JPH049243B2 - - Google Patents

Info

Publication number
JPH049243B2
JPH049243B2 JP57180523A JP18052382A JPH049243B2 JP H049243 B2 JPH049243 B2 JP H049243B2 JP 57180523 A JP57180523 A JP 57180523A JP 18052382 A JP18052382 A JP 18052382A JP H049243 B2 JPH049243 B2 JP H049243B2
Authority
JP
Japan
Prior art keywords
acceleration
rocking
loaded weight
cargo handling
motion acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57180523A
Other languages
Japanese (ja)
Other versions
JPS5970919A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18052382A priority Critical patent/JPS5970919A/en
Publication of JPS5970919A publication Critical patent/JPS5970919A/en
Publication of JPH049243B2 publication Critical patent/JPH049243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/01Testing or calibrating of weighing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Description

【発明の詳細な説明】 この発明は、走行車輛に装備された荷役積載部
を保持する保持シリンダの荷役積込時における流
体圧から積載重量を自動計測する際に、流体圧に
付加されて測定誤差を生じる揺動等の外力を算出
する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for automatically measuring the loaded weight from the fluid pressure during cargo handling and loading of a holding cylinder that holds a cargo handling and loading section equipped on a traveling vehicle. The present invention relates to a device that calculates an external force such as a swing that causes an error.

走行車輛に装備された荷役積載部を保持する保
持シリンダの流体圧系統から流体圧力を検出し積
載重量を計測する場合に、流体が保持している質
量部に揺動等の外力が付加されると流体圧力が変
動し積載重量計測値に測定誤差を生ずる。
When measuring the loaded weight by detecting fluid pressure from the fluid pressure system of a holding cylinder that holds a cargo handling/loading section installed in a traveling vehicle, external forces such as rocking are applied to the mass section held by the fluid. The fluid pressure fluctuates, causing a measurement error in the loaded weight measurement value.

従つて、このような揺動等による影響を回避す
るには、走行車輛を停止し、更に荷役積載部を完
全静止状態にした上で流体圧力を検出する必要が
ある。
Therefore, in order to avoid the influence of such rocking, etc., it is necessary to stop the traveling vehicle and bring the cargo handling/loading section into a completely stationary state before detecting the fluid pressure.

しかしながら、作業サイクル中に上記過程が存
在しない場合、即ち、バケツトローダにおける掘
削運搬作業(load and carry)を例にとると、
バケツトによる掘削・掬い上げの後そのまま運搬
して穴とか船艙内に落し込む作業サイクルにおい
ては車輛を停止する必要はなく、またバケツトも
掬い上げた後タイヤに干渉しない程度に引き上げ
て走行することが生産性を高めることになる場合
には、作業を中断して一旦車輛走行を停止し、且
つ荷役積載部が完全静止するまで待つてから流体
圧力の測定を行ないその後作業を続行することに
なるので作業能率を極めて阻害することになる。
However, if the above process does not exist in the work cycle, for example, in the case of load and carry in a bucket loader,
There is no need to stop the vehicle during the work cycle where the bucket is used to excavate and scoop up material, then transported and dropped into a hole or into a ship's hold, and the bucket can also be lifted up and driven without interfering with the tires after being scooped up. When increasing productivity, it is necessary to interrupt the work, temporarily stop the vehicle, and wait until the loading/unloading section is completely stationary before measuring the fluid pressure before continuing the work. This will severely impede work efficiency.

ここで流体圧力が変動する要因となる揺動等と
は、 タイヤ、サスペンシヨンその他の支持機構の
クツシヨン効果によつて生ずる主として上下方
向の揺動・振動、 加速、減速等によつて生ずる主として前後方
向の揺動・振動、および 荷役積載部を保持している保持シリンダの伸
縮又は荷役積載部昇降の速度変化率によつて生
じる加速度成分に基く揺動・振動、 その他これに類する揺動・振動である。
The oscillations that cause fluctuations in fluid pressure are mainly vertical oscillations and vibrations caused by the cushioning effects of tires, suspensions, and other support mechanisms, and mainly longitudinal oscillations caused by acceleration, deceleration, etc. directional rocking/vibration, and rocking/vibration based on the acceleration component caused by the expansion/contraction of the holding cylinder that holds the cargo handling/loading section or the speed change rate of the lifting/lowering of the cargo handling/loading section, and other similar rocking/vibration. It is.

そこで、前記各要因ついて個別的にその揺動を
検出し、これら検出された各揺動を積算して揺動
等による外力即ち積載重量計測値の測定誤差を算
出することが考えられる。
Therefore, it is conceivable to detect the rocking for each of the above-mentioned factors individually and integrate the detected rocking to calculate the external force due to the rocking or the like, that is, the measurement error of the loaded weight measurement value.

しかし、この方法では、例えばタイヤ等可動部
の内圧を測定することはデータの安定性、および
コストの面で問題がある。また、個別的に測定し
たとしても、これら各要因についてそれぞれ異な
る修正方式を採用して積算を行なうことは徒らに
装置の複雑化、即ち信頼性の低下をもたらす結果
となる。この揺動等による外力は荷役積込状態で
の荷役等積載部の重心位置における運動加速度と
して集約されるため、例えば特公昭55−25770号
および特公昭38−21040号のクレーンの荷重を計
測する装置では、バケツトに加速度センサーを設
けてワイヤロープの巻き上げ乃至巻取りに際して
バケツトの上下動により生じる加速度を測定して
誤差を補正している。
However, with this method, measuring the internal pressure of a moving part such as a tire has problems in terms of data stability and cost. Furthermore, even if measurements are made individually, integrating different correction methods for each of these factors will unnecessarily complicate the device, ie, reduce reliability. Since the external force caused by this rocking etc. is aggregated as the motion acceleration at the center of gravity of the loading section during cargo handling and loading, for example, the load of the cranes of Japanese Patent Publication No. 55-25770 and Special Publication No. 38-21040 can be measured. In the device, an acceleration sensor is provided on the bucket to measure the acceleration caused by the vertical movement of the bucket when winding up or winding the wire rope, thereby correcting errors.

しかし、走行車輛に装備されて保持シリンダで
バケツトその他の荷役等積載部を保持する構造の
場合には、保持シリンダによる揺動の影響もある
ため、バケツトの加速度を測定するだけでは正確
な補正を行うことができない欠点がある。
However, if a vehicle is equipped with a structure in which a holding cylinder holds a bucket cart or other cargo loading area, it is not possible to make accurate corrections simply by measuring the acceleration of the bucket cart, as there is also the effect of rocking by the holding cylinder. There is a drawback that it cannot be done.

この発明は上記事情に鑑みて創案されたもので
あつて、バケツトその他の荷役等積載部の揺動に
よる誤差を測定するのに、上記揺動に影響する保
持シリンダの揺動を補正して精度を高めた揺動等
による積載重量測定誤差算出装置を提供すること
にある。
This invention was devised in view of the above-mentioned circumstances, and in order to measure errors caused by the swinging of buckets and other loading parts such as cargo handling, the present invention corrects the swinging of the holding cylinder that affects the swinging to improve accuracy. It is an object of the present invention to provide a loaded weight measurement error calculation device due to vibration, etc. with increased oscillation.

この目的達成のため、この発明では、走行車輛
に枢支されたリフトアームの先端に枢着されたバ
ケツトその他の荷役等積載部が所定の高さ位置に
ある時にリフトアームを起伏する保持シリンダの
流体圧を検出して積載重量を自動計測すると共に
荷役等積載部の加速度を検出して揺動等による測
定誤差を算出する装置において、 (a) 荷役等積載部の積載重量測定時における荷役
等積載部の重心位置またはその近傍に加速度セ
ンサを設けて運動加速度の垂直成分および水平
成分を測する、 (b) 保持シリンダのシリンダ(筒)部およびピス
トン部材にそれぞれ加速度センサを設けて、シ
リンダ(筒)部の運動加速度の垂直成分および
水平成分と、ピストン部の運動加速度の垂直成
分および水平成分と、保持シリンダの垂直部か
らの傾斜角を測定する、 (c) 上記荷役等積載部の運動加速度に及ぼす保持
シリンダの運動加速度を補正する、 (d) この補正された運動加速度と上記計測された
積載重量をもとに該計測された積載重量に付加
されている揺動等による外力即ち測定誤差を算
出する演算処理手段を設ける、 という技術的手段を講じている。
In order to achieve this object, the present invention provides a holding cylinder that raises and lowers the lift arm when a bucket or other cargo handling, etc. In a device that automatically measures the loaded weight by detecting fluid pressure and also detects the acceleration of the loading section for cargo handling, etc. and calculates measurement errors due to rocking, etc., (a) When measuring the loaded weight of the loading section for cargo handling, etc. An acceleration sensor is provided at or near the center of gravity of the loading section to measure the vertical and horizontal components of the motion acceleration. Measure the vertical and horizontal components of the motion acceleration of the cylinder), the vertical and horizontal components of the motion acceleration of the piston, and the inclination angle of the holding cylinder from the vertical. (c) Movement of the loading section for cargo handling, etc. Correcting the motion acceleration of the holding cylinder that affects the acceleration; (d) Based on this corrected motion acceleration and the above-mentioned measured load weight, measure the external force due to rocking, etc. that is added to the measured load weight. A technical measure has been taken to provide arithmetic processing means to calculate the error.

以下、この発明をバケツトローダに適用した場
合の好適一実施例について図面に基づき説明す
る。
Hereinafter, a preferred embodiment in which the present invention is applied to a bucket loader will be described with reference to the drawings.

第1図に示すバケツトローダ1はリフトアーム
2先端のバケツト3と、該バケツトを昇降駆動す
るリフトシリンダ4とを備えた周知構成になつて
いる。
A bucket loader 1 shown in FIG. 1 has a well-known configuration including a bucket 3 at the tip of a lift arm 2 and a lift cylinder 4 for driving the bucket up and down.

かかるバケツトローダ1に、この発明の装置が
装備される。
Such a bucket loader 1 is equipped with the device of the present invention.

該装置は、リフトシリンダ4の油圧力を測定し
て積載重量を自動計測する積載重量算出手段と、
バケツト3の運動加速度測定手段と、両手段の測
定値をもとに揺動等による外力(測定誤差)を算
出する演算処理手段とからなつている。
The device includes a loaded weight calculation means that automatically measures the loaded weight by measuring the hydraulic pressure of the lift cylinder 4;
It consists of a means for measuring the motion acceleration of the bucket 3, and an arithmetic processing means for calculating an external force (measurement error) due to rocking or the like based on the measured values of both means.

即ち、積載重量算出手段は、前記バケツト3の
高さ位置を検出するためのリミツトスイツチ等か
らなるポジシヨンセンサ6と、リフトシリンダ4
の油圧を検出すべく該シリンダの圧油系統に設け
られたストレンゲージ構造の圧力センサ5とを備
えている。
That is, the loaded weight calculation means includes a position sensor 6 including a limit switch and the like for detecting the height position of the bucket 3, and a lift cylinder 4.
A pressure sensor 5 having a strain gauge structure is provided in the pressure oil system of the cylinder to detect the oil pressure of the cylinder.

これらのセンサ5,6は、それぞれの検出値を
電気信号に変換してマイクロコンピユータ7に出
力する。
These sensors 5 and 6 convert their detection values into electrical signals and output them to the microcomputer 7.

該マイクロコンピユータ7は、センサ入力機構
と、演算処理手段と、出力機器駆動機構と電源機
構とを備えたシステム構成になつている。
The microcomputer 7 has a system configuration including a sensor input mechanism, an arithmetic processing means, an output device drive mechanism, and a power supply mechanism.

前記演算処理手段は一方8で圧力センサ5およ
びポジシヨンセンサ6からその系統の入力機構を
介して入力した検出値信号を荷重に変換すること
によつて、リフトシリンダ4の油圧系統の油圧か
ら積載重量を算出する。
On the other hand, the arithmetic processing means 8 calculates the loading from the hydraulic pressure of the hydraulic system of the lift cylinder 4 by converting the detected value signals inputted from the pressure sensor 5 and the position sensor 6 through the input mechanism of the system into a load. Calculate the weight.

ここでポジシヨンセンサ6は図示しないが、リ
フトアーム2の基端側の回転角度を検出する手
段、例えばリフトアーム2にカム片を設け、車輛
本体側には上下一対のリミツトスイツチを設け
て、バケツト3が一定上昇位置で上記カム片によ
り上側のリミツトスイツチが投入され、一定下降
位置で下側のリミツトスイツチが投入されるよう
に形成して、バケツト3の一定高さ位置を検出す
る構成等を用いることができる。そして、リフト
アーム2が一定の高さ位置に上昇するとポジシヨ
ンセンサ6がそれを検知して、圧力センサ5がリ
フトシリンダ4の油圧値を検出する。この検出さ
れた油圧値を基に、当該機種における換算式が呼
び出されて油圧値を重量に換算する。
Although the position sensor 6 is not shown here, a means for detecting the rotation angle of the base end side of the lift arm 2, for example, a cam piece is provided on the lift arm 2, a pair of upper and lower limit switches is provided on the vehicle body side, and a bucket switch is provided. 3 is configured such that the upper limit switch is turned on by the cam piece when the bucket 3 is at a certain raised position, and the lower limit switch is turned on when the bucket 3 is at a certain lowered position, thereby detecting the fixed height position of the bucket 3. I can do it. Then, when the lift arm 2 rises to a certain height position, the position sensor 6 detects this, and the pressure sensor 5 detects the oil pressure value of the lift cylinder 4. Based on this detected oil pressure value, a conversion formula for the relevant model is called to convert the oil pressure value into weight.

次に、バケツトの運動加速度測定手段は、バケ
ツトの重心位置における運動加速度を測定する加
速度センサ10と、リフトシリンダ4の垂直部か
らの傾斜角θを測定する傾斜角センサ11とから
なつている。
Next, the means for measuring the motion acceleration of the bucket cart includes an acceleration sensor 10 that measures the motion acceleration at the center of gravity of the bucket cart, and an inclination angle sensor 11 that measures the angle of inclination θ of the lift cylinder 4 from the vertical portion.

本実施例の場合、加速度センサ10はバケツト
3における運動加速度の垂直成分および水平成分
を検出する2軸のストレンゲージ構造からなる加
速度変換器を用いている。
In the case of this embodiment, the acceleration sensor 10 uses an acceleration converter having a two-axis strain gauge structure that detects the vertical and horizontal components of the motion acceleration in the bucket 3.

ここで、加速度センサ10は、バケツト3の運
動加速度を検出しうるものであれば圧電素子その
他構造のものでもよい。また、加速度センサ10
は、2軸構成に限定されることなく、通常の3軸
構成のものでも1軸構成のものであつてもよい。
尚1軸構成の場合は、測定時における該加速度セ
ンサの軸角度が垂直とならない適宜角度を有して
配設してあればよく、該センサの測定値をベクト
ル処理することにより2軸と同様に運動加速度の
垂直成分および水平成分を計測することができ
る。
Here, the acceleration sensor 10 may be a piezoelectric element or other structure as long as it can detect the motion acceleration of the bucket 3. In addition, the acceleration sensor 10
is not limited to a two-axis configuration, and may be a normal three-axis configuration or a one-axis configuration.
In the case of a single-axis configuration, it is sufficient that the axis angle of the acceleration sensor at the time of measurement is not perpendicular and is arranged at an appropriate angle, and by vector processing the measured value of the sensor, it can be used in the same way as a two-axis configuration. The vertical and horizontal components of motion acceleration can be measured.

また、荷役積載部の左右方向の揺動が大きく、
測定誤差の要因となる場合には、3軸構成の加速
度変換器を用い、或いは、荷役積載部の左右両側
に2軸又は1軸の加速度センサを配設して、夫々
の測定値の比較から左右方向の運動加速度の及ぼ
す影響を計測することも可能である。
In addition, the cargo handling and loading section has large left and right swings,
If this is the cause of measurement error, use a 3-axis acceleration converter, or install 2-axis or 1-axis acceleration sensors on both the left and right sides of the cargo handling and loading area, and compare the respective measured values. It is also possible to measure the influence of movement acceleration in the left and right direction.

このような構成の加速度センサ10は、荷役積
込状態でのバケツト3の重心位置に配設されるこ
とが最も好ましいが、図示例の場合該位置に最も
近いバケツト3のサイドプレート外方にガードを
つけて装着されている。
It is most preferable that the acceleration sensor 10 having such a configuration is disposed at the center of gravity of the bucket truck 3 in the loading/unloading state, but in the illustrated example, a guard is placed outside the side plate of the bucket truck 3 closest to the position. It is installed with a .

そこで、前記加速度センサ10に重心補正手段
を設ければ、該センサの測定値を、実際の積荷姿
における重心位置での運動加速度に補正すること
ができて好ましい。
Therefore, it is preferable that the acceleration sensor 10 is provided with a gravity center correcting means, since the measured value of the sensor can be corrected to the motion acceleration at the gravity center position in the actual loaded state.

更に、バケツト3の揺動等には、リフトシリン
ダ4の駆動が積極的又は消極的に影響を及ぼして
いる場合があるので、この場合には上記揺動要因
を測定する必要がある。
Furthermore, since the drive of the lift cylinder 4 may positively or passively influence the swinging of the bucket 3, in this case, it is necessary to measure the above-mentioned swinging factors.

そこで、本実施例の場合には、前記センサ1
0,11の他に、リフトシリンダ4のシリンダ筒
の運動加速度を測定する2軸の加速度変換器13
と、リフトシリンダ4内を伸縮するピストンの運
動加速度を測定する加速度変換器12とを備えて
いる。
Therefore, in the case of this embodiment, the sensor 1
In addition to 0 and 11, there is also a two-axis acceleration converter 13 that measures the motion acceleration of the cylinder of the lift cylinder 4.
and an acceleration converter 12 that measures the motion acceleration of the piston that expands and contracts within the lift cylinder 4.

これらの各センサ10〜13は図示しないA/
D変換器を介す等して前記マイクロコンピユータ
7のそれぞれの系統の入力部に接続されている。
Each of these sensors 10 to 13 is connected to an A/
It is connected to the input section of each system of the microcomputer 7 via a D converter or the like.

マイクロコンピユータ7の演算処理手段の他方
9においては、圧力センサ5を介して算定された
積載重量計測値と、前記各センサ10〜13の測
定値等が入力され所定の測定誤差算出プログラム
に従つて測定誤差値が算出される。
The other calculation processing means 9 of the microcomputer 7 inputs the measured value of the loaded weight calculated via the pressure sensor 5 and the measured values of each of the sensors 10 to 13, etc., and calculates the measured value according to a predetermined measurement error calculation program. A measurement error value is calculated.

このような構成であるので、ローダバケツト3
によつて掘削運搬作業を開始すると、鉱石等荷役
を掬い上げたバケツト3はリフトアツプにより一
定の高さ(水平位置より低位置でよい)まで変位
し、その高さ位置がリフトアーム等により押動さ
れるリミツトスイツチ等のポジシヨンセンサ6で
検出される。
With this configuration, loader bucket 3
When the excavation and transportation work starts, the bucket 3 that has scooped up the ore, etc. is lifted up to a certain height (it may be lower than the horizontal position), and that height position is pushed by a lift arm, etc. It is detected by a position sensor 6 such as a limit switch.

その検出された高さ位置において、バケツト3
内の積載重量等を支持した状態のリフトシリンダ
4にかかつている油圧が圧力センサ5によつて検
出される。
At the detected height position, bucket 3
The pressure sensor 5 detects the oil pressure applied to the lift cylinder 4 while supporting the loaded weight inside.

バケツト3の高さとリフトシリンダ4の油圧と
はバケツト内の積載重量等と一定の相関関係にあ
ることから、リフトシリンダ4の特定伸長点にお
ける該シリンダの油圧値を検出して演算処理を行
ない積載重量を計測する。しかし、該計測値には
揺動等による誤差が含まれている。
Since the height of the bucket 3 and the oil pressure of the lift cylinder 4 have a certain correlation with the loaded weight in the bucket, the hydraulic pressure value of the cylinder at a specific extension point of the lift cylinder 4 is detected and arithmetic processing is performed to load the cylinder. Measure the weight. However, the measured value includes errors due to vibration and the like.

そこで、前記圧力センサ6と同時に起動するよ
うセツトされた各センサ10〜13からそれぞれ
の検出値を測定する。
Therefore, respective detection values are measured from the respective sensors 10 to 13 that are set to start up simultaneously with the pressure sensor 6.

この検出値と圧力センサ等により計測された積
載重量値その他のデータを基に所定の演算処理が
行なわれて揺動等による測定誤差が算出される。
Based on this detected value, the loaded weight value measured by a pressure sensor, and other data, a predetermined calculation process is performed to calculate a measurement error due to rocking or the like.

該揺動等による測定誤差値ΔF算出の一例を挙
げると以下の通りである。
An example of calculation of the measurement error value ΔF due to the fluctuation etc. is as follows.

ΔF=(αy/cos θ+αx/sin θ+αc) (MB+MC)−(βy/cos θ+βx/sin θ)M 但し、ΔFは誤差、 αyはバケツトの運動加速度(垂直成分) αxはバケツトの運動加速度(水平成分) βyはリフトシリンダのシリンダ筒の運動加
速度(垂直成分) βxはリフトシリンダのシリンダ筒の運動加
速度(水平成分) αcはリフトシリンダ内のピストンの運動加
速度 MBはバケツトの質量 MCは積載物質量(計測値) Mはリフトシリンダのシリンダ筒部の等価質
量 θはリフトシリンダの垂直部よりの傾き。
ΔF = (αy / cos θ + αx / sin θ + αc) (M B + M C ) - (βy / cos θ + βx / sin θ) M However, ΔF is the error, αy is the motion acceleration of the bucket (vertical component), αx is the motion acceleration of the bucket (Horizontal component) βy is the motion acceleration of the cylinder of the lift cylinder (vertical component) βx is the motion acceleration of the cylinder of the lift cylinder (horizontal component) αc is the motion acceleration of the piston in the lift cylinder M B is the mass of the bucket M C is the amount of loaded material (measured value), M is the equivalent mass of the cylinder section of the lift cylinder, and θ is the inclination of the lift cylinder from the vertical part.

(第2図参照) このようにして計測された揺動等による測定誤
差はそのままの数値を出力機器14に表示しても
よいが、リフトシリンダの油圧から計測された積
載重量から減算処理されて揺動等誤差補正後の積
載重量値を出力機器14に表示してもよい。
(See Figure 2) Measurement errors due to rocking, etc. measured in this way may be displayed as they are on the output device 14, but they are subtracted from the loaded weight measured from the hydraulic pressure of the lift cylinder. The loaded weight value after correction of errors such as rocking may be displayed on the output device 14.

また、本実施例ではリフトシリンダの油圧から
積載重量を算出した後に揺動等による測定誤差を
算出したが、リフトシリンダから検出された油圧
値段階で揺動等による測定誤差を算出し、減算処
理により揺動等誤差補正後の油圧値を求め、それ
に基づいて積載重量を算出してもよいこと勿論で
ある。
In addition, in this example, the measurement error due to rocking etc. was calculated after calculating the loaded weight from the hydraulic pressure of the lift cylinder, but the measurement error due to rocking etc. was calculated at the stage of the oil pressure value detected from the lift cylinder, and the subtraction process was performed. Of course, it is also possible to obtain the hydraulic pressure value after correcting errors such as rocking, and calculate the loaded weight based on it.

更に、積載重量を計測する手段は、要するに荷
役積載部を保持するシリンダの流体圧系統にかか
る負荷に基づいて積載重量を計測するものであれ
ば本実施例に限らず如何なる計測方法でもよい。
Further, the means for measuring the loaded weight is not limited to this embodiment, and may be any measuring method as long as it measures the loaded weight based on the load applied to the fluid pressure system of the cylinder that holds the cargo handling/loading section.

次に、運動加速度を検出するセンサとして本実
施例では加速度変換器を用いたが、この代わりに
リフトシリンダの接地面からの変位を測定する位
置センサを用いてもよい。この位置センサを用い
た場合には、その測定された変位値を2度微分処
理することにより加速度に換算でき、前記の通り
演算処理すれば同様の効果を奏しうる。
Next, although an acceleration converter is used in this embodiment as a sensor that detects motion acceleration, a position sensor that measures the displacement of the lift cylinder from the ground surface may be used instead. When this position sensor is used, the measured displacement value can be converted into acceleration by performing a two-degree differentiation process, and a similar effect can be achieved by performing the calculation process as described above.

そして、この揺動等よる積載重量測定誤差算出
装置は積載重量表示システムや荷役作業の定量的
な管理を行なう積載重量監視システム、過積載防
止システム等の揺動補正手段として種々応用しう
るものである。
The loaded weight measurement error calculation device due to rocking etc. can be applied in various ways as a rocking correction means such as a loaded weight display system, a loaded weight monitoring system for quantitatively managing cargo handling operations, and an overloading prevention system. be.

尚、この発明の装置はバケツトローダに限らず
荷役積載部を保持シリンダで支持した走行車輛で
あれば如何なる構造の車輛でも適用しうること勿
論である。
It goes without saying that the device of the present invention can be applied not only to bucket loaders but also to any type of traveling vehicle in which a cargo handling/loading section is supported by a holding cylinder.

この発明では、バケツトその他の荷役等積載部
の運動加速度を検出するだけでなく、この荷役等
積載部の揺動に影響を与える不持シリンダの運動
加速度をも検出して荷役等積載部の揺動を補正し
ているので一層正確な揺動等による測定誤差を算
出することができ、測定の精度を高めることがで
き有益である。
This invention not only detects the motion acceleration of a bucket or other cargo handling loading section, but also detects the motion acceleration of the unheld cylinder that affects the swinging of the cargo handling loading section. Since the motion is corrected, it is possible to more accurately calculate measurement errors due to rocking, etc., which is advantageous because the measurement accuracy can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すシステムブ
ロツク図、第2図はリフトシリンダの垂直部から
の傾斜角θを示す説明図である。 3はバケツト、4はリフトシリンダ、5は圧力
センサ、6はポジシヨンセンサ、8,9は演算処
理手段としてのマイクロプロセツサ、10,1
2,13はそれぞれ加速度センサ、11は傾斜角
センサ。
FIG. 1 is a system block diagram showing one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the inclination angle θ from the vertical portion of the lift cylinder. 3 is a bucket, 4 is a lift cylinder, 5 is a pressure sensor, 6 is a position sensor, 8 and 9 are microprocessors as calculation processing means, 10, 1
2 and 13 are acceleration sensors, and 11 is a tilt angle sensor.

Claims (1)

【特許請求の範囲】 1 走行車輛に枢支されたリフトアームの先端に
枢着されたバケツトその他の荷役等積載部が所定
の高さ位置にある時にリフトアームを起伏する保
持シリンダの流体圧を検出して積載重量を自動計
測すると共に荷役等積載部の加速度を検出して揺
動等による測定誤差を算出する装置において、 荷役等積載部の積載重量測定時における荷役等
積載部の重心位置またはその近傍に加速度センサ
を設けて運動加速度の垂直成分および水平成分を
測定し、 保持シリンダのシリンダ(筒)部およびピスト
ン部材にそれぞれ加速度センサを設けて、シリン
ダ(筒)部の運動加速度の垂直成分および水平成
分と、ピストン部の運動加速度の垂直成分および
水平成分と、保持シリンダの垂直部からの傾斜角
を測定して、 上記荷役等積載部の運動加速度に及ぼす保持シ
リンダの運動加速度を補正し、 この補正された運動加速度と上記計測された積
載重量をもとに該計測された積載重量に付加され
ている揺動等による外力即ち測定誤差を算出する
演算処理手段を設けてなることを特徴とする揺動
等による積載重量測定誤差算出装置。 2 演算処理手段が、積載重量から揺動等による
測定誤差を減算して揺動等補正処理した積載重量
を算出することを特徴とする特許請求の範囲第1
項記載の積載重量測定誤差算出装置。
[Scope of Claims] 1. Fluid pressure of a holding cylinder that raises and lowers the lift arm when a bucket or other loading section for cargo handling, etc., which is pivotally connected to the tip of the lift arm that is pivotally supported on the traveling vehicle, is at a predetermined height position. In a device that automatically measures the loaded weight by detecting the acceleration of the cargo handling, etc., loading section and calculating measurement errors due to rocking, etc., the center of gravity of the cargo handling, etc. loading section or An acceleration sensor is installed in the vicinity to measure the vertical and horizontal components of the motion acceleration, and an acceleration sensor is installed in the cylinder section and piston member of the holding cylinder to measure the vertical component of the motion acceleration of the cylinder section. and the horizontal component, the vertical and horizontal components of the motion acceleration of the piston section, and the inclination angle of the holding cylinder from the vertical section, and correct the motion acceleration of the holding cylinder that affects the motion acceleration of the loading section for cargo handling, etc. , It is characterized by being provided with arithmetic processing means for calculating an external force due to rocking, etc., added to the measured loaded weight, that is, a measurement error, based on the corrected motion acceleration and the measured loaded weight. Load weight measurement error calculation device due to vibration, etc. 2. Claim 1, characterized in that the arithmetic processing means subtracts measurement errors due to rocking, etc. from the loaded weight to calculate the loaded weight that has been corrected for rocking, etc.
Loaded weight measurement error calculation device as described in .
JP18052382A 1982-10-14 1982-10-14 Apparatus for calculating measuring error of loading weight due to oscillation Granted JPS5970919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18052382A JPS5970919A (en) 1982-10-14 1982-10-14 Apparatus for calculating measuring error of loading weight due to oscillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18052382A JPS5970919A (en) 1982-10-14 1982-10-14 Apparatus for calculating measuring error of loading weight due to oscillation

Publications (2)

Publication Number Publication Date
JPS5970919A JPS5970919A (en) 1984-04-21
JPH049243B2 true JPH049243B2 (en) 1992-02-19

Family

ID=16084750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18052382A Granted JPS5970919A (en) 1982-10-14 1982-10-14 Apparatus for calculating measuring error of loading weight due to oscillation

Country Status (1)

Country Link
JP (1) JPS5970919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305691A (en) * 2011-05-23 2012-01-04 厦门保圣复材科技有限公司 Method and system for testing weight balance of racket and ball arm

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615984B2 (en) * 1984-12-29 1994-03-02 川崎重工業株式会社 Working vehicle load detection method
JPS61250522A (en) * 1985-04-26 1986-11-07 Kawasaki Heavy Ind Ltd Method for detecting weight of loading article and working vehicle with apparatus for detecting weight of loading article utilizing said method
JPS61277022A (en) * 1985-06-01 1986-12-08 Hitachi Constr Mach Co Ltd Apparatus for detecting load of working machine
JP2626667B2 (en) * 1987-09-21 1997-07-02 新キャタピラー三菱 株式会社 Loading weight detection device
US5215154A (en) * 1988-08-23 1993-06-01 John Kirby Method and apparatus for measuring vehicle weight or engine power or both
GB8819937D0 (en) * 1988-08-23 1988-09-21 Kirby J Weighing vehicles
US5182712A (en) * 1990-09-14 1993-01-26 Caterpillar Inc. Dynamic payload monitor
JPH1019645A (en) * 1996-07-05 1998-01-23 Yazaki Corp Loaded weight display device
JP3178706B2 (en) * 1996-07-05 2001-06-25 矢崎総業株式会社 Loading weight display device
DE102012216306A1 (en) * 2012-09-13 2014-03-13 Zf Friedrichshafen Ag Method for determining load of working machine e.g. agricultural machine, involves determining loading of work machine based on comparison of detected force and unloaded state of work machine corresponding to reference value
JP6866070B2 (en) * 2016-03-16 2021-04-28 住友重機械工業株式会社 Excavator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525770A (en) * 1978-08-14 1980-02-23 Matsushita Electric Ind Co Ltd Heating apparatus
JPS57113323A (en) * 1980-12-29 1982-07-14 Kobe Steel Ltd Recorder for load condition of crane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525770A (en) * 1978-08-14 1980-02-23 Matsushita Electric Ind Co Ltd Heating apparatus
JPS57113323A (en) * 1980-12-29 1982-07-14 Kobe Steel Ltd Recorder for load condition of crane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305691A (en) * 2011-05-23 2012-01-04 厦门保圣复材科技有限公司 Method and system for testing weight balance of racket and ball arm

Also Published As

Publication number Publication date
JPS5970919A (en) 1984-04-21

Similar Documents

Publication Publication Date Title
EP3165885B1 (en) Load weighing method and system for wheel loader
EP3690409B1 (en) Wheel loader and bucket carrying load calculation method
ES2617505T3 (en) System for detecting the load mass of a load that is suspended on a crane lifting cable
JP4523900B2 (en) Mass characteristic measurement device
KR960006116B1 (en) Method and apparatus for controlling stopping of turning of upper swing unit for construction machines, and angle of inclination computing apparatus
JPH049243B2 (en)
US11009522B2 (en) Systems and methods for calibrating an acceleration sensor using a payload system
KR20080011705A (en) Control method for moving carriage
CN107207227A (en) Crane and for the method for the overload protection for monitoring such crane
CN104865863A (en) Improved monitoring system
KR20220066157A (en) Working Machines and Control Methods of Working Machines
JP7410762B2 (en) working machine
KR100427957B1 (en) Method of and apparatus for controlling stacking of a load by a crane
US6351720B1 (en) Trolley camera position detecting apparatus
WO2018168056A1 (en) Work machinery
CN111465572B (en) Hoisting machine
JPH07110759B2 (en) Method and apparatus for controlling turning stop of upper swing body in construction machine
JP3153849B2 (en) Trolley camera position detection device
CN109179209A (en) Crane hanger is anti-to shake method
JPH10139368A (en) Bracing and positioning control device for hung load
JPH09156878A (en) Calibration method for shake angle sensor for suspended load by crane
JP3229222B2 (en) Crane suspended load control device
JPH0891774A (en) Method and device for swing stop control of crane
JPH0435579B2 (en)
JP7229109B2 (en) Work machine and work machine control method