JPH049018B2 - - Google Patents

Info

Publication number
JPH049018B2
JPH049018B2 JP54113901A JP11390179A JPH049018B2 JP H049018 B2 JPH049018 B2 JP H049018B2 JP 54113901 A JP54113901 A JP 54113901A JP 11390179 A JP11390179 A JP 11390179A JP H049018 B2 JPH049018 B2 JP H049018B2
Authority
JP
Japan
Prior art keywords
current
signal
filter
power supply
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54113901A
Other languages
Japanese (ja)
Other versions
JPS5638938A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11390179A priority Critical patent/JPS5638938A/en
Publication of JPS5638938A publication Critical patent/JPS5638938A/en
Publication of JPH049018B2 publication Critical patent/JPH049018B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 この発明は、負荷により電源系統に発生される
高調波歪を補償する波形補償装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveform compensation device that compensates for harmonic distortion generated in a power supply system by a load.

近年、負荷等に半導体スイツチ制御装置が使用
されるようになつて電源系統における高調波歪発
生が問題になつて来た。例えば、第4図に示すよ
うに、交流電源ACに整流回路が接続されるとき
に、電源周期に一致する方形波電流ILが流れる。
これを解決するために従来から電源と負荷間に
L、Cフイルタを用いて制御することが行われて
いる。L、Cフイルタは高調波次数に合わせて共
振分路の形で使用されることが多いが、このL、
Cフイルタは電圧歪を補正するためのものである
ため、波形の改善度合は満足するものではなかつ
た。また、L、Cフイルタは大形であるため、装
置全体が大形化する欠点もある。
In recent years, as semiconductor switch control devices have come to be used for loads and the like, harmonic distortion in power supply systems has become a problem. For example, as shown in FIG. 4, when a rectifier circuit is connected to an alternating current power supply AC, a square wave current I L that matches the power supply cycle flows.
To solve this problem, control has conventionally been carried out using L and C filters between the power supply and the load. L and C filters are often used in the form of resonant shunts according to the harmonic order;
Since the C filter is for correcting voltage distortion, the degree of waveform improvement was not satisfactory. Furthermore, since the L and C filters are large in size, there is also the drawback that the entire device becomes large in size.

上記の欠点を除去するために、能動素子を持つ
電力変換器を用いた高調波フイルタを使用するこ
とにより、電圧及び電流歪を高精度で補償でき、
しかも小形に製作できる波形補償装置を本願出願
人は既に提案している(特開昭55−139031号公
報)。
In order to eliminate the above drawbacks, voltage and current distortion can be compensated with high precision by using a harmonic filter using a power converter with active elements.
Moreover, the applicant of the present application has already proposed a waveform compensation device that can be manufactured in a small size (Japanese Patent Laid-Open No. 139031/1983).

この発明は、能動素子を用いた高調波フイルタ
による波形補償装置において、負荷の高調波電流
レベル変化に拘らず最適の補償電流を供給できる
ようにした波形補償装置を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a waveform compensator using a harmonic filter using an active element, which can supply an optimal compensation current regardless of changes in the harmonic current level of a load.

以下、図面を参照してこの発明の一実施例を説
明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、1は交流電源、2は高調波発
生源である負荷、3は線路、4〜7は電力変換器
である。4は高調波除去用LCフイルタで、この
フイルタ4の一端は線路3に並列接続され、他端
はトランス5の第1巻線5aに接続される。トラ
ンス5の第2巻線5bは中点5cを有し、巻線5
bの両端には自己消弧形半導体素子6a,6bの
アノードが接続され、カソード側は共通接続され
る。7は直流電源になる直流リアクトルで、この
直流リアクトル7には並列に自己消弧形半導体素
子6cが接続され、その一端は第2巻線5bの中
点5cに接続され、他端は前記素子6a,6bの
カソード側の共通接続点に接続される。8は負荷
電流iLの検出器、9は直流電流iDの検出器である。
In FIG. 1, 1 is an AC power supply, 2 is a load which is a harmonic generation source, 3 is a line, and 4 to 7 are power converters. 4 is a harmonic removal LC filter, one end of which is connected in parallel to the line 3, and the other end connected to the first winding 5a of the transformer 5. The second winding 5b of the transformer 5 has a midpoint 5c, and the winding 5
The anodes of the self-arc-extinguishing semiconductor elements 6a and 6b are connected to both ends of b, and the cathodes thereof are commonly connected. Reference numeral 7 denotes a DC reactor that serves as a DC power source. A self-arc-extinguishing semiconductor element 6c is connected in parallel to this DC reactor 7, one end of which is connected to the midpoint 5c of the second winding 5b, and the other end connected to the element. It is connected to a common connection point on the cathode side of 6a and 6b. 8 is a detector for load current i L , and 9 is a detector for DC current i D.

前記電力変換器の自己消弧形半導体素子6a,
6bは以下に説明する制御回路の出力によりパル
ス幅制御され、半導体素子6cは6a,6bがオ
フ制御されるときに同時にオン制御されてトラン
ス5に不要な電流を流さないようにされる。
a self-extinguishing semiconductor element 6a of the power converter;
The pulse width of 6b is controlled by the output of a control circuit described below, and the semiconductor element 6c is turned on at the same time as 6a and 6b are turned off, so that unnecessary current does not flow through the transformer 5.

負荷電流検出器8の出力は基本波のみを阻止す
るバンドリジエクトフイルタ10を介して負荷2
の高調波電流iLRが取出される。この高調波電流
iLRは設定値決定回路11の入力にされ、そのレ
ベルに応じた直流電流iDの設定値iSが設定値決定
回路11から取出される。この設定値iSとしては
電流信号iLRの実効値のピーク値にされる。設定
値iSは直流電流検出器9の出力iDと比較され、両
信号の直流レベルの差分(波形補償用電流差分)
が取出され、この信号は乗算器12の第1入力Y
にされる。この乗算器12の第2入力にはフイル
タ4を通した位置で取出された電源1の電圧に同
期した信号Xが与えられ、乗算器12からは補償
用電流差分(iD−iS)に電源1の極性も含めた出
力が取出される。この出力は電源1の基本周波数
帯に通過帯域を持つバンドパスフイルタ12Aを
通して直流リアクトル7に流す直流電流制御信号
SDが取出される。ここで、バンドパスフイルタ1
2Aは電流iDを制御することによつて電源電流ii
に高調波電流が流れるのを防ぐためのものであ
る。
The output of the load current detector 8 is sent to the load 2 via a band reject filter 10 that blocks only the fundamental wave.
The harmonic current i LR of is extracted. This harmonic current
iLR is input to the set value determining circuit 11, and the set value iS of the DC current iD corresponding to its level is taken out from the set value determining circuit 11. This set value i S is set to the peak value of the effective value of the current signal i LR . The set value i S is compared with the output i D of the DC current detector 9, and the difference between the DC levels of both signals (current difference for waveform compensation) is calculated.
is taken out, and this signal is input to the first input Y of the multiplier 12.
be made into The second input of this multiplier 12 is given a signal An output including the polarity of the power source 1 is taken out. This output is a DC current control signal that is passed to the DC reactor 7 through a bandpass filter 12A that has a passband in the fundamental frequency band of the power supply 1.
S D is taken out. Here, bandpass filter 1
2A is the power supply current i i by controlling the current i D
This is to prevent harmonic current from flowing to the

一方、負荷の高調波電流iLRと直流電流iDとは除
算器13に入力され、両電流の比iLR/iDが演算さ
れた信号SR(補償信号)が取出される。この除算
器13は、電流iDによつて補償電流のゲイン(電
流iLRのレベルに対する電流iDのレベル比)が変化
するのを避け、ゲインを一定に保つためのもので
ある。このゲイン一定は後述のように不要な高調
波発生を少なくする。
On the other hand, the harmonic current i LR of the load and the DC current i D are inputted to a divider 13, and a signal S R (compensation signal) obtained by calculating the ratio i LR /i D of both currents is taken out. This divider 13 is provided to prevent the gain of the compensation current (the ratio of the level of the current iD to the level of the current iLR ) from changing due to the current iD, and to keep the gain constant. This constant gain reduces the generation of unnecessary harmonics, as will be described later.

補償電流信号SRと前記の直流電流信号SDとは加
算され、コンパレータ14の比較入力信号Sにさ
れる。コンパレータ14の比較基準は電源1に同
期した三角波信号を出力する三角波発生器15か
ら与えられ、コンパレータ14からは信号Sのレ
ベル及び極性に応じたパルス幅変調PWM信号が
取出される。このPWM信号はロジツク回路16
に入力され、電源1の周波数に同期したゲート信
号が取出される。このゲート信号はゲート回路1
7で適当に増幅されて自己消弧形半導体素子6
a,6b,6cのオン・オフ制御信号にされる。
なお、三角波発生器15は例えばフエーズロツク
ループ(PLL)により電源1と同期をとり、電
源1の周波数の整数倍の周波数を持つ三角波を発
生する。
The compensation current signal S R and the above-mentioned DC current signal S D are added and used as a comparison input signal S of the comparator 14 . A comparison standard for the comparator 14 is provided by a triangular wave generator 15 that outputs a triangular wave signal synchronized with the power supply 1, and a pulse width modulated PWM signal corresponding to the level and polarity of the signal S is taken out from the comparator 14. This PWM signal is applied to the logic circuit 16.
A gate signal synchronized with the frequency of the power source 1 is taken out. This gate signal is gate circuit 1
7, the self-arc-extinguishing semiconductor element 6
It is used as an on/off control signal for a, 6b, and 6c.
Note that the triangular wave generator 15 is synchronized with the power source 1 by, for example, a phase lock loop (PLL), and generates a triangular wave having a frequency that is an integral multiple of the frequency of the power source 1.

こうした構成の補償装置の動作を第2図に示す
各部波形図を参照して説明する。
The operation of the compensation device having such a configuration will be explained with reference to the waveform diagram of each part shown in FIG.

負荷2が第4図に示す整流回路とすると、負荷
電流iLは第2図aに示すように歪んだ方形波電流
になる。この歪電流に対し、交流電源1からの電
流iiが第2図aに示すように正弦波になる場合と
の差分(歪分)は第2図bに示すようになる。こ
の差分は高調波電流iLRとしてバンドリジエクト
フイルタ10で検出され、また該差分の波形の逆
極性の電流を第2図bに示す補償電流I0として流
すことで電流iiが正弦波形になる。
When the load 2 is a rectifier circuit shown in FIG. 4, the load current i L becomes a distorted square wave current as shown in FIG. 2a. The difference (distortion) between this distorted current and the case where the current i i from the AC power source 1 becomes a sine wave as shown in FIG. 2a is as shown in FIG. 2b. This difference is detected by the band reject filter 10 as a harmonic current i LR , and by flowing a current with the opposite polarity of the waveform of the difference as a compensation current I 0 shown in FIG. 2b, the current i i becomes a sinusoidal waveform. Become.

補償電流I0の発生には、直流リアクトル7を一
定電流iDを流す電流源とし、半導体素子6a,6
b,6cのパルス幅制御でなされる。即ち、補償
電流I0の正極性期間TPでは該期間のレベルに比例
したパルス幅になるPWM波形に従つて半導体素
子6aをオン・オフ制御し、同様に負極性期間
TNでは半導体素子6bをPWM波形に従つてオ
ン・オフ制御し、トランス5の巻線5a又は5b
には第2図gに示すようなPWM波形の電流を得
る。この電流をフイルタ4を通すことでPWM波
形から三角波に含まれる高調波分を取除いた電流
I0を得る。
To generate the compensation current I0 , the DC reactor 7 is used as a current source that flows a constant current iD , and the semiconductor elements 6a, 6
This is done by pulse width control of b and 6c. That is, during the positive polarity period TP of the compensation current I0 , the semiconductor element 6a is controlled on/off according to the PWM waveform with a pulse width proportional to the level of the period, and similarly during the negative polarity period
At T N , the semiconductor element 6b is on/off controlled according to the PWM waveform, and the winding 5a or 5b of the transformer 5 is
In this case, a current with a PWM waveform as shown in Figure 2g is obtained. This current is passed through filter 4 to remove harmonics included in the triangular wave from the PWM waveform.
I get 0 .

ここで、半導体素子6a又は6bのオフ期間に
は半導体素子6cをオンさせ直流リアクトル7の
電流を半導体素子6cを通したループで流しつづ
けると共にトランス5を通して電源側に不要な高
調波電流が流れるのを防止する。また、フイルタ
4は、例えば第3図に示すように、リアクトルL
とコンデンサCを持つ1段のLCフイルタ構成に
よつてPWM波形に含まれる三角波の周波数成分
を取除き、補償電流I0の波形を得る。
Here, during the off period of the semiconductor element 6a or 6b, the semiconductor element 6c is turned on, and the current of the DC reactor 7 continues to flow in a loop through the semiconductor element 6c, and unnecessary harmonic current flows through the transformer 5 to the power supply side. prevent. Further, the filter 4 is connected to a reactor L as shown in FIG. 3, for example.
A one-stage LC filter having a capacitor C and a triangular wave frequency component included in the PWM waveform is removed to obtain the waveform of the compensation current I0 .

次に、高調波電流iLRに従つたPWM波形の発生
を説明する。除算器13においては高調波電流
iLRを直流電流iDの大きさで除算することで直流電
流iDに対する比率を一定にする。除算器13の出
力SRはiDとの比率が1で信号SDが零とすると信号
Sに一致し、第2図eに示すように信号SRは補償
電流I0に一致した波形になる。この信号Sに対
し、コンパレータ14では第2図fに示すように
電源1に同期した三角波信号との比較をし、その
出力には第2図gに示すPWM波形を得る。ロジ
ツク回路16は該PWM波形から半導体素子6
a,6b,6cのオンパルスを生成し、ゲート回
路17は該オンパルスを夫々電力増幅して半導体
素子6a,6b,6cのゲートパルスを発生す
る。
Next, the generation of a PWM waveform according to the harmonic current i LR will be explained. In the divider 13, the harmonic current
By dividing i LR by the magnitude of the DC current i D , the ratio to the DC current i D is made constant. If the ratio of the output S R of the divider 13 to i D is 1 and the signal S D is zero, it will match the signal S, and as shown in Figure 2e, the signal S R will have a waveform that matches the compensation current I 0 . Become. The comparator 14 compares this signal S with a triangular wave signal synchronized with the power supply 1 as shown in FIG. 2f, and the PWM waveform shown in FIG. 2g is obtained as the output. The logic circuit 16 detects the semiconductor element 6 from the PWM waveform.
The gate circuit 17 generates on-pulses for the semiconductor elements 6a, 6b, and 6c, and amplifies the power of the on-pulses, respectively, to generate gate pulses for the semiconductor elements 6a, 6b, and 6c.

ここで、除算器13による除算は、直流リアク
トル7の電流値iDに対して一定比率(ゲイン一
定)にするもので、これは三角波発生器15の三
角波信号ピークレベルに対する信号Sのピーク値
を常に一定比率にする。これにより、コンパレー
タ14のPWM波形発生、即ちPWM変調におけ
る変調率が高調波電流iLRのレベル変化に拘らず
一定となり、第2図fに示すように三角波信号の
ピーク値に近い信号S=(=SR)のピーク値を与
えることで一定かつ、高い変調率になる。この変
調率を高くすることにより、変調後のPWM形に
は三角波(搬送波)の周波数に起因する不要な高
調波成分の含有率を小さくする。これにより、フ
イルタ4を第3図構成のように1段のLCフイル
タにするなど簡単化して高調波成分を除去でき
る。この点、特開昭55−139031号公報のものは除
算器を持たず、変調率が変化する。
Here, the division by the divider 13 is to set a constant ratio (gain constant) to the current value i D of the DC reactor 7, and this means that the peak value of the signal S with respect to the triangular wave signal peak level of the triangular wave generator 15 is Always maintain a constant ratio. As a result, the PWM waveform generation of the comparator 14, that is, the modulation rate in PWM modulation becomes constant regardless of the level change of the harmonic current iLR , and as shown in FIG. 2f, the signal S=( =S R ) gives a constant and high modulation rate. By increasing this modulation rate, the content rate of unnecessary harmonic components caused by the frequency of the triangular wave (carrier wave) is reduced in the PWM form after modulation. Thereby, harmonic components can be removed by simplifying the filter 4, such as by using a one-stage LC filter as shown in the configuration shown in FIG. In this respect, the device disclosed in Japanese Patent Application Laid-Open No. 55-139031 does not have a divider, and the modulation rate changes.

次に、直流リアクトル7に確保する電流iDは高
調波電流iLRの大きさに応じて乗算器12とフイ
ルタ12Aの経路で制御される。設定値決定回路
11では高調波電流iLRの実効値のピーク値を電
流iDの設定値iSとして得る。この設定値iSは第2図
cに示すように、高調波電流iLR全波整流して直
流に変換し、そのピーク値として設定することで
高調波電流iLRの最大レベルに見合つた補償電流I0
を発生できるようにする。
Next, the current i D secured in the DC reactor 7 is controlled by the path between the multiplier 12 and the filter 12A according to the magnitude of the harmonic current i LR . The set value determination circuit 11 obtains the peak value of the effective value of the harmonic current i LR as the set value i S of the current i D. As shown in Fig. 2c, this set value i S is compensated according to the maximum level of the harmonic current i LR by full-wave rectifying the harmonic current i LR and converting it to direct current, and setting it as its peak value . Current I 0
to occur.

設定値iSに対するフイードバツク信号として直
流リアクトル7の電流iDが突合され、その偏差に
応じて直流リアクトル7の電流増減制御を行う。
この電流増減制御には補償電流I0のバイアス分SD
として信号SRに加算され、半導体素子6A,6b
のPWM波形のパルス幅増減分として加えられ、
電源1からトランス5を通した電流供給でなされ
る。
The current i D of the DC reactor 7 is compared as a feedback signal with respect to the set value i S , and the current increase/decrease of the DC reactor 7 is controlled according to the deviation.
For this current increase/decrease control, the bias amount S D of the compensation current I 0 is
is added to the signal S R as
is added as the pulse width increment/decrement of the PWM waveform,
This is done by supplying current from a power source 1 through a transformer 5.

このとき、電源1からトランス5に供給する電
流は該電源1の電圧位相に一致させるよう乗算器
12で電源電圧信号を偏差(iD−iS)に乗算する。
この電源電圧信号にはPWM波形成分及び高調波
電流iLRが含まれることから、バンドパスフイル
タ12Aにおいて電源1の基本波成分を取出して
信号SDとして得る。第2図dには偏差がある場合
の信号SDを示し、この信号SDが除算器13の出力
SRに加算され、この加算結果になる信号S(第2
図e及びf参照)がコンパレータ14の入力にな
る。
At this time, the multiplier 12 multiplies the power supply voltage signal by the deviation (i D -i S ) so that the current supplied from the power supply 1 to the transformer 5 matches the voltage phase of the power supply 1 .
Since this power supply voltage signal includes a PWM waveform component and a harmonic current iLR , the fundamental wave component of the power supply 1 is extracted in the bandpass filter 12A and obtained as a signal S D. Figure 2d shows the signal S D when there is a deviation, and this signal S D is the output of the divider 13.
The signal S ( second
(see Figures e and f) are the inputs of the comparator 14.

従つて、直流リアクトルの電流iDのレベルに対
し、高調波電流iLRのピークレベルの大小によつ
て該電流iDが調節され、高調波電流iLRのピーク値
の変化に見合つた補償電流I0を供給できるよう電
流iDが制御され、定常状態ではiLRのピーク値がiD
に一致し、信号SDは零になる。また、乗算器12
による乗算は電源電圧位相に合せて半導体素子6
a,6bをオン・オフ制御するためのものであ
る。ここで、フイルタ12Aを通すことで電源1
の基本波成分を取出すことは、高調波成分を除去
し、電流iDの制御のために電源1側に不要な高調
波成分が発生するのを防止する。この点、特開昭
55−139031号公報のものはゼロクロス点を立上
り、立下りとする方形波を電源電圧位相に一致す
る信号とし、これを乗算器14で乗算するため信
号SDとしては高調波成分を含む信号になり、電源
1側に不要な高調波成分を発生させる。
Therefore, the current i D is adjusted depending on the peak level of the harmonic current i LR with respect to the level of the DC reactor current i D , and the compensation current is adjusted to match the change in the peak value of the harmonic current i LR . Current i D is controlled to supply I 0 , and in steady state the peak value of i LR is i D
, and the signal S D becomes zero. Also, the multiplier 12
The multiplication by the semiconductor element 6 is performed according to the power supply voltage phase.
This is for controlling on/off of a and 6b. Here, by passing the filter 12A, the power supply 1
Extracting the fundamental wave component removes harmonic components and prevents unnecessary harmonic components from being generated on the power supply 1 side for controlling the current iD . On this point, Tokukai Akira
55-139031 uses a square wave with rising and falling points at the zero crossing point as a signal that matches the power supply voltage phase, and multiplies this in the multiplier 14, so the signal S D is a signal containing harmonic components. This causes unnecessary harmonic components to be generated on the power supply 1 side.

従つて、この発明によれば、直流電流iDを負荷
電流iLの高調波成分iLRに応じて変化させ、しかも
iLRをiDにより除算した補償信号とするため、直流
電流iDに対する高調波成分iLRの比率が一定にな
り、負荷の高調波電流変化に追随した補償電流を
供給即ち装置の電力損失を少なくし効率を高める
ことができると共に変調率を一定にして不要な高
調波発生を無くすことができる。また、直流を流
すための信号SDは電源1の基本波成分のみを通過
させるバンドパスフイルタを通して得るため、直
流電流iDを流すことによつて電源に高調波電流が
発生するのを防止できる。
Therefore, according to the present invention, the DC current iD is changed according to the harmonic component iLR of the load current iL , and
Since the compensation signal is obtained by dividing i LR by i D , the ratio of the harmonic component i LR to the DC current i D is constant, and a compensation current that follows the harmonic current change of the load is supplied, that is, the power loss of the device is reduced. It is possible to increase the efficiency by keeping the modulation rate constant and eliminate unnecessary harmonic generation. In addition, since the signal S D for flowing DC is obtained through a bandpass filter that passes only the fundamental wave component of power supply 1, it is possible to prevent harmonic current from being generated in the power supply by flowing DC current i D. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の波形補償装置の一実施例を
示すブロツク図、第2図は実施例の各部波形図、
第3図は実施例のフイルタ回路図、第4図は整流
回路負荷の例を示す回路図である。 2……負荷、4……フイルタ、7……直流リア
クトル、8,9……電流検出器、10……バンド
リジエクトフイルタ、11……設定値決定回路、
12……乗算器、13……除算器、14……コン
パレータ、15……三角波発生器、16……ロジ
ツク回路、17……ゲート回路。
FIG. 1 is a block diagram showing an embodiment of the waveform compensation device of the present invention, FIG. 2 is a waveform diagram of each part of the embodiment,
FIG. 3 is a filter circuit diagram of the embodiment, and FIG. 4 is a circuit diagram showing an example of a rectifier circuit load. 2...Load, 4...Filter, 7...DC reactor, 8, 9...Current detector, 10...Bundle reject filter, 11...Set value determination circuit,
12... Multiplier, 13... Divider, 14... Comparator, 15... Triangular wave generator, 16... Logic circuit, 17... Gate circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 電源から負荷に電力を供給している系統にあ
つて該負荷に並列接続された能動素子を持つ電力
変換器から電源波形改善のための補償電流を供給
する波形補償装置において、上記負荷の電流から
高調波電流を検出するバンドリジエクトフイルタ
と、このフイルタの出力から上記電力変換器の直
流電流を設定する設定値決定回路と、この設定値
決定回路の設定値と上記電力変換器の検出直流電
流との差分を電源に同期した信号で取出す乗算器
と、この乗算器の出力から電源の基本周波数成分
のみを取出すバンドパスフイルタと、上記バンド
リジエクトフイルタの出力と上記電力変換器の直
流電流検出値との比を算出する除算器と、この除
算器の算出値と上記バンドパスフイルタの出力と
の加算値と電源に同期した三角波との比較で該加
算値に比例したパルス幅信号を得るコンパレータ
と、このコンパレータの出力パルス信号を上記電
力変換器の能動素子のオン・オフ制御信号にする
ゲート回路とを備えたことを特徴とする波形補償
装置。
1 In a waveform compensation device that supplies a compensation current for improving the power supply waveform from a power converter having an active element connected in parallel to the load in a system that supplies power from a power source to a load, the current of the load is a band reject filter that detects harmonic current from the filter, a set value determination circuit that sets the DC current of the power converter from the output of this filter, and a set value of the set value determination circuit and the detected DC of the power converter. A multiplier that extracts the difference from the current with a signal synchronized with the power supply, a bandpass filter that extracts only the fundamental frequency component of the power supply from the output of this multiplier, and a DC current between the output of the band reject filter and the power converter. A divider that calculates the ratio to the detected value, and a pulse width signal proportional to the added value is obtained by comparing the added value of the calculated value of this divider and the output of the band pass filter with a triangular wave synchronized with the power supply. A waveform compensation device comprising: a comparator; and a gate circuit that converts the output pulse signal of the comparator into an on/off control signal for an active element of the power converter.
JP11390179A 1979-09-04 1979-09-04 Waveform compensator Granted JPS5638938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11390179A JPS5638938A (en) 1979-09-04 1979-09-04 Waveform compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11390179A JPS5638938A (en) 1979-09-04 1979-09-04 Waveform compensator

Publications (2)

Publication Number Publication Date
JPS5638938A JPS5638938A (en) 1981-04-14
JPH049018B2 true JPH049018B2 (en) 1992-02-18

Family

ID=14623990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11390179A Granted JPS5638938A (en) 1979-09-04 1979-09-04 Waveform compensator

Country Status (1)

Country Link
JP (1) JPS5638938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533737B1 (en) * 2014-02-19 2015-07-03 주식회사 일우산업기계 Bed crowning system for cnc press brake

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2669123B2 (en) * 1990-08-03 1997-10-27 松下電器産業株式会社 Electric equipment having power waveform correction function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533737B1 (en) * 2014-02-19 2015-07-03 주식회사 일우산업기계 Bed crowning system for cnc press brake

Also Published As

Publication number Publication date
JPS5638938A (en) 1981-04-14

Similar Documents

Publication Publication Date Title
US10554144B2 (en) Dual voltage and current loop linearization control and voltage balancing control for solid state transformer
US9246398B2 (en) Power converter
US7660135B2 (en) Universal AC high power inveter with galvanic isolation for linear and non-linear loads
US6977827B2 (en) Power system having a phase locked loop with a notch filter
US6771522B2 (en) Inverter parallel operation system
FI90294B (en) Method for adjusting the DC voltage of a rectifier
KR900005427B1 (en) Ac power supply
JPH049018B2 (en)
JPS63167677A (en) Control system for no-interruption power source
JPS61244275A (en) Pwm control voltage type inverter
JPS6035890B2 (en) circuit constant generator
JPH0583953A (en) Output voltage compensating apparatus of uninterruptible power supply equipment
JP2957613B2 (en) Inverter device
JPS6152159A (en) Power source
JP3349213B2 (en) Control circuit of self-control converter
JP3551728B2 (en) AC power regulator
JP5026821B2 (en) Power converter
SU1117793A1 (en) D.c.voltage-to-d.c.converter
JPH01138965A (en) Dc power source device
JPH0713440Y2 (en) AC power supply
Lee et al. Novel sinusoidal pulsewidth modulation schemes for voltage-source inverters with fluctuating input voltage
JP2917383B2 (en) Power supply
RU1791941C (en) Method of control over series resonance voltage inverter with diodes of counter current
SU784032A1 (en) X-ray generator
JPH1175372A (en) Power conversion device and power conversion method