JPH0493078A - Schottky diode - Google Patents

Schottky diode

Info

Publication number
JPH0493078A
JPH0493078A JP2209105A JP20910590A JPH0493078A JP H0493078 A JPH0493078 A JP H0493078A JP 2209105 A JP2209105 A JP 2209105A JP 20910590 A JP20910590 A JP 20910590A JP H0493078 A JPH0493078 A JP H0493078A
Authority
JP
Japan
Prior art keywords
schottky diode
formula
hydrogen atom
organic semiconductor
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2209105A
Other languages
Japanese (ja)
Inventor
Katsunori Aoki
克徳 青木
Yasuhiko Osawa
康彦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2209105A priority Critical patent/JPH0493078A/en
Publication of JPH0493078A publication Critical patent/JPH0493078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent deterioration of a Schottky diode due to oxygen, moisture, etc., by covering the surface of P-type organic semiconductor made of polymer having repetition unit represented by a special formula and obtained by an electrolytically oxidizing method, with a special metal layer. CONSTITUTION:A P-type semiconductor film 3 made of an electrolytically polymerized film is obtained by electrolytic oxidation with a tin indium oxide 2 provided on a glass board 1 as an operating electrode in benzonitrile solution containing monomer-and tetra-n-butylammoniumhexafluorophosphate of a formula (where G is hydrogen atom, alkyl group or alkoxy group, n is 0 or 1) where G is hydrogen atom, n is 0. After it is anionic doped about 10%, it is cleaned with acetonitrile, dried, and A14 is then deposited as an upper electrode, thereby manufacturing a Schottky diode.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、安定性に優れ、電解重合法により容易に形
成可能な導電性重合体からなるP型半導体の表面に特定
の金属層が形成されてなるショクI・キーダイオードに
関する。
Detailed Description of the Invention (Field of Industrial Application) This invention is directed to the formation of a specific metal layer on the surface of a P-type semiconductor made of a conductive polymer that has excellent stability and can be easily formed by electrolytic polymerization. Regarding Shoku I/Key diodes.

(従来の技術) 従来のP現有機半導体を用いたショットキーダイオード
としては、例えば特開昭56−146284号公報、特
開昭56−147487号公報に開示されているような
導電性ポリアセチレンにアルミニウム等の金属を被着し
てなるショットキーダイオードが知られている。
(Prior art) Schottky diodes using conventional P-based organic semiconductors include conductive polyacetylene and aluminum as disclosed in, for example, JP-A-56-146284 and JP-A-56-147487. Schottky diodes are known, which are made by depositing metals such as .

(発明が解決しようとする課題) しかしながら、このような従来の導電性ポリアセチレン
を用いたショットキーダイオードにあっては、空気中の
酸素や水分によって極めて酸化劣化し易いためそのショ
ットキーダイオードは整流性等の電気的特性が安定して
得られないという問題点があった。
(Problem to be solved by the invention) However, Schottky diodes using such conventional conductive polyacetylene are extremely susceptible to oxidative deterioration due to oxygen and moisture in the air, so the Schottky diodes have poor rectifying properties. There was a problem that stable electrical characteristics such as these could not be obtained.

(課題を解決するための手段) かかる現況に鑑み本発明者らは従来のショットキーダイ
オードの問題点を解決すべく鋭意研究を行った結果、次
の構造式 (式中のGは水素原子、アルキル基、またはアルコキシ
ル基を示し、nは0または1を示す)で表わされる、電
解酸化法により得られた酸化重合体を用いることにより
解決し得ることを知見し、この発明を達成するに至った
(Means for Solving the Problems) In view of the current situation, the present inventors conducted intensive research to solve the problems of conventional Schottky diodes, and as a result, the following structural formula (G in the formula is a hydrogen atom, They found that the problem could be solved by using an oxidized polymer represented by an alkyl group or an alkoxyl group (where n is 0 or 1) obtained by an electrolytic oxidation method, and were able to achieve this invention. Ta.

従って、この発明のショットキーダイオードは、式(1
)で表わされる繰返し単位を有する、電解酸化法により
得られた重合体から成るP現有機半導体膜の表面にアル
ミニウム(AI)、インジウム(In)およびガリウム
(Ga)よりなる群から選ばれた少なくとも1種の金属
層が形成されてなるものである。
Therefore, the Schottky diode of the present invention has the formula (1
) at least selected from the group consisting of aluminum (AI), indium (In), and gallium (Ga) on the surface of a P-based organic semiconductor film made of a polymer obtained by an electrolytic oxidation method and having repeating units represented by It is formed by forming one type of metal layer.

この発明において、上記P現有機半導体膜を形成する重
合体としては、式(1)のnが0または1のいずれかの
繰返し単位を有する重合体またはnが0または1の式(
1)の繰返し単位を有する重合体が任意の割合で混合さ
れてなる重合体が用いられる。
In this invention, the polymer forming the above-mentioned P-based organic semiconductor film is a polymer having a repeating unit of formula (1) where n is either 0 or 1 or a formula (
A polymer obtained by mixing polymers having the repeating unit 1) in an arbitrary ratio is used.

(実施例) 以下、図面を参照してこの発明を実施例により説明する
(Examples) Hereinafter, the present invention will be explained by examples with reference to the drawings.

裏旌拠上 式(1)において、Gが水素原子、nがOのモノマブチ
ルアンモニウムへキサフルオロフォスフェートを含むベ
ンゾニトリル溶液中でガラス基板上に設けた酸化インジ
ウム錫 (ITO)を作用電極として、電解酸化を行い
電解重合膜から成るP型半導体の膜(3000人)を得
た。これを約10%アニオンドーピングしたのち、アセ
トム1−リルで洗浄し、乾燥した後、上部電極として八
1を蒸着しく500人)、第1図に示すようなショット
キーダイオード(へ1/P型有機半導体/ITO)を作
製した。第1図において1はガラス基板、2はITO,
3はP型半導体、4はアルミニウム、5はリード線を示
す。
In the above formula (1), indium tin oxide (ITO) provided on a glass substrate in a benzonitrile solution containing monobutylammonium hexafluorophosphate, where G is a hydrogen atom and n is O, is used as a working electrode. , Electrolytic oxidation was performed to obtain a P-type semiconductor film (3000 people) consisting of an electrolytically polymerized film. After anion doping of about 10%, washing with acetom 1-lyl and drying, evaporate 81 as the upper electrode (500 people), and form a Schottky diode (1/P type Organic semiconductor/ITO) was produced. In Fig. 1, 1 is a glass substrate, 2 is an ITO,
3 is a P-type semiconductor, 4 is aluminum, and 5 is a lead wire.

このようにして得たダイオードの電流−電圧特性を第2
図に示す。±3.5vにおける整流比は11倍であった
。第2図から明らかなように得られたショットキーダイ
オードは良好な整流性を有し、またこの特性は経時的に
変化することなく、安定したものであった。
The current-voltage characteristics of the diode obtained in this way are
As shown in the figure. The rectification ratio at ±3.5v was 11 times. As is clear from FIG. 2, the obtained Schottky diode had good rectifying properties, and this characteristic did not change over time and was stable.

実施撚1 式(1)において、Gが水素原子、nが0のモノマを1
;4の割合で調整した混合溶液から電解重合膜を電解酸
化により形成した以外は、実施例1と同様にしてショッ
トキーダイオード(AI/P型有機半導体/ITO)を
作製した。
Practical twist 1 In formula (1), G is a hydrogen atom and n is 0 monomer.
A Schottky diode (AI/P-type organic semiconductor/ITO) was produced in the same manner as in Example 1, except that an electropolymerized film was formed by electrolytic oxidation from a mixed solution prepared at a ratio of 4.

第3図かられかるように逆方向は電流はほとんど流さず
、±3,5vでの整流比は102以上であった。
As can be seen from FIG. 3, almost no current flowed in the reverse direction, and the rectification ratio at ±3.5V was 102 or more.

このように得られたショットキーダイオードは良好な整
流性を有し、またこの特性は経時的に変化することなく
安定したものであった。
The thus obtained Schottky diode had good rectifying properties, and this property was stable without changing over time.

(発明の効果) 以上説明してきたように、この発明によれば、その構成
をトリフェニルアミンにチオフェン部位が直接結合した
モノマーの電解酸化重合膜からなるP型有機半導体表面
に特定の金属層を被着したショットキーダイオードとし
たため、酸素および水分等によって劣化することがなく
安定に使用できる。また電解重合法によって重合体を形
成することができる点できわめて容易に、ショットキー
ダイオードを作製できるという効果が得られる。
(Effects of the Invention) As described above, according to the present invention, a specific metal layer is formed on the surface of a P-type organic semiconductor, which is composed of an electrolytically oxidized polymer film of a monomer in which a thiophene moiety is directly bonded to triphenylamine. Since it is a coated Schottky diode, it can be used stably without being degraded by oxygen, moisture, etc. Furthermore, since the polymer can be formed by electrolytic polymerization, it is possible to produce a Schottky diode very easily.

更にドーピングレベルの調節により、重合体膜の抵抗お
よび光の吸光度を調節することも容易であり、かかるシ
ョットキーダイオードは電子阻止回路におけるダイオー
ドや太陽電池等の用途に役立つ。
Moreover, by adjusting the doping level, it is easy to adjust the resistance and light absorbance of the polymer film, making such Schottky diodes useful for applications such as diodes in electronic blocking circuits and solar cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一例のショットキーダイオードの断
面図、 第2図および第3図はそれぞれ実施例1および実施例2
のショットキーダイオード(AI/P型有機半導体#T
O)の電流−電圧特性図である。 1・・・ガラス基板    2・・・ITO3・・・P
型半導体    4・・・アルミニウム5・・・リード
FIG. 1 is a cross-sectional view of a Schottky diode as an example of the present invention, and FIGS. 2 and 3 are Example 1 and Example 2, respectively.
Schottky diode (AI/P-type organic semiconductor #T
It is a current-voltage characteristic diagram of O). 1...Glass substrate 2...ITO3...P
Type semiconductor 4... Aluminum 5... Lead wire

Claims (1)

【特許請求の範囲】  1、下記構造式 ▲数式、化学式、表等があります▼・・・(1) (式中のGは水素原子、アルキル基、またはアルコキシ
ル基を示し、nは0または1を示す)で表わされる繰返
し単位を有する、電解酸化法により得られた重合体から
成るP型有機半導体膜の表面にアルミニウム、インジウ
ムおよびガリウムよりなる群から選ばれた少なくとも1
種の金属層が形成されてなることを特徴とするショット
キーダイオード。  2、nが0または1の式(1)の繰返し単位を有する
重合体が任意の割合で混合されてなる重合体を用いたこ
とを特徴とする請求項1記載のショットキーダイオード
[Claims] 1. The following structural formula ▲ Numerical formula, chemical formula, table, etc. ▼... (1) (In the formula, G represents a hydrogen atom, an alkyl group, or an alkoxyl group, and n is 0 or 1. At least one member selected from the group consisting of aluminum, indium and gallium is coated on the surface of a P-type organic semiconductor film made of a polymer obtained by an electrolytic oxidation method and having a repeating unit represented by
A Schottky diode characterized by forming a seed metal layer. 2. The Schottky diode according to claim 1, characterized in that the Schottky diode uses a polymer obtained by mixing polymers having repeating units of formula (1) in which n is 0 or 1 in an arbitrary ratio.
JP2209105A 1990-08-09 1990-08-09 Schottky diode Pending JPH0493078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209105A JPH0493078A (en) 1990-08-09 1990-08-09 Schottky diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209105A JPH0493078A (en) 1990-08-09 1990-08-09 Schottky diode

Publications (1)

Publication Number Publication Date
JPH0493078A true JPH0493078A (en) 1992-03-25

Family

ID=16567375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209105A Pending JPH0493078A (en) 1990-08-09 1990-08-09 Schottky diode

Country Status (1)

Country Link
JP (1) JPH0493078A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508731A (en) * 2000-09-11 2004-03-18 シーメンス アクチエンゲゼルシヤフト Use of organic rectifiers, circuits, RFID tags, and organic rectifiers
JP2006520478A (en) * 2003-01-17 2006-09-07 ダイオード・ソリューションズ・インコーポレーテッド Display using organic materials
US8193594B2 (en) 2006-11-07 2012-06-05 Cbrite Inc. Two-terminal switching devices and their methods of fabrication
US8222077B2 (en) 2006-11-07 2012-07-17 Cbrite Inc. Metal-insulator-metal (MIM) devices and their methods of fabrication
US9741901B2 (en) 2006-11-07 2017-08-22 Cbrite Inc. Two-terminal electronic devices and their methods of fabrication

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508731A (en) * 2000-09-11 2004-03-18 シーメンス アクチエンゲゼルシヤフト Use of organic rectifiers, circuits, RFID tags, and organic rectifiers
JP2006520478A (en) * 2003-01-17 2006-09-07 ダイオード・ソリューションズ・インコーポレーテッド Display using organic materials
US8253910B2 (en) 2003-01-17 2012-08-28 Cbrite Inc. Display employing organic material
US8193594B2 (en) 2006-11-07 2012-06-05 Cbrite Inc. Two-terminal switching devices and their methods of fabrication
US8222077B2 (en) 2006-11-07 2012-07-17 Cbrite Inc. Metal-insulator-metal (MIM) devices and their methods of fabrication
US9741901B2 (en) 2006-11-07 2017-08-22 Cbrite Inc. Two-terminal electronic devices and their methods of fabrication

Similar Documents

Publication Publication Date Title
Mahmud et al. Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells
CN1934159B (en) Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
EP1505664B1 (en) Transparent electrode for optoelectronic devices
Frank et al. Conductive polymer-semiconductor junction: characterization of poly (3-methylthiophene): Cadmium sulfide based photoelectrochemical and photovoltaic cells
AU2002300570B2 (en) Photovoltaic Device and Method for Preparing the Same
KR20070011480A (en) Compositions of electrically conductive polymers and non-polymeric fluorinated organic acids
US8178779B2 (en) Organic photovoltaic cells
Abthagir et al. Junction properties of metal/polypyrrole Schottky barriers
JP2013236103A (en) Organic photovoltaic cells
KR20170141272A (en) Optoelectronic devices with organometal perovskites with mixed anions
CN1983661A (en) Transparent polymeric electrode for electro-optical structures
KR20050074299A (en) Aqueous blends and films comprising a first electrically conducting conjugated polymer and a second electrically conducting conjugated polymer
Nüesch et al. Protonated metal-oxide electrodes for organic light emitting diodes
US7321133B2 (en) Heteroatomic regioregular poly(3-substitutedthiophenes) as thin film conductors in diodes which are not light emitting or photovoltaic
CN112635679B (en) Method for improving open-circuit voltage of organic-inorganic hybrid perovskite solar cell
JP2022537682A (en) Doped mixed cation perovskite materials and devices based thereon
JP2012043640A (en) Photoelectric conversion element, method for manufacturing the same, and solar cell
JP2015191997A (en) photoelectric conversion element
Cong et al. Hybrid organic–inorganic solar cells: case of the all thin film PMeT (Y)/CdS (X) junctions
JPH0493078A (en) Schottky diode
CN109775749B (en) Sn-Pb alloy inorganic perovskite thin film and application thereof in solar cell
JP2014232608A (en) Photoelectric conversion element, method for manufacturing the same, and solar battery
KR101694803B1 (en) Perovskite solar cells comprising metal nanowire as photoelectrode, and the preparation method thereof
Kumari et al. Fullerene derivatives: A review on perovskite solar cells
Luo et al. Epitaxial Electrodeposition of Hole Transport CuSCN Nanorods on Au (111) at the Wafer Scale and Lift-off to Produce Flexible and Transparent Foils