JPH0491620A - Dc power supply - Google Patents

Dc power supply

Info

Publication number
JPH0491620A
JPH0491620A JP20395590A JP20395590A JPH0491620A JP H0491620 A JPH0491620 A JP H0491620A JP 20395590 A JP20395590 A JP 20395590A JP 20395590 A JP20395590 A JP 20395590A JP H0491620 A JPH0491620 A JP H0491620A
Authority
JP
Japan
Prior art keywords
voltage
power supply
battery
section
battery row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20395590A
Other languages
Japanese (ja)
Inventor
Shoichi Tanaka
正一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20395590A priority Critical patent/JPH0491620A/en
Publication of JPH0491620A publication Critical patent/JPH0491620A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To protect external machine block with high safety by applying power supply voltage on the external machine block, comparing the applying voltage of each battery block with a reference voltage thereby detecting low voltage state of power supply block reliably with high safety. CONSTITUTION:Supply voltage from a power supply block 1A is applied or interrupted onto/from an electronic machine block 7A by turning a switch block S1 ON, OFF. In a low voltage detecting circuit 2A, a voltage comparing means 3 is applied with voltages from respective battery blocks 1a-1c while furthermore provided with a reference voltage from a reference voltage block 4A. The voltage comparing means 3 compares the applying voltages from respective battery blocks 1a-1c with the reference voltage and transmits a detection signal P1 representing the low voltage state of the battery blocks 1a-1c when the applying voltage drops below the reference voltage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、直列に接続した複数の電池で構成される組電
池、即ち電池列によって構成された電源部を有する直流
電源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a DC power supply device having a power supply section composed of a battery pack, that is, a battery array, composed of a plurality of batteries connected in series.

(従来の技術) 従来、この種の直流電源装置は主に、携帯用若しくは持
ち運び可能な小型の電子機器に直流電源電圧を印加する
のに使用されている。
(Prior Art) Conventionally, this type of DC power supply device has been mainly used to apply a DC power supply voltage to small portable or portable electronic devices.

第7図はこうした直流電源装置の基本的な構成を示して
おり1図示された直流電源装置は電子機器部7Cに対し
、4個の電池13a〜13dを直列に接続した電池列で
成る電源部ICと、この電源部1Cからの電子機器部7
Cに対する電源電圧の印加をオンオフするためのスイッ
チ部S3とを備えている。そして、このスイッチ部S3
をオンオフすることにより、電子機器部7Cに対する電
源電圧の印加をオンオフできるようになっている。
FIG. 7 shows the basic configuration of such a DC power supply device. 1 The illustrated DC power supply device has an electronic device section 7C and a power supply section consisting of a battery array in which four batteries 13a to 13d are connected in series. IC and electronic device section 7 from this power supply section 1C
A switch section S3 for turning on and off the application of the power supply voltage to C is provided. And this switch part S3
By turning on and off, the application of the power supply voltage to the electronic device section 7C can be turned on and off.

通常、このような直流電源装置の電源部は、外部機器に
対する電源電圧か規定されている為、野外等で使用され
る業務用の電源やカーバッテリー等の特殊な電源からは
充電や電圧の印加を行わせることかできない。
Normally, the power supply section of such a DC power supply device has a specified power supply voltage for external equipment, so it cannot be charged or applied voltage from a special power source such as a commercial power source used outdoors or a car battery. The only thing I can do is make it happen.

又、このような電源部に使用される電池には多くの種類
があり、−船釣には比較的小さな消費電流を得るための
一次電池と、大きな消費電流を得るための二次電池とに
大別することかできる。例えば−次電池にはマンガン電
池、アルカリ−マンガン電池、水銀電池、酸化電池、空
気亜鉛電池。
Furthermore, there are many types of batteries used in such power supply units; for boat fishing, there are primary batteries for obtaining relatively small current consumption, and secondary batteries for obtaining large current consumption. It can be broadly classified. For example, secondary batteries include manganese batteries, alkaline manganese batteries, mercury batteries, oxidation batteries, and zinc-air batteries.

リチウム電池等がある。There are lithium batteries, etc.

一方、二次電池には鉛電池、ニッケルーカドミウム電池
(Ni−Cd電池)、リチウム電池等かある。これらは
いずれのタイプであっても単電池セルの起電圧が3V以
下に規定されている。具体的には、−次電池のマンガン
電池では1.5 V、二次電池の鉛電池では2.OV、
  リチウム電池では3゜0VNi−Cd電池では1.
2Vになっている。
On the other hand, secondary batteries include lead batteries, nickel-cadmium batteries (Ni-Cd batteries), lithium batteries, and the like. Regardless of which type these are, the electromotive voltage of the single battery cell is specified to be 3V or less. Specifically, it is 1.5 V for a negative manganese battery, and 2.5 V for a secondary lead battery. OV,
3° for a lithium battery and 1.0° for a 0V Ni-Cd battery.
It is 2V.

尚、二次電池の場合は充電することによって繰り返し使
用できるものが多い。
Note that many secondary batteries can be used repeatedly by being charged.

ところで、最近の電子機器に具備される直流電源装置に
おいては、各種の電池を選定して電池列の電源部を構成
するばかりでなく、電源部の電源電圧の印加状態を監視
し、必要に応じて電源電圧の印加を遮断するための保護
機能を構成しているものがある。
By the way, in the DC power supply devices installed in recent electronic devices, various batteries are not only selected to form the power supply section of the battery array, but also the state of the power supply voltage applied to the power supply section is monitored and the power supply is adjusted as necessary. Some devices have a protection function to cut off the application of power supply voltage.

第6図はこうした保護機能を構成した直流電源装置の一
例を示すものである。ここでは1図示の如く電子機器部
7Bに対し、電池列の電源部1Bやスイッチ部S2を接
続して開閉可能な直流電源装置が構成されている。更に
、電池列の印加電圧の低電圧状態を検出する低電圧検出
回路部5が電池列の両極間に接続されている。この低電
圧検出回路部5は、電源部IBの電源電圧が所定の基準
電圧よりも降下した場合に検出信号を出力することで電
源部IBの低電圧状態を検出するものである。又1図示
された低電圧検出回路部5には警報回路部6Bが接続さ
れ、低電圧検出回路部5から低電圧になったことを示す
検出信号が与えられると、警報を発生する。この警報回
路部6Bは実際には必要に応じて設けられる。
FIG. 6 shows an example of a DC power supply device having such a protection function. Here, as shown in FIG. 1, a DC power supply device that can be opened and closed is constructed by connecting a battery array power supply section 1B and a switch section S2 to an electronic device section 7B. Furthermore, a low voltage detection circuit section 5 for detecting a low voltage state of the voltage applied to the battery array is connected between both poles of the battery array. The low voltage detection circuit section 5 detects the low voltage state of the power supply section IB by outputting a detection signal when the power supply voltage of the power supply section IB falls below a predetermined reference voltage. Further, an alarm circuit section 6B is connected to the low voltage detection circuit section 5 shown in Figure 1, and generates an alarm when a detection signal indicating that the voltage has become low is provided from the low voltage detection circuit section 5. This alarm circuit section 6B is actually provided as necessary.

一方、低電圧検出回路部5に接続されたスイッチ部S2
は、検出信号が伝送されない時には閉じられており、検
出信号が伝送された時に開放されて電子機器7Bに対す
る電源電圧の印加を遮断する。しかして 低電圧検出回
路部5を備えた直流電源装置は、必要に応じて電源電圧
の印加を遮断することによって外部機器部7Bの保護を
図ることかできる。
On the other hand, the switch section S2 connected to the low voltage detection circuit section 5
is closed when the detection signal is not transmitted, and is opened when the detection signal is transmitted to cut off the application of power supply voltage to the electronic device 7B. Therefore, the DC power supply device equipped with the low voltage detection circuit section 5 can protect the external device section 7B by cutting off the application of the power supply voltage as necessary.

一般に、このような電池を用いての電源部が具備される
直流電源装置に対しては、電源部の保護機能の他、電源
部自体への低電力化か図られる。
Generally, for a DC power supply device equipped with a power supply section using such a battery, in addition to the protection function of the power supply section, efforts are made to reduce the power consumption of the power supply section itself.

しかしながら、実際の直流電源装置は各種電子機器部の
公称電圧よりも比較的高い3例えば6■〜12V程度の
ものにもしばしば使用されている。
However, actual DC power supplies are often used at voltages of about 3V to 12V, which are relatively higher than the nominal voltage of various electronic devices.

こうした直流電源装置の場合、複数の電池を直列に接続
しただけでは電源電圧が不足するので、かかる複数個の
電池列を直列に接続することによって電池列群で電源部
を構成しているものが多い。
In the case of such a DC power supply, the power supply voltage is insufficient if only multiple batteries are connected in series, so by connecting multiple battery arrays in series, the power supply section is made up of a group of battery arrays. many.

(発明が解決しようとする課題) 上述のような電池列又は電池列群を用いて電源部を構成
した直流電源装置の場合、電池列を構成する個々の電池
に使用時間がまちまちなもの(後述する如く電池の電圧
放電特性に相対的なばらつきがあるもの)が含まれてい
たり、或いは別の種類の電気容量が異なるものが混在し
ていることがある。このように 電圧放電特性を異にす
る電池か混在している場合、しばしば電池列内に逆充電
や、これに関連する過放電を生じて電源電圧の印加状態
が不安定になる。そして、このように逆充電や過放電を
生じた状態で、電源部を使用し続けると電子機器のパー
ツを損傷する危険がある。
(Problems to be Solved by the Invention) In the case of a DC power supply device in which the power supply section is configured using a battery row or a group of battery rows as described above, there is a problem in which the individual batteries constituting the battery row have different usage times (described later). In some cases, batteries may include batteries with relative variations in voltage discharge characteristics, or other types of batteries with different capacitances may be mixed together. When batteries with different voltage discharge characteristics are mixed together in this way, reverse charging and related over-discharging often occur within the battery row, making the state of power supply voltage application unstable. If the power supply unit continues to be used in a state where reverse charging or overdischarging occurs in this way, there is a risk of damaging the parts of the electronic device.

今、ここで第7図に示す電源部ICに逆充電が生じたも
のとする。この場合、第5図に示すような逆充電が生じ
る。第5図には、電池列の始動時間Tに対する電圧降下
Vとの関係、即ち電源部ICの電圧放電特性が示されて
いる。但し、ここでは、電源部ICの全電圧V、に対し
て電池138〜13dはそれぞれ単位電池相当の局部電
圧V。
Now, it is assumed that reverse charging occurs in the power supply IC shown in FIG. 7. In this case, reverse charging as shown in FIG. 5 occurs. FIG. 5 shows the relationship between the voltage drop V and the starting time T of the battery array, ie, the voltage discharge characteristics of the power supply IC. However, here, the batteries 138 to 13d each have a local voltage V equivalent to a unit battery compared to the total voltage V of the power supply IC.

/4であるとして説明する。仮に、電池13dの電圧放
電線V(13d)か他の3つの電池13a〜13cのそ
れぞれの電圧放電線V(13a、13b、13c)より
も61時間分だけ先行して下降するものとする。このこ
とは、電池13dか他の3つの電池13a〜13cより
も予めΔT時時間分に使用されたことを意味している。
/4 will be explained. Assume that the voltage discharge line V (13d) of the battery 13d falls 61 hours in advance of the voltage discharge lines V (13a, 13b, 13c) of the other three batteries 13a to 13c. This means that the battery 13d has been used for ΔT hours before the other three batteries 13a to 13c.

こうした電源部ICを具備する電子機器7Cに対し、ス
イッチ部S3を閉じて電源電圧の印加をオンにすると、
電池13dは電圧放電線V(13d)に示す如く電圧v
L/4を維持した後、電圧降下が始って時点T1で放電
を完了する。
When the switch section S3 is closed to turn on the application of the power supply voltage to the electronic device 7C equipped with such a power supply section IC,
The battery 13d has a voltage v as shown in the voltage discharge line V (13d).
After maintaining L/4, the voltage begins to drop and the discharge is completed at time T1.

一方、電池13a〜13cのそれぞれは、電圧放電線V
 (13a、13b、13c)に示す如くvL/4を維
持した後、電圧降下か始って経時T1に対して61時間
分を加えた時点T2まては放電を続ける。従って、電源
部1Cの全電圧■Lか維持されているのは電圧放電線V
(IC)に示す如く時点T1の僅か以前までであり、こ
の電源部ICの全電圧は経時T1では3/4VLに降下
ししばらく3/4VLの状態が維持された後には急激に
電圧降下が始って時点T2ては放電を完了する。そして
1時点T]から時点T2までの時間差である61時間に
あっては、電池13dが完全に放電されていても他の3
つの電池13a〜13cが放電され切っていないので、
電池13a〜13Cの放電が終了するまでの間、電池1
3dの両極間には正負の逆方向に電位差が生じる。この
とき。
On the other hand, each of the batteries 13a to 13c has a voltage discharge line V
After maintaining vL/4 as shown in (13a, 13b, 13c), the voltage starts to drop and discharge continues until time T2, which is 61 hours added to time T1. Therefore, the total voltage of the power supply section 1C is maintained by the voltage discharge line V.
As shown in (IC), the total voltage of this power supply IC drops to 3/4VL at time T1, and after maintaining the 3/4VL state for a while, the voltage starts to drop suddenly. At time T2, the discharge is completed. During the time difference of 61 hours from point T1 to point T2, even if the battery 13d is completely discharged, the other three
Since the two batteries 13a to 13c are discharged and not fully discharged,
Until the discharge of batteries 13a to 13C is completed, battery 1
A potential difference occurs between the two poles of 3d in opposite directions, positive and negative. At this time.

電池13dは逆充電V (13d’ )状態となり同時
に電池13a〜13cは過放電状態となる。
The battery 13d enters a reverse charge V (13d') state, and at the same time, the batteries 13a to 13c enter an overdischarge state.

こうした電池内に生ずる逆充電は、正方向に放電する場
合よりも負荷が大きく、電池内部に大きな熱を発生させ
て多量のガスを生じさせる原因になっている。電池内部
に多量のガスが発生すると。
Such reverse charging that occurs within the battery imposes a greater load than when discharging in the forward direction, causing a large amount of heat to be generated inside the battery and a large amount of gas to be produced. When a large amount of gas is generated inside the battery.

圧力が増大して電池本体を膨らませたり、ときには電池
本体の安全弁を破って発生したガスや電解液を一外部に
放出させる等、副次的に様々な悪影響を及はすことがあ
る。特に、二次電池に逆充電が生じると、電池の電気容
量が低下したままになってしまう為、他の正常な電池と
共に電池列を構成しても同じ電池にばかり逆充電が生じ
ることになり、電池列全体の寿命が単体の電池よりも短
くなってしまうことにもなりかねない。
This can have a variety of side effects, such as the pressure increasing and causing the battery to swell, or sometimes breaking the safety valve of the battery and releasing the generated gas and electrolyte to the outside. In particular, when reverse charging occurs in a secondary battery, the electrical capacity of the battery remains reduced, so even if a battery array is formed with other normal batteries, reverse charging will only occur in the same battery. , the life of the entire battery array may be shorter than that of a single battery.

又、このような逆充電を生じ得る電池を含んた電源部を
有する直流電源装置にあっては、上述したような低電圧
検出回路部を用いても、電源部の低電圧状態を電子機器
部に対する電源電圧の印加前に検出して安全性高く電子
機器を保護することは困難になっている。
In addition, in a DC power supply device that has a power supply section that includes a battery that can cause such reverse charging, even if the low voltage detection circuit section described above is used, the low voltage state of the power supply section cannot be detected by the electronic device section. It has become difficult to protect electronic devices with high safety by detecting them before the power supply voltage is applied to them.

更に、従来の直流電源装置の場合、電源部の低電圧状態
の検出が適時に行われていない為、実際には電子機器の
誤動作を充分に防止することかできないという弱点があ
る。
Furthermore, in the case of the conventional DC power supply device, the low voltage state of the power supply section is not detected in a timely manner, so that malfunctions of electronic equipment cannot be sufficiently prevented in practice.

本発明はかかる事情よりなされたもので、本発明の目的
は、比較的大きな電源電圧を有する電源部を電池で構成
した直流電源装置にあって、電源部の低電圧状態を適確
に検出できるようにすることで、電源部の始動時の他、
電源電圧の印加の途中で電源部が低電圧状態になっても
外部機器を安全性高く保護できるような直流電源装置を
提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a DC power supply device in which a power supply unit having a relatively large power supply voltage is constructed of a battery, and is capable of accurately detecting a low voltage state of the power supply unit. By doing this, in addition to starting the power supply section,
To provide a DC power supply device that can protect external equipment with high safety even if a power supply part becomes a low voltage state during application of power supply voltage.

(課題を解決するための手段) 本発明は、電源部に電池を用いると共に、外部機器に電
源電圧を印加する直流電源装置に関するもので9本発明
の上記目的は、所定数の電池を直列に接続して電池列を
構成し、これら複数個の電池列を直列に接続して電池列
群を構成した電源部と、前記電池列の各個に接続された
信号線に印加される前記電池列からの印加電圧を人力し
て基準電圧との間で比較すると共に、前記印加電圧か前
記基準電圧よりも降下したときに前記電源部の低電圧状
態を示す検出信号を出力する低電圧検出回路と、前記検
出信号か伝送された時に前記外部機器への電源電圧の印
加をオフにするためのスイッチ回路部とを具備して直流
電源装置を構成することによって達成される。
(Means for Solving the Problems) The present invention relates to a DC power supply device that uses a battery in a power supply section and applies a power supply voltage to an external device. A power supply unit that connects a plurality of battery arrays to form a battery array group, and a power supply unit that connects a plurality of battery arrays in series to constitute a battery array group; a low voltage detection circuit that manually compares the applied voltage with a reference voltage and outputs a detection signal indicating a low voltage state of the power supply section when the applied voltage drops below the reference voltage; This is achieved by configuring a DC power supply device including a switch circuit section for turning off the application of power supply voltage to the external device when the detection signal is transmitted.

(作用) 本発明の直流電源装置は、比較的大きな電源電圧を有す
る電池を用いた電源部で外部機器に対して電源電圧を印
加するためのものである。この為。
(Function) The DC power supply device of the present invention is for applying a power supply voltage to external equipment using a power supply unit using a battery having a relatively high power supply voltage. For this reason.

複数の電池を直列に接続して単一の電池列で電源部を構
成するのではなく、更にこうした複数個の電池列を用い
てそれらを直列に接続した電池列群で電源部を構成して
いる。そして1本発明においては、電源部の電池列毎に
接続された信号線に印加される印加電圧を、電池列単位
相当の電圧以下に設定された基準電圧との間で比較し、
印加電圧か基準電圧よりも降下したときに電源部の低電
圧状態を示す検出信号を出力するように低電圧検出回路
部を構成している。即ち、この低電圧検出回路部は、特
定の電池列か逆充電や過放電を生じて低電圧状態になっ
ていても、基準電圧との比較によってその電池列の印加
電圧の電圧降下を適確に検出することができる。こうし
て、電池列の低電圧状態を検出信号としてスイッチ部に
入力させ。
Rather than constructing a power supply section with a single battery string by connecting multiple batteries in series, the power supply section is constructed from a group of battery rows in which multiple battery rows are connected in series. There is. In one aspect of the present invention, the applied voltage applied to the signal line connected to each battery row of the power supply section is compared with a reference voltage set to a voltage equal to or lower than the voltage corresponding to each battery row,
The low voltage detection circuit section is configured to output a detection signal indicating a low voltage state of the power supply section when the applied voltage drops below the reference voltage. In other words, even if a particular battery row is in a low voltage state due to reverse charging or overdischarge, this low voltage detection circuit can accurately determine the voltage drop in the applied voltage of that battery row by comparing it with the reference voltage. can be detected. In this way, the low voltage state of the battery row is inputted to the switch section as a detection signal.

スイッチを開放させて外部機器に対する電源電圧の印加
を遮断できるように直流電源装置を構成している。
The DC power supply device is configured to be able to cut off the application of power supply voltage to external equipment by opening the switch.

(実施例) 以下に実施例を挙げ1本発明の直流電源装置について詳
細に説明する。
(Example) Hereinafter, a DC power supply device of the present invention will be described in detail with reference to an example.

第1図は本発明の直流電源装置の基本的な構成を示し、
ここでは、直流電源装置か電子機器部7Aに接続された
状態を示している。直流電源装置は1図示の如く電源部
IAと、この電源部IAの一端に接続されたスイッチ部
S1とを備え、電子機器部7Aはスイッチ部S1と電源
部IAの他端との間に接続されている。
FIG. 1 shows the basic configuration of the DC power supply device of the present invention,
Here, a state in which the DC power supply device is connected to the electronic device section 7A is shown. As shown in Figure 1, the DC power supply device includes a power supply section IA and a switch section S1 connected to one end of the power supply section IA, and an electronic device section 7A is connected between the switch section S1 and the other end of the power supply section IA. has been done.

ここで 電源部IAは、それぞれ所定数の電池を直列に
接続した電池列1a、lb、lcを互いに直列に接続す
ることによって構成された電池列群を有している。この
電源部IAからの電源電圧は、スイッチ部S1をオンオ
フすることによって。
Here, the power supply section IA has a battery array group configured by mutually connecting battery arrays 1a, lb, and lc each having a predetermined number of batteries connected in series. The power supply voltage from the power supply section IA is supplied by turning on and off the switch section S1.

電子機器部7Aに対して印加されたり、或いは遮断され
る。直流電源装置は、更に、各電池列1a〜ICの印加
電圧を基準電圧との間で比較し、各電池列の電圧の低下
を検出する低電圧検出回路部2Aを備えている。具体的
に云えば、低電圧検出回路部2Aは、電源部IAを構成
する3つの電池列13〜1Cのそれぞれの両極間に接続
された電圧比較手段3と共に、上記した基準電圧を与え
るだめの基準電圧部4Aを有している。低電圧検出回路
部2人の出力側には出力端子Cが設けられこの出力端子
Cからの信号線αは、その途上にある交点でスイッチ部
Slに接続される一方、警報回路部6Aとも接続されて
いる。
The voltage is applied to the electronic device section 7A or cut off. The DC power supply device further includes a low voltage detection circuit section 2A that compares the voltage applied to each of the battery rows 1a to IC with a reference voltage and detects a drop in the voltage of each battery row. Specifically, the low voltage detection circuit section 2A, together with the voltage comparison means 3 connected between the poles of each of the three battery arrays 13 to 1C constituting the power supply section IA, has a circuit for supplying the above-mentioned reference voltage. It has a reference voltage section 4A. An output terminal C is provided on the output side of the two low voltage detection circuit sections, and the signal line α from this output terminal C is connected to the switch section Sl at an intersection on the way, and is also connected to the alarm circuit section 6A. has been done.

低電圧検出回路2Aにおいて、電圧比較手段3には、各
電池列1a〜1cからの印加電圧か与えられる一方、基
準電圧部4Aからの基準電圧も人力されている。かかる
電圧比較手段3は、電源部IAの各電池列1a〜1cか
らの印加電圧を基準電圧と比較することによって、印加
電圧が基準電圧よりも降下したときに各電池列]a〜1
cの低電圧状態を表わす検出信号P1を信号線αに出力
する。このように、電源部IAを構成する各電池列1a
〜1cの低電圧状態を検出信号P1を送出することによ
り判定することができる。従って。
In the low voltage detection circuit 2A, the voltage comparison means 3 is supplied with the applied voltages from each of the battery rows 1a to 1c, and is also manually supplied with a reference voltage from the reference voltage section 4A. The voltage comparison means 3 compares the applied voltage from each of the battery rows 1a to 1c of the power supply unit IA with a reference voltage, and when the applied voltage drops below the reference voltage, the voltage of each battery row] a to 1 is determined.
A detection signal P1 representing the low voltage state of c is output to the signal line α. In this way, each battery row 1a constituting the power supply section IA
The low voltage state of ~1c can be determined by sending out the detection signal P1. Therefore.

この検出信号P1を警報回路部6Aに伝送させることで
警報を得たり、或いはスイッチ151に伝送することに
よりスイッチ部S1を開放させて。
An alarm is obtained by transmitting this detection signal P1 to the alarm circuit section 6A, or by transmitting it to the switch 151, the switch section S1 is opened.

電子機器部7Aに対する電源電圧の印加を遮断すること
ができる。
Application of the power supply voltage to the electronic device section 7A can be interrupted.

このような構成に上る直流電源装置は、電池列群で構成
された電源部1Aの各電池列1a〜1Cからの印加電圧
の状態に基づいて、その印加電圧の低電圧状態時にスイ
ッチS1を遮断し、電子機器部7Aに対する電源電圧の
印加を遮断できる。
The DC power supply device having such a configuration shuts off the switch S1 when the applied voltage is in a low voltage state based on the state of the applied voltage from each of the battery rows 1a to 1C of the power supply section 1A composed of a group of battery rows. However, application of the power supply voltage to the electronic device section 7A can be cut off.

この為、電子機器部7Aを低電圧の印加による悪影響か
ら保護することができる。
Therefore, the electronic device section 7A can be protected from the adverse effects caused by the application of low voltage.

次に、電圧比較手段3及び基準電圧部4Aを具備した低
電圧検出回路部2Aとしては、電源部IAの各電池列1
a〜1cからの印加電圧と基準電圧との関係を選定する
ことにより、幾通りかの異なる回路構成が可能である。
Next, as the low voltage detection circuit section 2A equipped with the voltage comparison means 3 and the reference voltage section 4A, each battery row 1 of the power supply section IA is
By selecting the relationship between the applied voltages from a to 1c and the reference voltage, several different circuit configurations are possible.

例えば第2図及び第3図は、それぞれ異なる低電圧検出
回路部2B及び2Cの例を具体的に示したもので、何れ
もN1図に示す低電圧検出回路部2人に置換できるもの
である。
For example, FIGS. 2 and 3 specifically show examples of different low voltage detection circuit sections 2B and 2C, and both can be replaced with the two low voltage detection circuit sections shown in Diagram N1. .

先ず、第2図に示す低電圧検出回路部2Bは。First, the low voltage detection circuit section 2B shown in FIG.

各電池列1a〜ICの各個に対応して設けられた電圧比
較素子12a〜12cを有し1各電圧比較素子12a〜
12cの入力側には基準電圧部4Bか接続され、他方、
出力側には多入力論理和回路部9か接続されている。こ
のような構成による低電圧検出回路2Bでは、基準電圧
部4Bから専用の電池によって基準電圧が各電圧比較素
子12a〜12(に印加され、各信号線からは各電池列
1a〜ICからの印加電圧が入力される。ここで。
Voltage comparison elements 12a to 12c are provided corresponding to each of the battery rows 1a to IC.
The reference voltage section 4B is connected to the input side of 12c, and on the other hand,
A multi-input OR circuit section 9 is connected to the output side. In the low voltage detection circuit 2B having such a configuration, a reference voltage is applied from the reference voltage unit 4B to each voltage comparison element 12a to 12 (by a dedicated battery), and from each signal line, a reference voltage is applied from each battery row 1a to the IC. Voltage is input here.

基準電圧部4Bから与えられる基準電圧は各電池列1a
〜ICで発生する電圧よりも若干低い電圧に設定されて
いる。 従って、各電圧比較素子12a〜12cては、
各電池列1 a −c毎に印加電圧と基準電圧とが比較
され印加電圧が基準電圧よりも降下した場合、各電池列
1a〜IC毎に低電圧状態を示す検出信号P2を出力す
る。このとき多入力論理和回路部9は、各電池列13〜
ICに対応する何れの電圧比較素子12a〜12Cから
検出信号P2か送出された場合においても、端子Cへこ
の検出信号P2を出力することができる。
The reference voltage given from the reference voltage section 4B is applied to each battery row 1a.
~The voltage is set to be slightly lower than the voltage generated by the IC. Therefore, each voltage comparison element 12a to 12c is
The applied voltage and the reference voltage are compared for each battery row 1a-c, and when the applied voltage falls below the reference voltage, a detection signal P2 indicating a low voltage state is output for each battery row 1a-IC. At this time, the multi-input OR circuit section 9 connects each battery row 13 to
The detection signal P2 can be outputted to the terminal C even when the detection signal P2 is sent out from any of the voltage comparison elements 12a to 12C corresponding to the IC.

この構成によって9信号系の簡素化を図ることか可能に
なる。
This configuration makes it possible to simplify the nine-signal system.

一方、第3図に示す低電圧検出回路部2Cは。On the other hand, the low voltage detection circuit section 2C shown in FIG.

各信号線に接続された入力切替部10と、この入力切替
部10に接続された電圧比較器8とによって大別的に構
成されている。このうち、入力切替部10は、各電池列
1a〜ICの一端から引き出された各信号線と電圧比較
器8との間に介挿された3個の入力切替スイッチ部54
a−S4cと。
It is roughly configured by an input switching section 10 connected to each signal line and a voltage comparator 8 connected to this input switching section 10. Of these, the input switching unit 10 includes three input changeover switch units 54 inserted between the voltage comparator 8 and each signal line drawn out from one end of each battery row 1a to IC.
a-S4c and.

これら各入力切替スイッチ部54a−54cを同期信号
を伝送することで順次時分割的にオンオフするために、
各人力切替スイッチ部84 a −S 4Cのそれぞれ
に接続された同期回路部11とによって構成されている
。又、電圧比較器8は、各電池列1a〜ICより選定さ
れた電池列からの印加電圧と共に、専用の電池を具備す
る基準電圧部4Bから伝送される電池列単位相当の電圧
以下に設定された基準電圧を入力し、印加電圧が基準電
圧よりも降下した時に選定された電池列の低電圧状態を
検出信号P3の出力で検出するものである。
In order to sequentially turn on and off the input selector switches 54a to 54c in a time-sharing manner by transmitting a synchronization signal,
The synchronous circuit section 11 is connected to each of the manual changeover switch sections 84a-S4C. In addition, the voltage comparator 8 is set to a voltage equal to or lower than the applied voltage from the battery row selected from each of the battery rows 1a to IC and the voltage equivalent to the battery row unit transmitted from the reference voltage section 4B equipped with a dedicated battery. When the applied voltage drops below the reference voltage, the low voltage state of the selected battery row is detected by outputting a detection signal P3.

即ち、かかる構成による低電圧検出回路2Cでは、同期
回路部11からの同期信号により各電池列1a〜1cの
うちの検出されるべき電池列を選定した上で、その電池
列の低電圧状態を時分割的に検出することかできる。
That is, the low voltage detection circuit 2C having such a configuration selects the battery row to be detected from among the battery rows 1a to 1c based on the synchronization signal from the synchronization circuit section 11, and then detects the low voltage state of the battery row. It can be detected in a time-division manner.

このように、低電圧検出回路2B又は2Cを具備した直
流電源装置では、電源部IAの各電池列1a〜ICの印
加電圧が低電圧状態にあるか否かを監視した後、電子機
器部7Aに対して電源電圧の印加を行う。従って、各電
池列1a〜1c内のそれぞれの電池列に生し得る逆充電
や過放電による電子機器部7Aに対する悪影響を事前に
検出することかできると共に、必要に応して電源電圧の
印加をスイッチ部Slで遮断することにより電子機器部
7Aを高い安全性で保護することができる。
In this way, in the DC power supply device equipped with the low voltage detection circuit 2B or 2C, after monitoring whether the applied voltage of each battery row 1a to IC of the power supply section IA is in a low voltage state, the electronic device section 7A Apply power supply voltage to. Therefore, it is possible to detect in advance the adverse effects on the electronic device section 7A due to reverse charging or overdischarging that may occur in each of the battery rows 1a to 1c, and to control the application of power supply voltage as necessary. The electronic device section 7A can be protected with high safety by shutting off the switch section Sl.

しかし1本発明の直流電源装置は、電源部IAで得られ
る各電池列1a〜1cの全電圧を電子機器部7Aに対す
る電源電圧としても、低電圧検出回路2B又は2Cが具
備する基準電圧部4Bの基準電圧はその全電圧に基づい
て設定されていない。
However, in the DC power supply device of the present invention, the reference voltage section 4B included in the low voltage detection circuit 2B or 2C can be used even if the total voltage of each battery array 1a to 1c obtained in the power supply section IA is used as the power supply voltage for the electronic device section 7A. The reference voltage of is not set based on its total voltage.

換言すれば、上述した如く基準電圧は電源部IAの電池
列単位相当の電圧よりも低めに設定されている。これは
電圧放電特性がまちまちな電池で構成された電池列の組
合わせによる電源部の低電圧状態を適確に検出できるよ
うにするためである。
In other words, as described above, the reference voltage is set to be lower than the voltage corresponding to the battery array unit of the power supply section IA. This is to enable accurate detection of a low voltage state of the power supply unit caused by a combination of battery arrays made up of batteries with different voltage discharge characteristics.

一般に電池を電源部として使用した直流電源装置におい
ては、使用時間の相違等により電池の電圧放電特性にば
らつきがあると、電源部の始動時の電源電圧が固有の使
用時間において急激に電圧降下を生じるようになる。こ
の為、複数の電池で構成される電源部の低電圧状態を適
確に検出することは困難になる。
In general, in DC power supplies that use batteries as the power supply, if there are variations in the voltage discharge characteristics of the batteries due to differences in usage time, the power supply voltage at the time of starting the power supply will drop suddenly during the specific usage time. It begins to occur. For this reason, it becomes difficult to accurately detect a low voltage state of a power supply section composed of a plurality of batteries.

そこで1本発明の直流電源装置は、第4図の電源部IA
の電圧放電特性に示す如く、電子機器部7Aに対する電
源電圧を電圧放電線V(IA)に示す電源部IAの全電
圧V、とし、基準電圧を電源部1Aに関する電池列単位
相当の電圧V、/3よりも幾分低めのV ′/3に設定
している。尚。
Therefore, in the DC power supply device of the present invention, the power supply section IA shown in FIG.
As shown in the voltage discharge characteristics, the power supply voltage for the electronic device section 7A is the total voltage V of the power supply section IA shown by the voltage discharge line V (IA), and the reference voltage is the voltage V corresponding to the battery row unit regarding the power supply section 1A. It is set to V'/3, which is somewhat lower than V'/3. still.

図示の電圧V ′は全電圧V、よりも降下された状態に
仮定した電圧である。ところで、基準電圧部4Bにおい
て基準電圧v ′/3を得ることは容易であり1例えば
抵抗等で電圧V、/3を降下させるようにすれば良い。
The illustrated voltage V' is a voltage assumed to be lower than the total voltage V. By the way, it is easy to obtain the reference voltage v'/3 in the reference voltage section 4B, and the voltage V,/3 may be lowered using, for example, a resistor.

このような基準電圧v ′/3を基準電圧部4Bに設定
しておくと、各電池列1a〜ICのそれぞれの電圧放電
特性が第4図に示す電圧放電線V(la)、V (lb
)、V C1c)の如くまちまちな状態にあっても1時
点t1で最初に最も放電の短い電池列1aの低電圧状態
を検出することかできる。即ち、電源部IAの電圧放電
特性は始動時間Tに対して電圧レベルVの降下として相
関性を示すので2時点t1に電池列1aが示す電圧レベ
ルV   /3を基準電圧に設定しておくことは最も放
電時間の短い電池列の低電圧状態を最初に検出できるよ
うにすることになる。
When such a reference voltage v'/3 is set in the reference voltage section 4B, the voltage discharge characteristics of each battery array 1a to IC are determined by voltage discharge lines V(la) and V(lb) shown in FIG.
), V C1c), it is possible to first detect the low voltage state of the battery row 1a with the shortest discharge at one point in time t1. That is, since the voltage discharge characteristic of the power supply section IA shows a correlation as a drop in the voltage level V with respect to the starting time T, the voltage level V/3 shown by the battery array 1a at the second time t1 should be set as the reference voltage. This makes it possible to first detect the low voltage state of the battery string with the shortest discharge time.

又、参照として示す時点t2は、第6図で示した従来の
直流電源装置に具備された低電圧検出回路5で電源部I
Aの低電圧状態を検出した場合を示すものである。この
低電圧検出回路5によれば。
Also, at the time t2 shown as a reference, the low voltage detection circuit 5 included in the conventional DC power supply shown in FIG.
This shows a case where a low voltage state of A is detected. According to this low voltage detection circuit 5.

基準電圧を電源部IAの全電圧vLに基づいて設定して
いる為、最も放電が短い電池列1aの電圧降下時の時点
t1ではなく、電池列1bの電圧降下時の時点t2で最
初に電源部IAの低電圧状態を検出してしまうことにな
る。即ち、従来の低電圧検出回路部5を用いた場合には
1時点t2より時点t1までの時間差で電池列1aに逆
充電や過放電を生ずる危険がある。
Since the reference voltage is set based on the total voltage vL of the power supply unit IA, the power supply is first turned on at time t2 when the voltage of the battery row 1b drops, not at the time t1 when the voltage drops in the battery row 1a, which has the shortest discharge. This results in the detection of a low voltage state in section IA. That is, when the conventional low voltage detection circuit section 5 is used, there is a risk that reverse charging or overdischarging may occur in the battery array 1a due to the time difference from time t2 to time t1.

従って、基準電圧部4Bに基準電圧V′/3を設定した
本発明の直流電源装置が具備する低電圧検出回路部2A
〜2Cは、従来の低電圧検出回路部5とは明らかに異な
る動作を行なっていることがわかる。
Therefore, the low voltage detection circuit section 2A included in the DC power supply device of the present invention in which the reference voltage V'/3 is set in the reference voltage section 4B.
It can be seen that the circuits 2C to 2C operate clearly different from the conventional low voltage detection circuit section 5.

尚1本発明の直流電源装置の電源部IAを構成する電池
列の数や、低電圧検出回路部2B又は2Cが具備する電
圧比較素子、スイッチ部の数は実施例に限定されない。
Note that the number of battery arrays constituting the power supply section IA of the DC power supply device of the present invention and the number of voltage comparison elements and switch sections included in the low voltage detection circuit section 2B or 2C are not limited to those in the embodiment.

(発明の効果) 以上のように本発明の直流電源装置によれば。(Effect of the invention) According to the DC power supply device of the present invention as described above.

電源部を複数の電池列を直列に接続して比較的大きな電
源電圧を得て外部機器部への電源電圧の印加を行い得る
ようにすると共に、各電池列の印加電圧を基準電圧との
間で比較して電源部の低電圧状態を適確かつ高い安定性
をもって検出できるような低電圧検出回路部を具備させ
ている。これにより、電池列に逆充電や過放電を生じて
もその低電圧状態が正確に検出され、外部機器部へ電源
電圧を印加する事前に電源電圧を遮断することができる
ので、外部機器部を安全性高く保護することかできるよ
うになる。逆充電や過放電が防止されるので、電池列内
の電池に生じ得る液漏れ、膨れ発熱等の悪影響を回避す
ることかできる。
In the power supply section, multiple battery rows are connected in series to obtain a relatively large power supply voltage, which can be applied to external equipment, and the voltage applied to each battery row is set between the reference voltage and the reference voltage. The present invention is equipped with a low-voltage detection circuit section that can detect the low-voltage state of the power supply section accurately and with high stability. As a result, even if reverse charging or over-discharging occurs in the battery string, the low voltage state can be accurately detected, and the power supply voltage can be cut off before applying the power supply voltage to the external equipment section. This allows for highly secure protection. Since reverse charging and overdischarging are prevented, it is possible to avoid negative effects such as leakage, swelling, and heat generation that may occur in the batteries in the battery array.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の直流電源装置の基本的な構成を電子機
器部を含めて示す概略図、第2図はその低電圧検出回路
部を具体的に示す図、第3図は別の低電圧検出回路部を
示す図、第4図は本発明の基準電圧の設定を電源部の電
圧放電特性に基づいて説明するために示す図、第5図は
逆充電を従来の直流電源装置の電源部の電圧放電特性に
基づいて説明するために示す図、第6図は従来の低電圧
検出回路部を含む直流電源装置の一例を示す図。 第7図は従来の直流電源装置の基本的な構成を示す図で
ある。 1・・・電源部、2.5・・・低電圧検出回路部、3・
・・電圧比較手段、4・・・基準電圧部、6・・・警報
回路部。 7・・・電子機器部、8・・・電圧比較器、10・・・
入力切替部、11・・・同期回路部、12・・・電圧比
較素子。 第 2図 第3図 第4図 第5図 第6 図 第7図
Fig. 1 is a schematic diagram showing the basic configuration of the DC power supply device of the present invention including the electronic equipment section, Fig. 2 is a diagram specifically showing its low voltage detection circuit section, and Fig. 3 is a diagram showing another low voltage detection circuit section. FIG. 4 is a diagram showing the voltage detection circuit section, FIG. 4 is a diagram for explaining the setting of the reference voltage of the present invention based on the voltage discharge characteristics of the power supply section, and FIG. 5 is a diagram showing the reverse charging of the conventional DC power supply. FIG. 6 is a diagram showing an example of a DC power supply device including a conventional low voltage detection circuit. FIG. 7 is a diagram showing the basic configuration of a conventional DC power supply device. 1...Power supply section, 2.5...Low voltage detection circuit section, 3.
... Voltage comparison means, 4... Reference voltage section, 6... Alarm circuit section. 7... Electronic equipment section, 8... Voltage comparator, 10...
Input switching section, 11... Synchronous circuit section, 12... Voltage comparison element. Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)外部機器に電源電圧を印加する直流電源装置にお
いて、所定数の電池を直列に接続して電池列を構成し、
これら複数個の電池列を直列に接続して電池列群を構成
した電源部と、前記電池列の各個に接続された信号線に
印加される前記電池列からの印加電圧を入力して基準電
圧との間で比較すると共に、前記印加電圧が前記基準電
圧よりも降下したときに前記電源部の低電圧状態を示す
検出信号を出力する低電圧検出回路部と、前記検出信号
が伝送された時に前記外部機器への電源電圧の印加をオ
フにするためのスイッチ回路部とを具備して構成される
ことを特徴とする直流電源装置。
(1) In a DC power supply device that applies power supply voltage to external equipment, a predetermined number of batteries are connected in series to form a battery array,
A power supply section in which a plurality of battery rows are connected in series to form a battery row group, and the applied voltage from the battery row that is applied to the signal line connected to each of the battery rows are inputted to create a reference voltage. a low voltage detection circuit unit that outputs a detection signal indicating a low voltage state of the power supply unit when the applied voltage drops below the reference voltage; A DC power supply device comprising: a switch circuit section for turning off application of power supply voltage to the external device.
(2)前記低電圧検出回路部は、前記電池列群の各電池
列に対応して設けられると共に、前記各電各電池列に対
応して設けられると共に、前記各電池列毎の印加電圧及
び前記電池列単位相当の電圧以下の基準電圧を比較して
前記印加電圧が前記基準電圧よりも降下したときに前記
各電池列毎の低電圧状態を示す検出信号を出力する複数
個の電圧比較素子と、前記検出信号を入力するための多
入力論理和回路部とを備えた請求項1に記載の直流電源
装置。
(2) The low voltage detection circuit section is provided corresponding to each battery row of the battery row group, and is provided corresponding to each battery row of the battery rows, and is configured to detect the applied voltage for each battery row. a plurality of voltage comparison elements that compare reference voltages that are lower than the voltage equivalent to the battery row unit and output a detection signal indicating a low voltage state of each battery row when the applied voltage drops below the reference voltage; The DC power supply device according to claim 1, further comprising: a multi-input OR circuit section for inputting the detection signal.
(3)前記低電圧検出回路部は、前記各信号線に接続さ
れた入力切替部と、前記入力切替部に接続された電圧比
較器とを備え、前記入力切替部は前記各信号線と前記電
圧比較器との間に介挿された複数個の入力切替スイッチ
と、前記各入力切替スイッチを順次分割的にオンオフす
るための同期回路部とによって構成され、前記電圧比較
器は前記電池列群の各電池列より前記同期回路部で選定
された電池列からの印加電圧及び前記電池列単位相当の
電圧以下の基準電圧を比較して前記印加電圧が前記基準
電圧よりも降下した時に前記電池列の低電圧状態を示す
検出信号を出力する請求項1に記載の直流電源装置。
(3) The low voltage detection circuit section includes an input switching section connected to each of the signal lines, and a voltage comparator connected to the input switching section, and the input switching section includes an input switching section connected to each of the signal lines and a voltage comparator connected to the input switching section. The voltage comparator is composed of a plurality of input changeover switches inserted between the voltage comparator and a synchronous circuit section for sequentially and dividedly turning on and off each of the input changeover switches, and the voltage comparator is connected to the battery row group. The applied voltage from each battery row selected by the synchronous circuit section and a reference voltage below the voltage equivalent to the battery row unit are compared, and when the applied voltage drops below the reference voltage, the battery row is determined. The DC power supply device according to claim 1, wherein the DC power supply device outputs a detection signal indicating a low voltage state.
JP20395590A 1990-08-02 1990-08-02 Dc power supply Pending JPH0491620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20395590A JPH0491620A (en) 1990-08-02 1990-08-02 Dc power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20395590A JPH0491620A (en) 1990-08-02 1990-08-02 Dc power supply

Publications (1)

Publication Number Publication Date
JPH0491620A true JPH0491620A (en) 1992-03-25

Family

ID=16482433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20395590A Pending JPH0491620A (en) 1990-08-02 1990-08-02 Dc power supply

Country Status (1)

Country Link
JP (1) JPH0491620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678464A (en) * 1992-08-27 1994-03-18 Hitachi Ltd Collected battery system
JPH08322160A (en) * 1995-05-24 1996-12-03 Yamaha Motor Co Ltd Overdischarging prevention unit for battery set
JP2021035173A (en) * 2019-08-26 2021-03-01 沖電気工業株式会社 Power circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678464A (en) * 1992-08-27 1994-03-18 Hitachi Ltd Collected battery system
JPH08322160A (en) * 1995-05-24 1996-12-03 Yamaha Motor Co Ltd Overdischarging prevention unit for battery set
JP2021035173A (en) * 2019-08-26 2021-03-01 沖電気工業株式会社 Power circuit

Similar Documents

Publication Publication Date Title
US7453236B2 (en) Battery pack of automatically setting master and slave pack, multi-battery pack system including the same and method for controlling the same
JP5235481B2 (en) Power supply for vehicle
JP3749538B2 (en) Battery unit and device using battery unit
JP3886389B2 (en) Battery pack charging device and charging method
US7638976B2 (en) Lithium ion battery and method of power conservation for the same
JPH07154924A (en) Battery usage system for portable electronic device
KR20170022162A (en) Multi battery pack apparatus and method of controlling the same
CN101465557A (en) Portable device and battery pack for the same
KR20070101496A (en) The monitering system for charging and discharging lithium rechargable battery pack
JPH06276696A (en) Over-discharge protective circuit of secondary battery
US7012407B2 (en) Charging and discharging control circuit and charging type power supply unit
JP2008278668A (en) Battery system, battery system control method, battery system control program, and program recording medium
JP2008067520A (en) Power supply unit
JPH0956056A (en) Secondary-battery power unit, protective circuit, and method for protecting secondary battery from being abnormally charged
CN101662048B (en) Battery pack and combination of battery pack and electric device
JP2007330045A (en) Dc power system, test method therefor, and program for implementing test method therefor
JPH11332116A (en) Charging/discharging control circuit and charging-type power supply device
KR102082382B1 (en) Multi battery pack apparatus and control method for charging the same
KR102546821B1 (en) Battery test system
US8138719B2 (en) Battery state monitoring circuit and battery device
JPH0491620A (en) Dc power supply
JP2004229391A (en) Battery pack
KR102117315B1 (en) Battery apparatus
US9680322B2 (en) Compulsory charging and protective circuit for secondary battery after being over discharged
JP2001028844A (en) Life detection method and life monitoring device for auxiliary power supply of backup-type power supply device