JPH0492523A - Detecting sensor for contact information - Google Patents

Detecting sensor for contact information

Info

Publication number
JPH0492523A
JPH0492523A JP2210677A JP21067790A JPH0492523A JP H0492523 A JPH0492523 A JP H0492523A JP 2210677 A JP2210677 A JP 2210677A JP 21067790 A JP21067790 A JP 21067790A JP H0492523 A JPH0492523 A JP H0492523A
Authority
JP
Japan
Prior art keywords
contact information
light
mirror
optical splitter
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2210677A
Other languages
Japanese (ja)
Inventor
Hideaki Futajima
英明 二島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2210677A priority Critical patent/JPH0492523A/en
Publication of JPH0492523A publication Critical patent/JPH0492523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To detect the contact information with no mechanical force applied by providing the light shielding mechanisms which work based on the contact information between the optical branching devices and mirrors provided at plural areas of an optical fiber. CONSTITUTION:The optical branching device 4 and the mirrors 5 which reflect the branched beams and then apply again these beams into the devices 4 are provided at plural areas of an optical fiber 2 connected to an OTDR(optical time domain reflectometer) central unit 1. Then the light shielding mechanisms 7-10 which work based on the contact information are provided between the devices 4 and the mirrors 5 respectively. The light intensity is reduced in steps when the optical pulses are branched by the devices 4. However a peak part having the high light intensity is produced at an area where the branched light is reflected. Then a fact whether the contact information is changed or not can be detected. Then the contact information can be detected without applying the mechanical power to the fiber 2 through the device 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、0TDR技術を用いた接点情報検出センサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a contact information detection sensor using 0TDR technology.

〔従来の技術〕[Conventional technology]

複数の地点における接点情報を検出する技術として、従
来より0TDR(Optlcal Tlme Doma
in Refectometer )を用いた次のよう
なものが開発されている。
Conventionally, 0TDR (Optlcal Tlme Doma) is a technology for detecting contact information at multiple points.
In Reflectometer), the following has been developed.

まず0TDRについてであるが、これは光ファイバの損
失分布測定や障害点調査等に用いられるもので、光ファ
イバからなるセンサ部、この一端に接続され、レーザ光
源、受光回路等からなる計測部及びコンピュータによる
処理部からなる。
First, regarding 0TDR, it is used for measuring optical fiber loss distribution and investigating fault points, etc. It includes a sensor section made of an optical fiber, a measuring section connected to one end of the optical fiber, and a measuring section consisting of a laser light source, light receiving circuit, etc. Consists of a computer processing section.

そして、レーザ光源から光ファイバに光パルスを入射し
、その後方散乱光の遅延時間(光パルスを入射してから
その後方散乱光が入射端に戻って来るまでの時間)を計
測することによって後方散乱光(通常レーり散乱光が用
いられる)の発生位置を求め、さらに後方散乱光の強度
を検出することによって各位置における光ファイバの伝
送損失を求めるというものである。
Then, by inputting a light pulse from a laser light source into an optical fiber and measuring the delay time of the backscattered light (the time from when the light pulse is input until the backscattered light returns to the input end), The transmission loss of the optical fiber at each position is determined by determining the position where scattered light (usually Leh scattered light is used) and detecting the intensity of the backscattered light.

従って、ここで接点情報によって光ファイバに曲げや圧
力歪など伝送損失を増大させる要因を与えられるよう構
成しておけば、その損失変化より接点情報を検出するこ
とが可能になる。
Therefore, if the optical fiber is configured to be subjected to factors that increase transmission loss, such as bending and pressure strain, based on the contact information, it becomes possible to detect the contact information from changes in the loss.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術では、光ファイバに曲げや圧力歪
などの機械的な力を与えるため、光ファイバの長期的な
性能の保証が困難になり、又機械的な力の付加部がある
ため、検出部が大きくなるといった問題があった。
However, in the above conventional technology, mechanical forces such as bending and pressure strain are applied to the optical fiber, making it difficult to guarantee the long-term performance of the optical fiber. There was a problem that the detection part became large.

〔課題を解決するための手段〕[Means to solve the problem]

従って、本発明は上記問題点を解決するためになされた
もので、0TDR技術を利用し、かつ光ファイバの劣化
要因となる機械的な力を加えることな(接点情報を検出
するセンサを提供するものである。
Therefore, the present invention has been made to solve the above problems, and it provides a sensor that detects contact information by using 0TDR technology and without applying mechanical force that causes deterioration of optical fibers. It is something.

即ち、本発明センサは、0TDR中実装置に接続された
光ファイバの複数箇所に、光分岐器及びこの光分岐器に
より分岐された分岐光を反射して再びこれを光分岐器へ
導入するミラーを設け、この光分岐器とミラーの間に、
接点情報により動作する遮光機構を設けたことを特徴と
している。
That is, the sensor of the present invention includes an optical splitter and a mirror that reflects the branched light branched by the optical splitter and introduces it into the optical splitter again at a plurality of locations on the optical fiber connected to the 0TDR solid device. between this optical splitter and the mirror,
It is characterized by the provision of a light shielding mechanism that operates based on contact information.

又、上記遮光機構として、光分岐器とミラーの間に、接
点情報で開閉しつる電源部に接続された液晶素子を設け
るこ七で電気的に分岐光の制御を行なう。
Further, as the above-mentioned light shielding mechanism, a liquid crystal element is provided between the optical branching device and the mirror and is connected to a power supply section and is opened and closed based on contact information, thereby electrically controlling the branched light.

又、別態様の遮光機構として、光分岐器とミラーの間に
、接点情報によって可動する2段の偏光板を設け、機械
的に分岐光の制御をすることもできる。
Further, as another light shielding mechanism, a two-stage polarizing plate that is movable based on contact information can be provided between the optical splitter and the mirror to mechanically control the branched light.

さらに、前記液晶素子を用いた場合に、これを電源部及
び磁力によって開閉するリードスイッチに接続し、磁力
として取り出した接点情報によって分岐光の制御を行な
ってよい。
Furthermore, when the liquid crystal element is used, it may be connected to a power source and a reed switch that opens and closes using magnetic force, and branched light may be controlled by contact information extracted as magnetic force.

〔実施例〕〔Example〕

以下、第1図〜第3図、第5図、第6図に示す実施例に
基づいて本発明を説明する。尚、各図に共通する符号は
同一部分を示す。
The present invention will be explained below based on the embodiments shown in FIGS. 1 to 3, 5, and 6. Note that the same reference numerals in each figure indicate the same parts.

(実施例1) 第1図は本発明センサの全体構成を示す概略図で、0T
DR中実装置1に接続された光ファイバ2の複数箇所に
検出部3を設けである。この0TDR中実装置1は従来
と同様のもので、計測部と処理部を備え、後方散乱光の
遅延時間及び光強度を計測するものである。又、検出部
3は第3図、第5図、第6図に示す構成のものだが、ま
ず各態様に共通する基本原理について第2図を用いて説
明する。
(Example 1) Figure 1 is a schematic diagram showing the overall configuration of the sensor of the present invention.
Detectors 3 are provided at multiple locations on the optical fiber 2 connected to the DR solid device 1. This 0TDR solid device 1 is similar to the conventional one, and includes a measuring section and a processing section, and measures the delay time and light intensity of backscattered light. Although the detection section 3 has the configuration shown in FIGS. 3, 5, and 6, the basic principle common to each aspect will first be explained using FIG. 2.

同図に示すように光フアイバ中を伝搬して来た光パルス
(入射光)は光分岐器4で2方向に分けられる。この光
分岐器4の分岐比はA : (1−A)に設定されてお
り、例えばA = 0.99とすれば、大部分の光は次
の光フアイバ側へ導かれ、1/100の光だけがミラー
5側へ導かれる(分岐光)。このミラー5へ導かれた光
はここで反射され、再び光分岐器4へ入射された後、光
ファイバ2を介して0TDR中実装置1へと戻って行(
As shown in the figure, a light pulse (incident light) propagating through an optical fiber is split into two directions by an optical splitter 4. The branching ratio of this optical splitter 4 is set to A: (1-A). For example, if A = 0.99, most of the light is guided to the next optical fiber side, and 1/100 of the light is guided to the next optical fiber side. Only the light is guided to the mirror 5 side (branched light). The light guided to this mirror 5 is reflected here, enters the optical splitter 4 again, and then returns to the 0TDR solid device 1 via the optical fiber 2 (
.

従って、ここで光分岐器4からミラー5へ至る光量を接
点情報に関連させて制御すれば、 0TDR中実装置1
で光強度のIQ ff1llを行なうことにより接点情
報の検出が可能になるのである。尚、ミラー5は特に設
置しなくとも光ファイバ端面からのフレネル反射光によ
っても同様の波形が得られる他、同端面にミラー処理(
銀蒸着など)をしてもよい。
Therefore, if the amount of light from the optical splitter 4 to the mirror 5 is controlled in relation to the contact information, 0TDR solid device 1
By performing the IQ ff1ll of the light intensity, it is possible to detect contact information. Incidentally, even if the mirror 5 is not particularly installed, a similar waveform can be obtained by the Fresnel reflected light from the end face of the optical fiber, and the end face can also be mirror-treated (
Silver vapor deposition, etc.) may also be used.

次に上記光分岐器4からミラー5へ至る光量を制御する
手段に関し、電気的にこれを行なう第3図の検出部につ
いて説明する。同図に示すように光ファイバ2にはロッ
ドレンズ6を備えた光分岐器4が設けられており、入射
光はこの光分岐器4で2方向に分岐され、一方は次の光
ファイバへ、他方はミラー側へ導かれる。このミラー5
は分岐光を反射して再び光を光分岐器4へ導くためのも
ので、これと光分岐器4の間には液晶素子7が配置され
、さらに液晶素子7と光分岐器4との間には反射防止膜
8が設けられている。液晶素子7は、その清濁変化又は
偏光変化による、透過光量変化により光分岐器4からミ
ラー5へ至る光量を調整するもので、又反射防止膜8は
、液晶表面からの反射を防ぐためのものである。前記液
晶素子7の透過光量変化は電気的に行なうため、液晶素
子7をバッテリを含む電源部9に接続し、さらにこの電
源部9は接点入力端子lOに接続されている。従って、
接点情報の入力により電源部9を介して液晶素子7に電
位を与え、その透過光量を変化させることができるので
ある。尚、本例では検出部の機械的保護のため全体をモ
ールドI+で包み込んだが電源部9は外付けにすること
もできる。
Next, regarding the means for controlling the amount of light reaching the mirror 5 from the optical splitter 4, a detection section shown in FIG. 3 that electrically performs this will be described. As shown in the figure, the optical fiber 2 is provided with an optical splitter 4 equipped with a rod lens 6, and the incident light is split into two directions by the optical splitter 4, one being sent to the next optical fiber, The other is led to the mirror side. This mirror 5
is for reflecting the branched light and guiding the light to the optical splitter 4 again. A liquid crystal element 7 is arranged between this and the optical splitter 4, and a liquid crystal element 7 is arranged between the liquid crystal element 7 and the optical splitter 4. is provided with an antireflection film 8. The liquid crystal element 7 adjusts the amount of light reaching the mirror 5 from the light splitter 4 by changing the amount of transmitted light due to changes in its turbidity or polarization, and the antireflection film 8 is used to prevent reflection from the liquid crystal surface. It is. Since the amount of light transmitted through the liquid crystal element 7 is changed electrically, the liquid crystal element 7 is connected to a power supply section 9 including a battery, and this power supply section 9 is further connected to a contact input terminal IO. Therefore,
By inputting contact information, a potential is applied to the liquid crystal element 7 via the power supply section 9, and the amount of transmitted light can be changed. In this example, the entire detection section is wrapped in mold I+ for mechanical protection, but the power supply section 9 can also be attached externally.

このような検出部を用い接点情報の検出を行なうと、例
えば液晶素子7が分岐光を全て透過する場合はミラー5
で反射が起こり、逆に全(透過しない場合には反射も起
こらない。従って0TDR中実装置で光強度を観測すれ
ば第4図のようなグラフが得られ、光分岐器4によって
光パルスが分岐されたところで光強度は段階的に下がる
が、分岐光が反射された場合はその箇所に光強度の強い
ピーク部ができ、接点情報の変化のを無を検知すること
ができる。
When contact information is detected using such a detection unit, for example, if the liquid crystal element 7 transmits all branched light, the mirror 5
On the other hand, if there is no total (transmission), no reflection will occur. Therefore, if you observe the light intensity with an 0TDR solid device, you will get a graph like the one shown in Figure 4. The light intensity decreases step by step at the point where the branched light is branched, but if the branched light is reflected, a strong peak of light intensity is created at that point, and it is possible to detect whether or not there is a change in the contact point information.

(実施例2) 次に上記液晶素子7のかわりに偏光板12を用いて光分
岐器からミラーへ至る光量を機械的に制御する第5図の
検出部について説明する。
(Embodiment 2) Next, a description will be given of a detection unit shown in FIG. 5 that uses a polarizing plate 12 instead of the liquid crystal element 7 to mechanically control the amount of light reaching the mirror from the optical splitter.

同図に示すようにミラー5と光分岐器4の間に2段の偏
光板I2が、又偏光板+2(上段)と光分岐器4の間に
は実施例1と同様の反射防止膜8が配置されている。偏
光板12は光の直交する2つの偏波成分のうち一方の成
分しか透過しないもので、2段のうち下段の偏光板は2
枚の偏光板を][zべてつなぎ合わせたものである。こ
の2枚の偏光板のうち一方は上段の偏光板と透過する偏
波成分が同じもので、他方は同成分が異なるものからな
り、接点情報によって水平方向に移動させることによっ
て上段の偏光板と重複して光分岐器からミラーへ至る光
景の制御を行なうのである。
As shown in the figure, there are two stages of polarizing plates I2 between the mirror 5 and the optical splitter 4, and between the polarizing plate +2 (upper stage) and the optical splitter 4, there is an antireflection film 8 similar to that in Example 1. is located. The polarizing plate 12 transmits only one of the two orthogonal polarized components of light, and the lower polarizing plate of the two stages has two orthogonal polarized components.
It is made by joining two polarizing plates together. One of these two polarizing plates transmits the same polarized component as the upper polarizing plate, and the other has a different polarization component, and by moving it in the horizontal direction based on the contact information, it becomes the same as the upper polarizing plate. The scene from the light splitter to the mirror is controlled redundantly.

(実施例3) さらに、前記実施例1のように液晶素子を用いた検知部
について別聾様のものを第6図に示す。
(Third Embodiment) Furthermore, FIG. 6 shows a detection section using a liquid crystal element as in the first embodiment for a different deafness.

これは第1図のような接点入力端子をなくシ、液晶素子
7に電源部9と磁力によって開閉するリードスイッチ1
3を接続したもので、接点情報を磁石14の磁力変化と
して取り出し、検知部外部から非接触にてリードスイッ
チ13の開閉を行なって光分岐器からミラーに至る光量
の制御を行なうものである。
This eliminates the contact input terminal as shown in Figure 1, and includes a liquid crystal element 7, a power supply section 9, and a reed switch 1 that opens and closes using magnetic force.
3 are connected, and the contact information is extracted as a change in the magnetic force of the magnet 14, and the reed switch 13 is opened and closed from outside the detection part without contact, thereby controlling the amount of light from the optical splitter to the mirror.

尚、実施例2、同3共に0TDR中実装置との接続、検
知部のモールド、接点情報の検知方法については実施例
1と同様である。
In addition, in both Examples 2 and 3, the connection with the 0TDR solid device, the mold of the detection part, and the method of detecting contact information are the same as in Example 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば光分岐器を用いて光
ファイバに機械的な力を加えることなく分布型の接点情
報検出ンステムを構成することができる。
As explained above, according to the present invention, a distributed contact information detection system can be constructed using an optical splitter without applying mechanical force to the optical fiber.

又、検出部自体を完全にモールドすることによって外部
環境の検出部に及ぼす態影響をなくし、さらに防爆構造
にすることもできる。
Further, by completely molding the detection section itself, the external environment can be prevented from affecting the detection section, and furthermore, an explosion-proof structure can be achieved.

従って、広範囲に及ぶ開閉の検出、例えばマンホールの
開閉、ドアの開閉、パイプラインでのバルブ開閉の検出
や、火災報知器の警報出力の検出などに効果的な利用が
できる。
Therefore, it can be effectively used to detect openings and closings over a wide range of areas, such as detecting the opening and closing of manholes, opening and closing of doors, opening and closing of valves in pipelines, and detecting the alarm output of fire alarms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明センサの全体構成を示す概略図、第2図
は本発明センサ検出部の基本原理を示す説明図、第3図
、第5図、第6図は各々態様の異なる検出部の構成図、
第4図は0TDR本体装置で光強度測定を行った場合の
グラフを示す。 1・・・0TDR中実装置、2・・・光ファイバ、3・
・・検出部、4・・・光分岐KA 、5・・・ミラー 
6・・・口、ドレンズ、7・・・液晶素子、8・・・反
射防止膜、9・・・電源部、10・・・接点入力端子、
11・・・モールド、12・・・偏光板、+3・・・リ
ードスイッチ、+4・・・磁石。 那 図 茅 眩 〉 3図 7(液晶+−1) 算 回 博 目 コ 拠6図 13(リートスイ7す)
FIG. 1 is a schematic diagram showing the overall configuration of the sensor of the present invention, FIG. 2 is an explanatory diagram showing the basic principle of the sensor detection section of the present invention, and FIG. 3, FIG. 5, and FIG. 6 are respective detection sections with different aspects. Configuration diagram,
FIG. 4 shows a graph when light intensity is measured using the 0TDR main unit. 1...0TDR solid device, 2...optical fiber, 3...
...Detection unit, 4...Optical branch KA, 5...Mirror
6... Mouth, drain, 7... Liquid crystal element, 8... Antireflection film, 9... Power supply section, 10... Contact input terminal,
11...Mold, 12...Polarizing plate, +3...Reed switch, +4...Magnet. Nazu dazzling〉 3 figure 7 (liquid crystal +-1) arithmetic calculation base 6 figure 13 (reet sui 7)

Claims (4)

【特許請求の範囲】[Claims] (1)OTDR中央装置に接続された光ファイバの複数
箇所に光分岐器及びこの光分岐器により分岐された分岐
光を反射して再びこれを光分岐器へ導入するミラーを設
け、この光分岐器とミラーの間に、接点情報により動作
する遮光機構を設けたことを特徴とする接点情報検出セ
ンサ。
(1) An optical splitter is installed at multiple locations on the optical fiber connected to the OTDR central device, and a mirror is installed to reflect the branched light branched by the optical splitter and introduce it back into the optical splitter. A contact information detection sensor characterized in that a light shielding mechanism that operates based on contact information is provided between the container and the mirror.
(2)光分岐器とミラーの間に、接点情報で開閉しうる
電源部に接続された液晶素子を設けたことを特徴とする
請求項(1)記載の接点情報検出センサ。
(2) The contact information detection sensor according to claim (1), further comprising a liquid crystal element connected to a power source that can be opened and closed based on contact information, provided between the optical splitter and the mirror.
(3)光分岐器とミラーの間に、接点情報によって可動
する2段の偏光板を設けたことを特徴とする請求項(1
)記載の接点情報検出センサ。
(3) Claim (1) characterized in that a two-stage polarizing plate that is movable based on contact information is provided between the optical splitter and the mirror.
) Contact information detection sensor described.
(4)光分岐器とミラーの間に、電源部及び磁力によっ
て開閉しうるリードスイッチを接続した液晶素子を設け
たことを特徴とする請求項(1)記載の接点情報検出セ
ンサ。
(4) The contact information detection sensor according to claim (1), further comprising a liquid crystal element connected to a power source and a reed switch that can be opened and closed by magnetic force, between the optical splitter and the mirror.
JP2210677A 1990-08-08 1990-08-08 Detecting sensor for contact information Pending JPH0492523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2210677A JPH0492523A (en) 1990-08-08 1990-08-08 Detecting sensor for contact information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2210677A JPH0492523A (en) 1990-08-08 1990-08-08 Detecting sensor for contact information

Publications (1)

Publication Number Publication Date
JPH0492523A true JPH0492523A (en) 1992-03-25

Family

ID=16593284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2210677A Pending JPH0492523A (en) 1990-08-08 1990-08-08 Detecting sensor for contact information

Country Status (1)

Country Link
JP (1) JPH0492523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141911A (en) * 2007-12-11 2009-06-25 Furukawa Electric Co Ltd:The Optical transmission channel monitoring system
US8184980B2 (en) 2006-11-24 2012-05-22 Prysmian S.P.A. Method and system for fiber-optic monitoring of spatially distributed components
US8488114B2 (en) 2007-11-29 2013-07-16 Prysmian S.P.A. Method and system for fiber-optic monitoring of spatially distributed components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184980B2 (en) 2006-11-24 2012-05-22 Prysmian S.P.A. Method and system for fiber-optic monitoring of spatially distributed components
US8488114B2 (en) 2007-11-29 2013-07-16 Prysmian S.P.A. Method and system for fiber-optic monitoring of spatially distributed components
JP2009141911A (en) * 2007-12-11 2009-06-25 Furukawa Electric Co Ltd:The Optical transmission channel monitoring system

Similar Documents

Publication Publication Date Title
US9892614B2 (en) Optical sensor, optical sensor assembly and monitoring device
US6377719B1 (en) Apparatus and method for controlled generation of polarization mode dispersion
CA2139203C (en) Two-way line monitor
JPH0492523A (en) Detecting sensor for contact information
JPH0829128A (en) Physical-quantity measuring apparatus, and measuring instrument thereof
US5335062A (en) Apparatus for all-optical self-aligning holographic phase modulation and motion sensing and method sensing and method for sensing such phase modulation
US9534969B1 (en) System and method for tactile sensing using thin film optical sensing networks
JPH024864B2 (en)
JPH11194011A (en) Interference apparatus
JP4958152B2 (en) Fault point detection method and fault point detection system for optical fiber line including optical device
CA2268913C (en) Apparatus with a retracing optical circuit for the measurement of physical quantities having high rejection of environmental noise
CN102565949A (en) White light interference method based on echo free feedback delaying structure and achieving system of white light interference method
JP2001296111A (en) Optical sensor for detecting opening and shutting of hand hole lid
Marrone et al. Fiber optic michelson aft with passive elimination of polarization fading a ource feedback isolation
IL130165A (en) Optical time-domain reflectometer
JP4434767B2 (en) Optical displacement sensor
Mukhamadiev et al. Optical System for Monitoring Power Lines
JPH0430583Y2 (en)
JP3145798B2 (en) Optical magnetic field sensor and magnetic field measuring device
JP2734089B2 (en) Light sensor
Marrone et al. Fiber optic Michelson array with passive elimination of polarization fading and source feedback isolation
Fuhr et al. Chirped diffraction grating optical switching
JPH0269688A (en) Magnetic field sensor
Mencaglia Optical-fiber sensor-network for temperature and proximity control
JPS59109887A (en) Optical switch for automatic-door