JPH0490003A - Optimum controller - Google Patents

Optimum controller

Info

Publication number
JPH0490003A
JPH0490003A JP20523690A JP20523690A JPH0490003A JP H0490003 A JPH0490003 A JP H0490003A JP 20523690 A JP20523690 A JP 20523690A JP 20523690 A JP20523690 A JP 20523690A JP H0490003 A JPH0490003 A JP H0490003A
Authority
JP
Japan
Prior art keywords
manipulated variable
curved surface
dimensional curve
hyperspace
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20523690A
Other languages
Japanese (ja)
Inventor
Kimio Akazawa
公雄 赤澤
Isao Takami
高見 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20523690A priority Critical patent/JPH0490003A/en
Publication of JPH0490003A publication Critical patent/JPH0490003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To output a manipulated variable, which reduces the operation cost, as an optimum controlled variable by using a superspace curved surface to obtain the operation cost in the overall aspect in consideration of operation states of individual controlled systems. CONSTITUTION:A superspace curved surface supposing means 15 supposes a curved surface formed on a superspace by relations between the manipulated variable and the operation cost. A two-dimensional curve generating means 16 estimates the position on the superspace curved surface in which the manipulated variable obtained by a quasi-optimum controller 14, namely a manipulated variable (c) from a restrictive condition confirming means 13 is placed. The means 16 projects the superspace curved surface supposed by the superspace curved surface supposing means 15 on the two-dimensional curve obtained by one manipulated variable and the operation cost based on the point on the superspace curved surface where the manipulated variable (c) is placed, and the manipulated variable to minimize the operation cost is obtained on this two-dimensional curve. Thus, the manipulated variable to reduce the operation cost is outputted as the optimum controlled variable even if individual controlled systems are inexpensively kept in the status quo.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、火力発電プラントの燃料条件最適運転制御に
適用される他、原子力発電プラント運転制御、製鉄機械
運転制御など運転費用低減化を目的とする制御系全般に
用いられる最適制御装置に関する。
[Detailed Description of the Invention] [Industrial Fields of Application] The present invention is applicable to the optimal operation control of thermal power plants under fuel conditions, and is also intended to reduce operating costs such as nuclear power plant operation control and steel manufacturing machine operation control. This invention relates to an optimal control device used in general control systems.

[従来の技術] 従来の最適制御装置の構成を第3図に示す。従来の最適
制御装置は、操作量更新方向決定手段21、制御更新手
段22、制約条件確認手段23および最適性確認手段2
4から構成される装置操作量更新方向決定手段21は、
操作量を「十」方向(増加方向)または「−」方向(減
少方向)に微小量変化させたときの運転費用を求め、安
くなった方向を更新方向Aと決定する。制御更新手段2
2は、操作量更新方向決定手段21によって決定された
更新方向Aに、予め設定された量だけ操作量を更新した
ときの運転費用を求め、その運転費用と現操作量の運転
費用とを比較し、安くなるときのみ操作量を更新する。
[Prior Art] The configuration of a conventional optimal control device is shown in FIG. The conventional optimal control device includes a manipulated variable update direction determining means 21, a control updating means 22, a constraint checking means 23, and an optimality checking means 2.
The device operation amount update direction determining means 21 consisting of
The operating cost when the operation amount is changed by a minute amount in the "10" direction (increase direction) or the "-" direction (decrease direction) is determined, and the direction in which the operation cost becomes cheaper is determined as the update direction A. Control update means 2
2 determines the operating cost when the manipulated variable is updated by a preset amount in the update direction A determined by the manipulated variable update direction determining means 21, and compares the operating cost with the operating cost of the current manipulated variable. Then, the amount of operation is updated only when the price becomes cheaper.

制約条件確認手段23は、制御更新手段22によって更
新された操作量Bが制約条件を満たすか否かを判断する
The constraint checking means 23 determines whether the manipulated variable B updated by the control updating means 22 satisfies the constraint.

最適性確認手段24は、制御更新手段22より制約条件
を満たす操作量Cを得、その操作ff1Cおよび操作方
向(以下、操作状態と称す)が現在のものと同一か否か
判断し、同一であれば、そのときの操作状態を最適制御
ff1Dとして制御対象に出力し、同一でなければ再度
処理を繰り返す。すなわち、操作量が更新された場合に
は再度操作状態の更新についての処理がなされる。一方
、新たな更新がなければ、前操作状態と同一になるので
、前操作状態が最適制御ff1Dとして出力される。
The optimality checking means 24 obtains the operation amount C that satisfies the constraint from the control updating means 22, judges whether the operation ff1C and the operation direction (hereinafter referred to as the operation state) are the same as the current one, and determines whether the operation ff1C and the operation direction (hereinafter referred to as the operation state) are the same. If there is, the operating state at that time is output to the controlled object as the optimal control ff1D, and if they are not the same, the process is repeated again. That is, when the manipulated variable is updated, the process for updating the operating state is performed again. On the other hand, if there is no new update, the previous operation state will be the same as the previous operation state, so the previous operation state will be output as the optimal control ff1D.

[発明が解決しようとする課題] ところで、i適制御装置は、複数の制御対象について操
作状態の更新を行い、各制御対象に対し、それぞれの最
適制御量を出力する。ここで、従来の最適制御装置では
、制御更新手段22による更新がなされず、その結果、
最適制御量りとして出力される操作状態が現在のものと
変わらない制御対象が複数あった場合に、運転費用が安
くならず、経済的に不利益をもたらす問題があった。
[Problems to be Solved by the Invention] Incidentally, the i-suitable control device updates the operating states of a plurality of control objects, and outputs the respective optimum control amount for each control object. Here, in the conventional optimal control device, the update by the control update means 22 is not performed, and as a result,
When there are a plurality of control targets whose operating states output as the optimum control measure are the same as the current one, there is a problem in that the operating costs are not reduced, resulting in an economic disadvantage.

すなわち、個々の制御対象に対しては現状維持が安いも
のであっても、制御対象を総合的に考えた場合に、まだ
安くなる余地がある。しかしなから、従来の最適制御装
置では、さらに安くすることはできなかった。
That is, even if it is cheaper to maintain the status quo for each controlled object, there is still room for the cost to become cheaper when the controlled objects are considered comprehensively. However, it has not been possible to further reduce the cost using conventional optimal control devices.

本発明は上記のような点に鑑みなされたもので、個々の
制御対象に対して現状維持が安い場合でも、運転費用を
より安くする操作量を最適制御量として出力できる経済
的な最適制御装置を提供することを目的とする。
The present invention has been made in view of the above points, and is an economical optimal control device that can output a manipulated variable that lowers operating costs as an optimal controlled variable even when maintaining the status quo for each controlled object is cheap. The purpose is to provide

[課題を解決するための手段] 本発明に係る最適制御装置は、操作量を増加または減少
させて運転費用が安くなった方を更新方向と決定する更
新方向決定手段と、この更新方向決定手段によって決定
された更新方向に操作量を更新する制御更新手段と、こ
の制御更新手段によって更新された操作量が制約条件を
満たしているか否かを判断する制約条件確認手段とから
なる最適制御装置において、操作量を入力変数とし、運
転費用を出力変数とする関係を超空間曲面として捕える
超空間曲面想定手段と、この超空間曲面想定手段によっ
て想定された超空間曲面を1つの操作量および運転費用
からなる2次元曲線に射影する2次元曲線作成手段と、
この2次元曲線作成手段によって得られる2次元曲線に
基づいて、上記制約条件確認手段から得られる操作量よ
りも運転費用を安くする操作量を求める再最適化装置と
、この再最適化装置によって操作量が更新されたか否か
判断し、更新された場合にはその操作量を上記更新方向
決定手段に戻し、更新されなかった場合にはその操作量
を最適制御量として出力する最適性確認手段とを具備し
たものである。
[Means for Solving the Problems] The optimal control device according to the present invention includes: an update direction determining means for determining an update direction in which operation costs are lowered by increasing or decreasing the amount of operation; and this update direction determining means. In an optimal control device comprising: a control update means for updating the manipulated variable in the update direction determined by the control update means; and a constraint condition checking means for determining whether the manipulated variable updated by the control update means satisfies a constraint condition. , a hyperspace surface estimation means that captures the relationship between the operation amount as an input variable and the operating cost as an output variable as a hyperspace surface, and the hyperspace surface assumed by this hyperspace surface estimation means as one operation amount and operating cost. two-dimensional curve creation means for projecting onto a two-dimensional curve consisting of;
A re-optimization device that calculates an operation amount that makes the operation cost cheaper than the operation amount obtained from the constraint condition confirmation device based on the two-dimensional curve obtained by the two-dimensional curve creation means, and an operation performed by this re-optimization device. an optimality checking means for determining whether or not the amount has been updated, and returning the manipulated variable to the update direction determining means if it has been updated; and outputting the manipulated variable as an optimal control amount if the amount has not been updated; It is equipped with the following.

[作用] 上記の構成によれば、制約条件確認手段から得られる操
作量つまり従来の最適制御装置で得られる操作量が超空
間曲面上でどこに位置するかが捕えられる。そして、そ
の操作量の位置する超空間曲面上の点を規準として、1
つの操作量および運転費用からなる2次元曲線が作成さ
れ、その2次元曲線上で、運転費用を最小にする操作量
が求められる。これにより、個々の制御対象の操作状態
をからめて総合的な面から運転費用が求められ、個々の
制御対象に対して現状維持が安い場合でも、運転費用を
より安くする操作量が最適制御量として出力される。
[Operation] According to the above configuration, it is possible to determine where on the hyperspace curved surface the manipulated variable obtained from the constraint condition confirmation means, that is, the manipulated variable obtained by the conventional optimal control device is located. Then, using the point on the hyperspace curved surface where the manipulated variable is located as a reference, 1
A two-dimensional curve consisting of the two manipulated variables and operating costs is created, and the manipulated variable that minimizes the operating cost is determined on the two-dimensional curve. As a result, operating costs can be determined from a comprehensive perspective by considering the operating status of each controlled object, and even if it is cheaper to maintain the status quo for each controlled object, the optimal control amount is the amount of operation that lowers operating costs. is output as

[実施例] 以下、図面を参照して本発明の一実施例に係る最適制御
装置を説明する。
[Embodiment] An optimal control device according to an embodiment of the present invention will be described below with reference to the drawings.

第1図はその構成を示すブロック図である。この最適制
御装置は、準最適制御装置14、超空間曲面想定手段1
5.2次元曲線作成手段16、再最適化装置17および
最適性確認手段18からなる。準最適制御装置14は、
操作量更新方向決定手段11、制御更新手段12、制約
条件確認手段13からなり、これは従来の最適制御装置
(第3図参照)に相当する。すなわち、操作量更新方向
決定手段11は、操作量を「+」方向(増加方向)また
は「−」方向(減少方向)に微小量変化させたときの運
転費用を求め、安くなった方向を更新方向aと決定する
。制御更新手段12は、操作量更新方向決定手段11に
よって決定された更新方向aに、予め設定された量だけ
操作量を更新したときの運転費用を求め、その運転費用
と現操作量の運転費用とを比較し、安くなるときのみ操
作量を更新する。制約条件確認手段13は、制御更新手
段12によって更新された操作zbが制約条件を満たす
か否かを判断する。
FIG. 1 is a block diagram showing its configuration. This optimal control device includes a quasi-optimal control device 14, a hyperspace curved surface estimation means 1
5. Consists of two-dimensional curve creation means 16, re-optimization device 17 and optimality confirmation means 18. The semi-optimal control device 14 is
It consists of a manipulated variable update direction determining means 11, a control updating means 12, and a constraint condition checking means 13, which corresponds to a conventional optimal control device (see FIG. 3). That is, the operation amount update direction determining means 11 calculates the operating cost when the operation amount is changed by a minute amount in the "+" direction (increase direction) or the "-" direction (decrease direction), and updates the direction in which it becomes cheaper. Determine direction a. The control update means 12 calculates the operating cost when the manipulated variable is updated by a preset amount in the update direction a determined by the manipulated variable update direction determining means 11, and calculates the operating cost and the operating cost of the current manipulated variable. The amount of operation is updated only when the price becomes cheaper. The constraint checking means 13 determines whether the operation zb updated by the control updating means 12 satisfies the constraint.

一方、超空間曲面想定手段15は、操作量を入力変数と
し、運転費用を出力変数とする関係を超空間曲面dとし
て捕える。2次元曲線作成手段16は、超空間曲面想定
手段15によって想定された超空間曲面dを1つの操作
量および運転費用からなる2次元曲線eに射影する。再
最適化装置17は、2次元曲線作成手段16によって得
られる2次元曲線eに基づいて、準最適制御装置14の
出力つまり制約条件確認手段13から得られる操作ff
1cよりも運転費用が安くなる操作Qfを求める。最適
性確認手段18は、再最適化装置によって操作量が更新
されたか否か判断し、更新された場合にはその操作量を
操作量更新方向決定手段11つまり準最適制御装置14
に戻し、更新されなかった場合にはその操作量を最適制
御ff1gとして制御対象に出力する。
On the other hand, the hyperspace curved surface estimation means 15 captures the relationship between the manipulated variable as an input variable and the operating cost as an output variable as a hyperspace curved surface d. The two-dimensional curve creation means 16 projects the hyperspace curved surface d assumed by the hyperspace curved surface estimation means 15 onto a two-dimensional curve e consisting of one operation amount and operating cost. The re-optimization device 17 calculates the operation ff obtained from the output of the semi-optimal control device 14, that is, the constraint condition confirmation device 13, based on the two-dimensional curve e obtained by the two-dimensional curve creation device 16.
Find the operation Qf that makes the operating cost cheaper than 1c. The optimality checking means 18 determines whether the manipulated variable has been updated by the re-optimization device, and if it has been updated, the manipulated variable is transmitted to the manipulated variable update direction determining means 11, that is, the sub-optimal control device 14.
If it is not updated, the manipulated variable is output to the controlled object as optimal control ff1g.

次に、同実施例の動作を説明する。Next, the operation of this embodiment will be explained.

同実施例において、準最適制御装置14として、従来の
最適制御装置を用いている。まず、超空間曲面想定手段
]5は、操作量と運転費用との関係が超空間上でどのよ
うな曲面を構成するかを想定する。ここでは、5次元の
超空間曲面を想定するものとする。次に、2次元曲線作
成手段16は、準最適制御装置14によって得られる操
作量つまり制約条件確認手段]3からの操作量cが超空
間曲面上のどこに位置するかを推定する。そして、2次
元曲線作成手段16は、その操作量Cの位置する超空間
曲面上の点を規準として、上記超空間曲面想定手段15
により想定された超空間曲面を1つの操作量および運転
費用からなる2次元曲線に射影する。
In this embodiment, a conventional optimal control device is used as the quasi-optimal control device 14. First, the hyperspace curved surface estimation means] 5 assumes what kind of curved surface the relationship between the operation amount and the operating cost constitutes on the hyperspace. Here, a five-dimensional hyperspace curved surface is assumed. Next, the two-dimensional curve creation means 16 estimates where on the hyperspace curved surface the manipulated variable obtained by the quasi-optimal control device 14, that is, the manipulated variable c from the constraint condition confirming means]3 is located. Then, the two-dimensional curve creation means 16 uses the point on the hyperspace curved surface where the manipulated variable C is located as a reference, and the hyperspace curved surface estimation means 15
The hyperspace surface assumed by is projected onto a two-dimensional curve consisting of one operation amount and operating cost.

ここで、5次元の超空間曲面上で準最適制御装置14の
出力を規準として2次元曲線作成手段16により作成さ
れた2次元曲線を第2図に示す。
Here, FIG. 2 shows a two-dimensional curve created by the two-dimensional curve creation means 16 on the five-dimensional hyperspace curved surface using the output of the quasi-optimal control device 14 as a reference.

第2図において、図中(イ)は準最適制御装置14から
出力される操作量を示す。また、(ロ)は再最適化装置
17によって更新された操作量を示す。再最適化装置1
7は、この2次元曲線上で運転費用を最小にする操作量
を求める。すなわち、再最適化装置17は、第2図にお
いて、準最適制御装置14から出力される操作量(イ)
よりも運転費用を安くする操作量(ロ)を求める。
In FIG. 2, (A) in the figure shows the manipulated variable output from the quasi-optimal control device 14. Moreover, (b) shows the manipulated variable updated by the re-optimization device 17. Re-optimization device 1
7 determines the amount of operation that minimizes the operating cost on this two-dimensional curve. That is, in FIG.
Find the amount of operation (b) that makes the operating cost cheaper.

最適性確認手段18は、この再最適化装置17によって
操作量が更新されたか否かを判断する。
The optimality checking means 18 determines whether the manipulated variable has been updated by the re-optimization device 17.

更新された場合、再最適化装置17はその操作量を準最
適制御装置14(操作量更新方向決定手段11)に戻す
。一方、更新されなかった場合、再最適化装置17はそ
の操作量を最適制御mgとして制御対象に出力する。す
なわち、操作量が更新された場合には再度操作状態の更
新についての処理がなされる。一方、新たな更新がなけ
れば、前操作状態と同一になるので、前操作状態が最適
制御ff1gとして出力される。
When updated, the re-optimization device 17 returns the manipulated variable to the semi-optimal control device 14 (operated variable update direction determining means 11). On the other hand, if it has not been updated, the re-optimization device 17 outputs the manipulated variable as the optimum control mg to the controlled object. That is, when the manipulated variable is updated, the process for updating the operating state is performed again. On the other hand, if there is no new update, the previous operation state will be the same as the previous operation state, so the previous operation state will be output as the optimal control ff1g.

このように、超空間曲面を利用することにより、個々の
制御対象の操作状態をからめて総合的な面から運転費用
を求めることができる。なお、この超空間曲面の利用に
ついて、具体的に説明しておく。今、例えば制御対象が
4種類あるとすると、これに運転費用を加えて5次元の
超空間曲面を想定する。そして、この4種類の制御対象
に対する操作状態(準最適制御装置からの出力)のうち
3つを固定し、残りの1つの操作状態と運転費用の2次
元に投影(第2図)し、より安い操作状態を得る。
In this way, by using the hyperspace curved surface, operating costs can be determined from a comprehensive perspective by considering the operating states of individual controlled objects. Note that the use of this hyperspace curved surface will be specifically explained. For example, if we assume that there are four types of objects to be controlled, we will add operating costs to these to form a five-dimensional hyperspace surface. Then, three of the operating states (outputs from the sub-optimal control device) for these four types of control objects are fixed, and the remaining operating state and operating cost are projected into two dimensions (Figure 2), and the Get cheap operating conditions.

[発明の効果] 以上のように本発明によれば、超空間曲面を利用するこ
とにより、個々の制御対象の操作状態をからめて総合的
な面から運転費用を求めることができる。したがって、
個々の制御対象に対して現状維持が安い場合でも、運転
費用をより安くする操作量を最適制御量として出力する
ことができ、経済的効果を上げることができる。
[Effects of the Invention] As described above, according to the present invention, by using a hyperspace curved surface, operating costs can be determined from a comprehensive perspective by considering the operating states of individual controlled objects. therefore,
Even if it is cheap to maintain the status quo for each controlled object, a manipulated variable that lowers operating costs can be output as an optimal controlled variable, and economic effects can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る最適制御装置の構成を
示すブロック図、第2図は同実施例の2次元曲線作成手
段で作成される2次元曲線を示す図、第3図は従来の最
適制御装置の構成を示すブロック図である。 11・・・操作量更新方向決定手段、12・・・制御更
新手段、13・・・制約条件確認手段、14・・・準最
適制御装置、15・・・超空間曲面想定手段、16・・
・2次元曲線作成手段、17・・・再最適化装置、18
・・・最適性確認手段、a・・・更新方向、b・・・操
作量、C・・・操作量、d・・・超空間曲面、e・・・
2次元曲線、f・・・操作量、g・・・最適制御量。
FIG. 1 is a block diagram showing the configuration of an optimal control device according to an embodiment of the present invention, FIG. 2 is a diagram showing a two-dimensional curve created by the two-dimensional curve creation means of the same embodiment, and FIG. FIG. 1 is a block diagram showing the configuration of a conventional optimal control device. DESCRIPTION OF SYMBOLS 11... Operation amount update direction determination means, 12... Control update means, 13... Constraint condition confirmation means, 14... Quasi-optimal control device, 15... Hyperspace curved surface estimation means, 16...
- Two-dimensional curve creation means, 17... Re-optimization device, 18
...Optimality confirmation means, a...Update direction, b...Operation amount, C...Operation amount, d...Hyperspace curved surface, e...
Two-dimensional curve, f...manipulated amount, g...optimum control amount.

Claims (1)

【特許請求の範囲】 操作量を増加または減少させて運転費用が安くなった方
を更新方向と決定する更新方向決定手段と、 この更新方向決定手段によって決定された更新方向に操
作量を更新する制御更新手段と、この制御更新手段によ
って更新された操作量が制約条件を満たしているか否か
を判断する制約条件確認手段とからなる最適制御装置に
おいて、操作量を入力変数とし、運転費用を出力変数と
する関係を超空間曲面として捕える超空間曲面想定手段
と、 この超空間曲面想定手段によって想定された超空間曲面
を1つの操作量および運転費用からなる2次元曲線に射
影する2次元曲線作成手段と、この2次元曲線作成手段
によって得られる2次元曲線に基づいて、上記制約条件
確認手段から得られる操作量よりも運転費用を安くする
操作量を求める再最適化装置と、 この再最適化装置によって操作量が更新されたか否か判
断し、更新された場合にはその操作量を上記更新方向決
定手段に戻し、更新されなかった場合にはその操作量を
最適制御量として出力する最適性確認手段とを具備した
ことを特徴とする最適制御装置。
[Scope of Claims] Update direction determining means for determining an update direction in which operating costs are lowered by increasing or decreasing the manipulated variable; and updating the manipulated variable in the update direction determined by the update direction determining means. In an optimal control device comprising a control updating means and a constraint checking means for determining whether the manipulated variable updated by the control updating means satisfies a constraint condition, the manipulated variable is used as an input variable and the operating cost is output. A hyperspace surface imagining means that captures relationships as variables as a hyperspace surface, and a two-dimensional curve creation that projects the hyperspace surface assumed by this hyperspace surface imagining means onto a two-dimensional curve consisting of one operation amount and operating cost. and a re-optimization device that calculates a manipulated variable that makes operating costs cheaper than the manipulated variable obtained from the constraint condition checking means, based on the two-dimensional curve obtained by the two-dimensional curve creating means, and this re-optimization. Optimality of determining whether the manipulated variable has been updated by the device, returning the manipulated variable to the update direction determining means if it has been updated, and outputting the manipulated variable as the optimal control variable if it has not been updated. An optimal control device characterized by comprising a confirmation means.
JP20523690A 1990-08-03 1990-08-03 Optimum controller Pending JPH0490003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20523690A JPH0490003A (en) 1990-08-03 1990-08-03 Optimum controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20523690A JPH0490003A (en) 1990-08-03 1990-08-03 Optimum controller

Publications (1)

Publication Number Publication Date
JPH0490003A true JPH0490003A (en) 1992-03-24

Family

ID=16503663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20523690A Pending JPH0490003A (en) 1990-08-03 1990-08-03 Optimum controller

Country Status (1)

Country Link
JP (1) JPH0490003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242981A (en) * 2010-05-18 2011-12-01 Yamatake Corp Function generation device and function generation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242981A (en) * 2010-05-18 2011-12-01 Yamatake Corp Function generation device and function generation method

Similar Documents

Publication Publication Date Title
Narendra et al. A new adaptive law for robust adaptation without persistent excitation
EP0657042B1 (en) Structured multiple-input multiple-output rate-optimal controller
Astrom et al. A new Smith predictor for controlling a process with an integrator and long dead-time
CA2072744A1 (en) Preemptive constraint control
Zhou A modified SQP method and its global convergence
JPH0490003A (en) Optimum controller
Ghosh et al. Pseudo-inverse based iterative learning control for nonlinear plants with disturbances
Ng et al. On maximal accuracy estimation with output power constraints
JPS63107421A (en) System stabilizer
De Vries et al. Constrained predictive control with guaranteed stability and convex optimization
JPH0328586A (en) Control device for proportional valve
BARB et al. The fixed, finite-order L (sup 2)-optimal control of infinite-dimensional time-varying discrete-time systems
JPH103497A (en) Production plan system
Al-Duwaish et al. Control of nonlinear dynamical systems using genetic algorithms
CN111025894A (en) Method for obtaining target flow of reducing agent of SCR unit
JPS6053278B2 (en) Heat exchanger control device
PETTUS et al. Multiple microcomputer control algorithm feasibility breadboard[Final Report, Jun. 1979- Aug. 1981]
Dahleh On robust stability and performance with time-varying control
Pavel Nonlinear H (infinity)(L2) control with applications.
Arteaga-Bravo et al. Simultaneous stabilization with multiple bounded domains of stability in chemical process control
Chait et al. In search of weaker conditions to insure robust stability in linear feedback systems
Almutari et al. New algorithm for continous linear quadratic control problem with inequality constraints
McClamroch et al. Feedback control of position and contact force for a two-dimensional mechanism constrained to a given planar contour
JPS63108401A (en) Limiter method for triplex system integration signal
Zharkova et al. The study of nonthermal hydrogen ionization and excitation in a low- temperature flare plasma. I- The rate of excitation and ionization of a hydrogen atom by an electron flux(Issledovanie neteplovogo vozbuzhdeniia i ionizatsii vodoroda v nizkotemperaturnoi plazme vspyshek. I- Skorosti vozbuzhdeniia i ionizatsii atoma vodoroda potokom elektronov)