloys