JPH0489709A - Optimum conveyance control device for raw material yard - Google Patents

Optimum conveyance control device for raw material yard

Info

Publication number
JPH0489709A
JPH0489709A JP2203834A JP20383490A JPH0489709A JP H0489709 A JPH0489709 A JP H0489709A JP 2203834 A JP2203834 A JP 2203834A JP 20383490 A JP20383490 A JP 20383490A JP H0489709 A JPH0489709 A JP H0489709A
Authority
JP
Japan
Prior art keywords
work
transport
conveyance
knowledge
plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2203834A
Other languages
Japanese (ja)
Other versions
JP2626202B2 (en
Inventor
Mamoru Inaba
稲葉 護
Yukinori Sato
幸徳 佐藤
Noboru Akisato
昇 秋里
Yoshitomo Yamate
山手 義友
Masatoshi Kumagai
正敏 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP20383490A priority Critical patent/JP2626202B2/en
Publication of JPH0489709A publication Critical patent/JPH0489709A/en
Application granted granted Critical
Publication of JP2626202B2 publication Critical patent/JP2626202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Control Of Conveyors (AREA)

Abstract

PURPOSE:To automatize starting and stopping by reasoning and planning a conveyance operation plan for an amount per one shift according to a knowledge object and an operational knowledge of expert operators, stopping automatically when a predetermined conveyance volume has been conveyed completely, outputting the present operation starting command, and at the same time learning an efficiency function about conveyed volumes. CONSTITUTION:According to a knowledge base, a AI tool and a knowledge object stored in files 22-24, an operation means 20 makes a conveyance operation schedule for an amount per one shift by means of a reasoning means 26 so as to store it in a file 25. Then, according to a conveyance operation planning specification inputted from an input means 30, an optimum conveyance control device for a raw material yard monitors an operation progress condition through an operation progress control screen 33. Then, when a conveyed volume has reached a target volume, commands for the finish of the present operation and the starting of the next operation are outputted to a subordinate control device 153 through an operation progress control file 36. Furthermore, an operation on an efficiency function about conveyed volumes is carried out according to a conveyance operation result so that the knowledge object in the file 24 can be renewed.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は熟練オペレータの操業知識と搬送実績をもと
に学習制御された切出し能率関数を用いて原料ヤードに
仮置した原料炭を配合槽に搬送する為の搬送作業計画を
立案し、その結果に基づいてオペレータの介在なしにコ
ンベヤやローダを自動的に起動・停止させる原料ヤード
の最適搬送制御装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention utilizes a learning-controlled cut-out efficiency function based on the operational knowledge and transportation experience of experienced operators to transfer coking coal temporarily placed in a raw material yard into a blending tank. This invention relates to an optimal conveyance control system for raw materials yards that creates a conveyance work plan for conveying materials to other areas and automatically starts and stops conveyors and loaders based on the results without operator intervention.

[従来の技術] 従来から行われている搬送作業計画の立案方法とコンベ
ヤやローダを自動的に起動・停止する方法について以下
説明する。
[Prior Art] A conventional method of planning a conveyance work plan and a method of automatically starting and stopping a conveyor or a loader will be described below.

まず、搬送作業計画の立案方法について説明する。ここ
で、搬送作業計画とは原料炭ヤードがら配合槽への原料
炭の搬送に関する搬送作業スケジュールをいう。一般に
、配合槽は15〜25ホツパの集合体からなり、−槽当
りの収容能力は300〜400 Tonである。配合槽
の在庫切れを防止するため、原料炭の搬送は槽が空にな
る前に行われ、1作業当りの搬送量は50〜300 T
onである。また、搬送能率はローダの切出し能力の他
、払出し山の形状などによって異なり、500〜100
0Ton/hrと大きくばらついており、1回当りの搬
送時間は10〜30分である。このような原料炭ヤード
における搬送作業計画の立案は以下の問題があり、2時
間分の搬送作業計画を立案するのがやっとであった。
First, a method of formulating a transportation work plan will be explained. Here, the transport work plan refers to a transport work schedule for transporting coking coal from the coking coal yard to the blending tank. Generally, a blending tank consists of a collection of 15 to 25 hoppers, and the capacity per tank is 300 to 400 tons. In order to prevent the blending tank from running out of stock, raw coal is transported before the tank is emptied, and the amount transported per operation is 50 to 300 tons.
It's on. In addition, the conveyance efficiency varies depending on the loader's cutting capacity and the shape of the delivery pile, and is 500 to 100.
There is a large variation of 0Ton/hr, and the conveyance time per time is 10 to 30 minutes. There are the following problems in formulating a transportation work plan in such a coking coal yard, and it was only possible to create a transportation work plan for two hours.

(1)搬送能率はローダの切出し能力の他、搬送量、ロ
ーダ、銘柄、切出し山の位置(払出し段)によって大き
く異なるが、これらの要素を加味して搬送時間を計算し
、作業スケジュールを立案することが難しかった。また
、搬送能率を計算するための切出し能率関数を作業実績
にもとづいて学習する機能も無いため、計画と実績との
搬送時間の差が大きかった。
(1) Conveyance efficiency varies greatly depending on the cutting capacity of the loader, the amount conveyed, the loader, the brand, and the position of the cut pile (unloading stage), but these factors are taken into account when calculating the conveyance time and planning the work schedule. It was difficult to do. Furthermore, since there is no function to learn a cut-out efficiency function for calculating transport efficiency based on actual work results, there was a large difference in transport time between the planned and actual results.

(2)このため、仮に時間をかけて8時間分の作業計画
を立案しても2時間後には大幅な修正が必要であった。
(2) For this reason, even if we took the time to draw up a work plan for 8 hours, major revisions would have to be made 2 hours later.

次に、コンベヤやローダを自動的に起動・停止する方法
について説明する。
Next, a method for automatically starting and stopping the conveyor and loader will be explained.

第14図は原料ヤードの搬送制御装置の構成を示すブロ
ック図である。図において、(150)はプロセス計算
機のオペレータインターフェイス、(151)は作業実
績を収集して作業記録を作成するプロセス計算機、(1
52)はコンベヤやローダ制御装置のオペレータインタ
フェイス、(153)はコンベヤやローダをシーケンス
制御するための下位制御装置、(154)は払出し量を
計測するための秤量機、(155)は原料を搬送するコ
ンベヤ、(15B)は原料を払出しするためのローダで
ある。
FIG. 14 is a block diagram showing the configuration of the material yard conveyance control device. In the figure, (150) is the operator interface of the process computer, (151) is the process computer that collects work results and creates work records, and (150) is the process computer that collects work results and creates work records.
52) is the operator interface for the conveyor or loader control device, (153) is the lower control device for sequence control of the conveyor or loader, (154) is the weighing machine for measuring the amount of discharge, and (155) is the raw material The conveyor (15B) is a loader for discharging raw materials.

第15図は第14図の原料ヤードの搬送制御装置の動作
を示すフローチャートである。以下この図に従って説明
する。
FIG. 15 is a flowchart showing the operation of the material yard conveyance control device shown in FIG. 14. The explanation will be given below according to this figure.

a、オペレータはコンベヤ(155)やローダ(15B
)の運転状態をオペレータインターフェイス(152)
で常時監視するとともにオペレータインターフェイスよ
り作業設定を下位制御装置(153)に対し行う。
a. The operator can operate the conveyor (155) or loader (15B).
) operation status via the operator interface (152)
The lower control device (153) is constantly monitored and work settings are made to the lower control device (153) from the operator interface.

b、オペレータは下位制御装置(158)に対し起動指
示を行う。
b. The operator issues a start-up instruction to the lower control device (158).

C0下位制御装置(153)はコンベヤ(155)やロ
ーダ(156)をシーケンス的に起動させる。
The C0 lower control device (153) sequentially starts the conveyor (155) and loader (156).

d、下位制御装置(153)は秤量機(154)からの
信号(切出し量)をもとに搬送量を常時監視する。
d. The lower control device (153) constantly monitors the conveyance amount based on the signal (cutting amount) from the weighing machine (154).

e、下位制御装置(153)は輸送量が目標値を越えた
と判断した時、オペレータに通知する。
e. When the lower control device (153) determines that the transport amount exceeds the target value, it notifies the operator.

f、オペレータは下位制御装置(158)に対して停止
指示を出す。
f. The operator issues a stop instruction to the lower control device (158).

g、下位制御装置(153)はコンベヤ(155)やロ
ーダ(15B)を順次シーケンス的に停止させる。また
、作業実績をプロセス計算機(153)に送信する。そ
して、作業実績はオペレータインターフェイス(150
)で随時確認する。
g. The lower control device (153) sequentially stops the conveyor (155) and the loader (15B). It also transmits the work results to the process computer (153). The work results are displayed on the operator interface (150
) from time to time.

[発明が解決しようとする課題] 原料ヤードおける搬送作業に際しては、槽の数(銘柄)
及び搬送ラインが多く、搬送の対象となる銘柄と搬送ラ
インの選択の自由度が多い。このため、搬送作業計画は
高度な操業経験(知識)を用いて試行錯誤しながらの立
案しなければならなかった。従って、正確な搬送作業計
画を立案するには膨大な時間が必要であり、人手では色
々な条件(特にローダの切出し能力の他、搬送量、ロー
ダ、銘柄、切出し山の位置(払出し段)によって大きく
異なる切出し能率)を考慮して実操業で有効に利用でき
るような搬送作業計画を1直(7〜9時間)労作ること
が難しかった。また、人手による立案方法では搬送実績
をもとに切出し能率関数を設けてこれを学習することも
不可能であり、精度も落ちるため2時間分の作業計画を
立案するのがやっとであった。
[Problem to be solved by the invention] During transportation work in a raw material yard, the number of tanks (brands)
There are many transport lines, and there is a lot of freedom in selecting the brands and transport lines to be transported. For this reason, transportation work plans had to be developed through trial and error using advanced operational experience (knowledge). Therefore, it takes a huge amount of time to formulate an accurate transport work plan, and it is difficult to do it manually depending on various conditions (in particular, the cutting capacity of the loader, the transport amount, the loader, the brand, and the position of the cutting pile (discharging stage)). It was difficult to create a transportation work plan that could be used effectively in actual operation, taking into account the large differences in cutting efficiency (cutting efficiency), and to create a transportation work plan that lasted one shift (7 to 9 hours). In addition, with the manual planning method, it is impossible to set up and learn a cutting efficiency function based on the actual transportation results, and the accuracy decreases, so it is only possible to draw up a work plan for two hours.

また、従来は現作業の終了を待って次作業を1作業づつ
設定する必要があったので、オペレータは作業状況を常
時監視する必要があり、作業性が非常に悪かった。
Furthermore, in the past, it was necessary to wait for the completion of the current work and then set the next work one by one, which required the operator to constantly monitor the work status, resulting in very poor work efficiency.

更に、コンベヤやローダの起動・停止も全てオペレータ
操作に依存していて、この面でも作業性が悪かった。
Furthermore, starting and stopping the conveyor and loader all depended on operator operations, and workability was poor in this aspect as well.

従来は上述の問題点があったので、オペレータの高度な
操業経験をもとに約30分かけて2時間分の搬送作業計
画を立案していた。そして、オペレータは搬送状況を常
時監視しながらこの搬送作業計画に従って1作業つづ作
業設定を行う必要があり、搬送作業計画の立案と作業設
定のシステム化が強く要請されていた。しかし、次のよ
うな問題点があり実現できなかった。
Conventionally, due to the above-mentioned problems, it took about 30 minutes to draw up a two-hour transport work plan based on the operator's advanced operating experience. The operator is required to perform work settings one by one in accordance with this transport work plan while constantly monitoring the transport status, and there has been a strong demand for systematization of transport work plan planning and work settings. However, this could not be realized due to the following problems.

(1)搬送作業計画の立案は経験的知識が主であり、従
来のプログラミング手法では知識の記述が難しい。
(1) The planning of transportation work plans is mainly based on experiential knowledge, and it is difficult to describe this knowledge using conventional programming methods.

(2)搬送銘柄(槽)と搬送ラインの組合せが多く、自
由度があり過ぎる。このため、線形計画法などの手法で
は計算に時間がかかり過ぎた。
(2) There are many combinations of transport brands (tanks) and transport lines, giving too much freedom. For this reason, methods such as linear programming took too long to calculate.

(3)搬送作業計画の立案に使われる日々の配合計画、
ヤード現況、パース計画、切出し能率など精度が良くな
い。
(3) Daily mix plan used to formulate transportation work plan;
The accuracy of yard conditions, perspective planning, cutting efficiency, etc. is not good.

(4)人手で立案するため、オペレータの介在なしにコ
ンベヤやローダを自動的に起動・停止することができて
も省力化などの面の効果は少なかった。
(4) Since planning is done manually, even if conveyors and loaders can be automatically started and stopped without operator intervention, the effect in terms of labor saving is small.

この発明は、かかる状況を鑑みてなされたものであり、
搬送作業計画に関する熟練オペレータの高度な操業知識
を知識ベース化し、これを用いて技術の標準化・伝承を
可能にすると共に、操業変化への迅速な対応を可能にし
、また、搬送量、ローダ、銘柄、切出し山の位置(払出
し段)別に異なる切出し能率関数を設け、しかも搬送実
績をもとにこれを学習する機能を設けて立案精度の向上
を図り、更にコンベヤやローダを自動的に起動・停止さ
せるため、立案した搬送作業計画を作業明細として登録
し、オペレータの介在なしにコンベヤやローダを自動的
に起動・停止させることを可能にした原料ヤードの最適
搬送制御装置を提供することを目的とする。
This invention was made in view of this situation,
The advanced operational knowledge of experienced operators regarding transport work plans is converted into a knowledge base, which enables the standardization and transfer of technology, as well as rapid response to operational changes. , different cutting efficiency functions are provided for each cutting pile position (unloading stage), and a function is provided to learn this based on conveyance records to improve planning accuracy.Furthermore, conveyors and loaders are automatically started and stopped. The purpose of the present invention is to provide an optimal conveyance control device for raw material yards that enables the creation of conveyance work plans to be registered as work details and automatically starts and stops conveyors and loaders without operator intervention. do.

[課題を解決するための手段] この発明に係る原料ヤードの最適搬送制御装置は、ヤー
ドに銘柄別に山状にして仮置した原料炭を石炭配合槽に
搬送する作業計画を日々の配合計画や時々刻々変化する
配合槽の在庫量推移等をもとに立案し、オペレータの介
在なしにコンベヤやローダを自動的に起動・停止する原
料ヤードの最適搬送制御装置において、ヤード現況、コ
ンベヤやローダの修理状況、パース荷役状況、日々の配
合計画などのデータかを含む知識オブジェクトと、この
知識オブジェクトの各データ及び操業知識が格納されて
いる知識ベースに基づいて配合槽の在庫切れが無く、か
つ、搬送能率が最大となるように搬送作業計画を立案す
る推論手段と、搬送量、ローダ、銘柄及び払出しの位置
(払出し段)別に異る切出し能率関数を設けて搬送時間
を決定する手段と、搬送作業実績をもとに切出し能率関
数を演算して知識オブジェクトの搬送能率のデータを更
新する学習手段と、立案結果を作業明細として登録し、
作業開始前に下位システムに送信することにより、オペ
レータの介在なしにコンベヤやローダを自動的に起動・
停止をする制御手段とを備えている。
[Means for Solving the Problems] The optimum conveyance control device for a raw material yard according to the present invention is capable of adjusting a work plan for conveying coking coal, which has been temporarily placed in piles according to brands in the yard, to a coal blending tank, as well as a daily blending plan. The optimum conveyance control system for raw material yards automatically starts and stops conveyors and loaders without operator intervention, based on changes in blending tank inventory, etc., which change from moment to moment. Based on a knowledge object that includes data such as repair status, perspective cargo handling status, daily blending plan, etc., and a knowledge base that stores each data of this knowledge object and operational knowledge, there is no out-of-stock of blending tanks, and an inference means for formulating a transport work plan so as to maximize the transport efficiency; a means for determining the transport time by providing different cut-out efficiency functions for each transport amount, loader, brand, and delivery position (delivery stage); A learning means that calculates a cutout efficiency function based on work results and updates data on the transport efficiency of knowledge objects, and registers the planning results as work details.
By sending a message to a lower-level system before work begins, conveyors and loaders can be started automatically without operator intervention.
and control means for stopping.

[作 用コ この発明においては、知識オブジェクトが持っている日
々の配合計画、ヤード現況、パース計画、コンベヤやロ
ーダの修理計画、切出し能率関数などをもとに作成した
知識オブジェクトと熟練オペレータの操業知識を格納し
た知識ベースをもとに搬送ライン別に1直分の搬送作業
計画を立案して作業明細として登録する。
[Function] In this invention, knowledge objects created based on knowledge objects such as daily mixing plans, current yard conditions, perspective plans, conveyor and loader repair plans, cutting efficiency functions, etc., and operations by skilled operators are used. Based on the knowledge base that stores knowledge, a transport work plan for one shift is created for each transport line and registered as the work details.

一方、搬送状況を常時監視し、予定量の搬送が完了した
ときは、オペレータの介在なしに自動的にコンベヤやロ
ーダに対し、現作業を開始するために必要な起動・停止
指示信号を下位制御装置に出力する。また、搬送作業が
終了したときは、搬送実績を銘柄・切出し山の位置(払
出し段)別に収集し、このデータを用いて任意に切出し
能率関数を学習できるようにしている。
Meanwhile, the conveyance status is constantly monitored, and when the planned amount of conveyance is completed, lower-level control automatically sends start/stop instruction signals to the conveyor or loader, which are necessary to start the current work, without operator intervention. Output to device. Furthermore, when the conveyance work is completed, the conveyance results are collected by brand and the position of the cutting pile (dispensing stage), and this data can be used to arbitrarily learn a cutting efficiency function.

[実施例] 第1図はこの発明の一実施例に係る原料ヤードの最適搬
送制御装置の内の搬送作業計画立案装置のブロック図で
ある。図において、(1o)は日々の配合計画、コンベ
ヤやローダの修理計画などを取込む入力手段であり、(
20)は演算手段である。
[Embodiment] FIG. 1 is a block diagram of a transportation work planning device in an optimal transportation control device for a material yard according to an embodiment of the present invention. In the figure, (1o) is an input means for inputting daily mixing plans, repair plans for conveyors and loaders, etc.
20) is a calculation means.

(21)は演算手段(20)のI/Pバッファ、(22
)は知識ベースが格納されているファイル、(23)は
AIツールが格納されているファイル、(24)は後述
する知識オブジェクトなどが格納されているファイル、
(25)は原料炭の搬送作業スヶジュー−ルが格納され
るファイル、(26)は推論手段である。この推論手段
(26)はファイル(22)の知識ベース、ファイル(
23)のAIツール及びファイル(24)に格納された
知識オブジェクトを利用して、1直(7〜9時間)分の
搬送作業スケジュールを搬送ライン別に立案し、作業明
細(銘柄、搬送量、搬送作業の開始・完了時刻など)と
してファイル(25)に格納する。
(21) is the I/P buffer of the calculation means (20), (22
) is the file where the knowledge base is stored, (23) is the file where the AI tool is stored, (24) is the file where the knowledge objects etc. described later are stored,
(25) is a file in which a coking coal transport work schedule is stored, and (26) is an inference means. This reasoning means (26) uses the knowledge base of the file (22), the file (
Using the AI tool in 23) and the knowledge objects stored in the file (24), a transport work schedule for one shift (7 to 9 hours) is planned for each transport line, and the work details (brand, transport amount, transport (work start/completion time, etc.) is stored in the file (25).

第2図は前記実施例に係る原料ヤードの最適搬送制御装
置における搬送作業管理装置を示すブロック図である。
FIG. 2 is a block diagram showing a transport work management device in the optimum transport control system for a material yard according to the embodiment.

(30)は搬送作業計画を作業明細として登録するため
の入力手段であり、(31)はES(エキスパートシス
テム)又は手動で立案した搬送作業計画を作業明細とし
て登録するためのオペレータインターフェイス(CI?
T画面)である。
(30) is an input means for registering a transportation work plan as a work specification, and (31) is an operator interface (CI?) for registering a transportation work plan created by an ES (expert system) or manually as a work specification.
T screen).

(32)は作業明細として登録された作業を1つづつ下
位制御装置(153)に送信し、コンベヤ(55)やロ
ーダ(56)を起動・停止するためのオペレータインタ
ーフェイス(CRT画面)である。(33)は搬送作業
の進捗状況を常時監視するためのオペレータインターフ
ェイス(CI?T画面)である。(34)はES立案結
果格納ファイルであり、第1図の装置で計画立案された
搬送作業スケジュール(25)が格納されている。(3
5)は作業明細ファイルであり、搬送ライン別に複数の
作業明細が搬送作業順に格納されている。(36)は作
業の進捗管理ファイルであり、搬送ライン別に現作業と
次作業の作業明細が格納されていて、現作業の作業状態
をコンベヤやローダの制御装置からの信号をもとに常時
監視し、搬送量が目標量に達した時に、現作業の終了と
次作業の開始(コンベヤやローダの起動・停止)指示を
下位制御装置(153)に出力する。(40)はコンベ
ヤや移動機をシーケンス的に起動・停止させるた] 1 めの下位制御装置である。
(32) is an operator interface (CRT screen) for transmitting the tasks registered as work details one by one to the lower control device (153) and for starting and stopping the conveyor (55) and loader (56). (33) is an operator interface (CI?T screen) for constantly monitoring the progress of the transport work. (34) is an ES planning result storage file, which stores the transport work schedule (25) planned by the apparatus shown in FIG. (3
5) is a work details file, in which a plurality of work details are stored for each transport line in the order of transport operations. (36) is a work progress management file, which stores the work details of the current work and the next work for each transport line, and constantly monitors the work status of the current work based on signals from the conveyor and loader control devices. When the amount of conveyance reaches the target amount, an instruction to end the current work and start the next work (starting/stopping the conveyor or loader) is output to the lower control device (153). (40) is a lower control device for sequentially starting and stopping the conveyor and mobile equipment.

第1図及び第2図の装置はいずれもその機能を概念的に
示したものであり、ハード構成そのものは第14図に示
した従来のものと同一である。
The functions of the devices shown in FIGS. 1 and 2 are conceptually shown, and the hardware configuration itself is the same as the conventional device shown in FIG. 14.

次に、搬送作業計画の立案、コンベヤやローダの自動運
転方法及び切出し能率関数の学習方法についてそれぞれ
説明する。
Next, the planning of a conveyance work plan, the automatic operation method of the conveyor and loader, and the learning method of the cutting efficiency function will be explained.

第3図は第1図に示した搬送作業計画立案装置の動作を
示すフローチャートである。まず、前提条件として計画
立案に必要な1直分の知識オブジェクトを作成する。知
識オブジェクトは、日々の配合計画ファイル、ヤード現
況ファイル、パース計画ファイル、コンベヤやローダの
修理計画ファイル、切出し能率関数ファイルなどから知
識オブジェクト(24)に作成する。
FIG. 3 is a flowchart showing the operation of the transport work planning device shown in FIG. First, as a prerequisite, knowledge objects for one shift necessary for planning are created. Knowledge objects (24) are created from daily mixing plan files, yard current status files, parse plan files, conveyor and loader repair plan files, cutting efficiency function files, and the like.

第4図は知識オブジェクトの内容を示す説明図である。FIG. 4 is an explanatory diagram showing the contents of the knowledge object.

この知識オブジェクトは、ヤード現況、日々の配合計画
、パース計画、コンベヤヤローダの修理計画、切出し能
率関数等からなっている。
This knowledge object consists of yard current status, daily mix plan, parse plan, conveyor loader repair plan, cutting efficiency function, etc.

知識オブジェクト(24)が作成されると、次に知識オ
ブジェクトを用いて、推論前処理(51)が行われる。
Once the knowledge object (24) is created, inference preprocessing (51) is then performed using the knowledge object.

推論前処理としては槽の在庫切れ防止と搬送能率の向上
を目的に、配合槽にある同じ銘柄の集約計算と、立案期
間内でのローダの稼動率を計算する。
As pre-inference processing, for the purpose of preventing tank stock-outs and improving conveyance efficiency, we perform aggregation calculations for the same brand in the blending tank and calculate the loader operating rate within the planning period.

■同じ銘柄の集約計算 同じ銘柄が槽にあれば1つの槽が在庫切れになっても配
合停止に繋らがることはない。また、同じ銘柄は連続的
に搬送した方がローダの移動などがなく搬送能率が良い
。このため同じ銘柄のある複数の槽は1つの槽と見なし
て搬送作業計画が立案出来るように同じ銘柄の集約計算
を行こなっている。
■Aggregation calculation for the same brand If the same brand is in the tanks, even if one tank is out of stock, the blending will not be stopped. Furthermore, if the same brand is transported continuously, the transport efficiency is better because there is no need for loader movement. For this reason, a plurality of tanks with the same brand are treated as one tank, and calculations for the same brand are performed in aggregation so that a transportation work plan can be formulated.

例 i=1 払出し量−Σ払出し量1 i=1 1:銘柄、n:銘柄がある檜の数 ■ローダの稼動率計算 一般に稼動率の高いローダによる払出しを優先して行え
ば、搬送能率が向上し、かつ、配合槽の在庫切れも起こ
りにくい。このため、次式でローダの稼動率を計算し、
極力稼動率の高いローダによる払出しが出来るように工
夫している。
Example i = 1 Dispense amount - Σ Dispense amount 1 i = 1 1: brand, n: number of cypress with brand ■ Loader operation rate calculation In general, if priority is given to dispensing by a loader with a high operation rate, the conveyance efficiency will be increased. In addition, stock-out of the blending tank is less likely to occur. Therefore, calculate the loader operating rate using the following formula,
Efforts have been made to enable payout using a loader with the highest operating rate possible.

ローダjの稼動率 一Σ配合予定ff1k/切出し能率関数kj:ローダ、 k:銘柄、 m:ローダjで払出しする銘柄数、 ここで、配合予定量とは立案時間内に配合される銘柄別
配合量をいい、切出し能率関数は第5図の切出し関数(
hl)、第6図の切出し山の位置(払出し段)補正関数
(h2)、第7図の銘柄補正関数(h3)、第8図の在
庫補正関数(h4)の積として与えられる。また、hl
はh2− h3− h4= 1の時の形状として全ての
銘柄に共通に与え搬送量に応じて第5図の時間すを決め
ている。またh2. h4も全ての銘柄に共通に勾え、
切出し山の位置(払出し段)、ヤード在庫量による搬送
能率の減少分を補正している。また、h3は銘柄の違い
を補正している。以下、各々の関数の意味を簡単に説明
する。
Operation rate of loader j - Σ Blending schedule ff1k / Cutting efficiency function kj: loader, k: brand, m: number of brands dispensed by loader j, where the planned blending amount is the blend by brand to be blended within the planning time The cutting efficiency function is the cutting function (
hl), the cutting peak position (dispensing stage) correction function (h2) in FIG. 6, the stock correction function (h3) in FIG. 7, and the stock correction function (h4) in FIG. Also, hl
is commonly given to all brands as the shape when h2-h3-h4=1, and the time shown in FIG. 5 is determined according to the amount of conveyance. Also h2. H4 is also common to all brands,
The reduction in conveyance efficiency due to the position of the cutting pile (unloading stage) and the amount of yard inventory is corrected. Furthermore, h3 corrects for differences in brands. The meaning of each function will be briefly explained below.

一般に作業の開始・終了時は搬送能率が落ちる。Generally, transport efficiency decreases at the start and end of work.

これを関数表現したのが切出し関数(hl)である。The cutout function (hl) is a functional representation of this.

ローダのブームの上下移動を少なくし、原料の払出し量
の変動を少なくするため、払出しは山の頂上から裾まで
4〜5段に分けて段毎に5〜l(1mつづ進みながらブ
ームを幅方向に振って行われる。
In order to reduce the vertical movement of the loader's boom and to reduce fluctuations in the amount of material being delivered, the delivery is divided into 4 to 5 stages from the top of the mountain to the hem. It is done by shaking it in the direction.

また、一般に山の裾はど幅が拡がるためから振りが少な
くなり、裾に行くほど払出し能率がよくなる。これを関
数表現したのが切出し山の位置(払出し段)補正関数(
h2)である。銘柄によって山の形状や切出しやすさも
違うため払出し能率も若干違ってくる。これを関数表現
したのが銘柄補正関数(h3)である。山裾の払出しで
も在庫量が少なくなると払出し能率が低下する。これを
補正するのがヤード在庫量補正関数(h4)である。
In addition, since the width of the hem of the mountain generally increases, the amount of swinging decreases, and the closer to the hem the dispensing efficiency improves. This is expressed as a function by the position (dispensing stage) correction function (
h2). Because the shape of the mountain and the ease of cutting differ depending on the brand, the efficiency of dispensing also varies slightly. The brand correction function (h3) is a functional representation of this. Even when dispensing at the foot of a mountain, dispensing efficiency decreases when the amount of inventory decreases. The yard stock amount correction function (h4) corrects this.

推論前処理(51)が終わると、知識オブジェクト(2
4)、知識ベース(22)、推論前処理結果を用いて推
論し、1直分の搬送作業スケジュール(25)が決定さ
れる。
When the inference preprocessing (51) is finished, the knowledge object (2
4) Inference is made using the knowledge base (22) and the inference pre-processing results, and the transportation work schedule (25) for one shift is determined.

第3図は各スケジュールの立案方法を示すフローチャー
トであり、以下のこの図に従ってその方法を説明する。
FIG. 3 is a flowchart showing a method of formulating each schedule, and the method will be explained below with reference to this diagram.

(1)在庫量予測計算(52) 配合槽からは配合計画に従って常時原料の払出しが行わ
れている。このため、現在の在庫量とある時間が経過し
た後の在庫量は異なる。このため、精度の良い搬送作業
計画を立案するには1つの作業の計画が終わる度にその
時点の在庫量を計算して作業計画の前提条件や在庫切れ
のチエツクに使う必要がある。第9図にある時間が経過
した後の計算例を示す。
(1) Inventory amount forecast calculation (52) Raw materials are constantly discharged from the blending tank according to the blending plan. Therefore, the current inventory amount and the inventory amount after a certain period of time are different. Therefore, in order to formulate an accurate transportation work plan, it is necessary to calculate the inventory amount at that time every time one work plan is completed and use it to check the prerequisites for the work plan and check for out-of-stock items. FIG. 9 shows an example of calculation after a certain amount of time has elapsed.

例えば、9時30分に立案を開始したとすると現作業(
l−1槽への搬送)が終了する時刻9時40分に1−2
槽にある在庫は9時の在庫(333ton)から9時か
ら9時40分までの配合量(500ton/hr*10
%/100*40m1n/8O−33ton)を引いた
量(300ton)となる。
For example, if you start planning at 9:30, the current work (
1-2 at 9:40 when transport to tank l-1) ends.
The stock in the tank is from 9 o'clock stock (333 tons) to the blended amount from 9 o'clock to 9:40 (500 tons/hr * 10
%/100*40m1n/8O-33ton) (300ton).

この値が作業予定1の計画の前提条件として使われる。This value is used as a prerequisite for planning Work Schedule 1.

(2)在庫切れ発生時刻(53)の計算在庫切れが起こ
ると配合が出来ないためコークス炉で使用する石炭が無
くなり、コークス炉の操業停止に繋がる。このため以下
のようにして在庫切れ発生時刻を計算して、在庫切れの
発生を防止している。
(2) Calculation of Stock Out Occurrence Time (53) When a stock out occurs, blending cannot be performed and there is no coal to be used in the coke oven, leading to the shutdown of the coke oven. For this reason, the out-of-stock occurrence time is calculated as follows to prevent out-of-stock occurrence.

■種母(同じ銘柄が複数の檜にある時は集約計算したも
のを使う)に在庫切れ発生時刻を、操業知識をもとに決
めた配合槽銘柄の最低在庫評価関数(第10図)を用い
て計算する。
■The stock-out occurrence time is used as the seed mother (when the same brand is in multiple cypresses, the aggregated calculation is used), and the minimum stock evaluation function (Figure 10) for the blending tank brand determined based on operational knowledge is used. Calculate using

例 在庫切れ発生時刻=(現在在庫量−最低在庫量)/銘柄
iの配合量 最低在庫Jm=f(銘柄iの配合量)(第1O図)■次
に、在庫切れ発生時刻が修理などと重なる時は在庫切れ
発生時刻を前詰め(例えば修理の開始時刻−30分を在
庫切れ時刻)する。
Example: Out-of-stock occurrence time = (Current stock amount - Minimum stock amount) / Mixing amount of brand i Minimum stock Jm = f (Mixing amount of brand i) (Figure 1O) If they overlap, the out-of-stock time is moved forward (for example, the repair start time - 30 minutes is the out-of-stock time).

■更に、ある時間帯に複数の槽で在庫切れが起こる時は
、在庫切れ発生時刻を前詰めする。
■Furthermore, when out-of-stock occurs in multiple tanks during a certain time period, the time at which out-of-stock occurs is moved forward.

例 在庫切れ発生時刻の前詰め量−在庫切れ発生時刻−30
分*在庫切れの発生する槽の数なお、上記において*は
掛算の符号を意味するものと、以下の式においても同様
に取扱うものとする。
Example: Advance amount of out-of-stock occurrence time - Out-of-stock occurrence time - 30
min * Number of tanks where stockout occurs. In the above, * means the sign of multiplication, and it is treated in the same way in the following formulas.

(3)搬送ラインの決定(54) 搬送ラインは現作業の終了時刻、修理時間などを考慮し
て以下のようにして決める。
(3) Determining the transport line (54) The transport line is determined as follows, taking into consideration the end time of the current work, repair time, etc.

複数の搬送ラインがある時は、早く作業が終了する搬送
ラインを次の搬送ラインとする。尚、修理中は作業中と
同じ扱いをする。以下に搬送ライン2つある時の例を示
す。
When there are multiple conveyance lines, the conveyance line that finishes its work first is set as the next conveyance line. During repair, treat it in the same way as during work. An example when there are two conveyance lines is shown below.

ここで、実線は現作業時間、破線は修理時間を表わし、
それぞれ、線分の左端が開始右端が終了を表わす。
Here, the solid line represents the current work time, the broken line represents the repair time,
The left end of each line segment represents the start and the right end represents the end.

例イ ライン1 ライン2 次の搬送はライン1となる。Example A line 1 line 2 The next conveyance will be line 1.

例ロ ラインl         −−−一−1ライン2 次の搬送はライン2となる。Example B Line l        ---1-1 Line 2 The next conveyance will be line 2.

(4)使用するローダの決定(55) 配合槽にある銘柄はヤードに仮置されている位置によっ
て払出しされるローダが異なる。このため、ローダ別に
在庫切れ発生時刻(53)の計算結果をもとに在庫切れ
発生時刻の早い槽銘柄の順に並べ、以下の評価を行って
使用するローダを決める。
(4) Determining the loader to be used (55) The loader to which the brands in the blending tank are delivered differs depending on the position where they are temporarily placed in the yard. For this reason, based on the calculation result of the out-of-stock occurrence time (53) for each loader, the tank brands are arranged in order of earliest out-of-stock occurrence time, and the following evaluation is performed to determine the loader to be used.

■;在庫切れ発生時刻が非常早いが複数ある時は、その
中で在庫量の最も少い槽に払出し出来るローダを優先し
て使用し、在庫切れの発生を防止する。
(2) If the out-of-stock time is very early, but there are multiple tanks, the loader that can deliver to the tank with the least amount of inventory is used preferentially to prevent out-of-stock.

■;■は無いが在庫切れ発生時刻がやや早い槽が複数あ
る時は、その中で稼動率の高いローダを優先して使用し
、在庫切れの発生を防止する。
■; When there are multiple tanks in which there is no stockout but the stockout occurs a little earlier, the loader with the highest operating rate among them is used preferentially to prevent the stockout from occurring.

■;■■に該当する檜がない時はいま使っているローダ
を優先して使用し、搬送ラインの切替時間などを無くし
て搬送能率の向上を図る。
■; When there is no cypress that falls under ■■, the loader currently in use will be used preferentially, eliminating the time for switching the conveyance line, etc., and improving the conveyance efficiency.

■;■■■が無いときは稼動率の高いローダを優先して
使用し、将来在庫切れが発生するのを防止し、かつ、計
画全体としての搬送能率の向上を図る。
■; When there is no ■■■, a loader with a high operating rate is used preferentially to prevent future stockouts and to improve the transport efficiency of the entire plan.

(5)搬送する槽銘柄の決定(56) 搬送ラインとローダを決定したら最後に操業経験をもと
に作成した評価関数P (x)をもとに搬送する槽銘柄
を決める。
(5) Determination of tank brand to be transported (56) After determining the transport line and loader, the final tank brand to be transported is determined based on the evaluation function P (x) created based on operational experience.

P(x)=α*k(x)−β* I’(x)α、β:重
み定数、X:銘柄 ここでk (x) 、I (r)は操業経験をもとに決
めた在庫保持時間評価関数(第11図)及び切替作業評
価関数(第12図)であり、搬送する槽銘柄はP (x
)が最大となる銘柄Xとなる。
P (x) = α * k (x) - β * I' (x) α, β: weight constant, X: brand, where k (x), I (r) are inventory determined based on operational experience The holding time evaluation function (Fig. 11) and the switching work evaluation function (Fig. 12) are shown, and the tank brand to be transported is P (x
) is the maximum stock X.

(6)搬送量と時間の決定(57) 搬送中に他の槽で在庫切れが起きないように、まず仮搬
送量を決め、在庫切れの発生をチエツクする。以下に搬
送ラインが2つある場合を例に搬送量と時間の決め方に
ついて述べる。
(6) Determination of conveyance amount and time (57) In order to prevent stock-outs from occurring in other tanks during conveyance, first determine a provisional conveyance amount and check for occurrence of stock-outs. The method for determining the transport amount and time will be described below, taking as an example the case where there are two transport lines.

仮搬遂時間−(溝槽量−推定在庫量) /切出し能率士余裕時間 ここで、推定在庫量とは搬送が終了するまでに配合され
る量を加味した配合槽にある銘柄在庫量である。また、
余裕時間は1つの槽に異なる銘柄が混入するのを防止す
るため(原料を搬送しない時間(3〜5分)、ローダや
搬送ラインの切替時間など)を加味した時間である。
Provisional delivery time - (ditch tank amount - estimated stock amount) / Cutting efficiency operator spare time Here, the estimated stock amount is the brand stock amount in the blending tank, taking into account the amount to be blended until the end of transportation. . Also,
The margin time is a time that takes into consideration (time during which raw materials are not transported (3 to 5 minutes), time for switching loaders and transport lines, etc.) in order to prevent different brands from being mixed into one tank.

本発明ではこの仮搬遂時間をもとに在庫切れのチエツク
を行い、在庫切れが起きないように搬送量と時間を決め
ている。以下に具体例を示す。
In the present invention, a stock-out check is performed based on this provisional delivery time, and the transport amount and time are determined to avoid stock-outs. A specific example is shown below.

■仮搬適時間内に別の槽で在庫切れが起きる時は搬送量
−切出し能率*(在庫切れとなるまでの時間−余裕時間
) 搬送時間−在庫切れが起きる時刻−搬送開始時刻−余裕
時間 とする。
■When a stockout occurs in another tank within the tentative transport time, transport amount - cutting efficiency * (time until stockout occurs - margin time) Transport time - time when stockout occurs - transport start time - margin time shall be.

■別の搬送ラインが空いていて、在庫切れとなる槽が2
つ以上ある時は、2番目の槽が在庫切れとなるまでに搬
送出来る量を搬送量とする。
■Another conveyance line is vacant, and 2 tanks are out of stock.
If there are more than one tank, the amount that can be transported before the second tank runs out of stock is taken as the transport amount.

搬送量−切出し能率*(2番目の槽が在庫切れとなるま
での時間−余裕時間) 搬送時間−2番目の槽で在庫切れとなる時刻−搬送開始
時刻−余裕時間 とする。
Conveyance amount - Cutting efficiency * (Time until the second tank becomes out of stock - Margin time) Conveyance time - Time when the second tank becomes out of stock - Conveyance start time - Margin time.

■在庫切れが起こらない時は 搬送量=溝槽量−推定在庫量 搬送時間=(溝槽量−推定在庫量)/切出し能率+余裕
時間 として、溝槽になるまで搬送する。
■When stockout does not occur, transport is carried out until the trench tank is filled, as follows: transportation amount = trench tank amount - estimated stock amount transportation time = (ditch tank amount - estimated stock amount) / cutting efficiency + margin time.

(7)立案終了チエツク 1直分の計画が立案できれば結果をファイルに格納して
立案作業を終了させる。また立案の途中にあれば(1)
に戻って推論を続行する。
(7) Planning completion check If the plan for one shift has been created, the results are stored in a file and the planning work is completed. Also, if you are in the middle of planning (1)
Go back and continue your reasoning.

このようにして1直分の搬送作業の立案が終了すると立
案結果を第2図に従って作業明細間合わせ登録画面(3
1)で搬送作業として登録し、その後、搬送作業が終了
するたびに1作業づつ作業明細として下位制御装置(4
0)に送信し、コンベヤやローダの自動運転に繋げる。
When the planning of one shift's transport work is completed in this way, the planning results are displayed on the work details schedule registration screen (3) according to Figure 2.
1) is registered as a transport work, and thereafter, each time the transport work is completed, one work is registered as a work detail in the lower control device (4).
0) and connect it to automatic operation of conveyors and loaders.

また、設備や操業条件の大きな変化により、計画通り搬
送作業を継続することが困難になる時もある。この対策
として現在までの搬送作業実績やこれまでに作られた搬
送作業計画の途中までを生かして、残りの部分を再立案
する(途中から再立案する機能)機能や作業明細間合せ
登録画面で修正する機能を設けている。
Additionally, there are times when it becomes difficult to continue transport work as planned due to major changes in equipment or operating conditions. As a countermeasure for this, there is a function to re-plan the remaining portion by making use of the transport work results up to now and the mid-way of the transport work plan created so far (a function to re-plan from the middle), and a work detail schedule registration screen. There is a function to correct it.

次に、学習方法について説明する。搬送量ローダ、切出
し山の位置(払出し段)、銘柄、ヤード在庫量などによ
って異なる。従って、切出し能率関数の学習方法として
は払出し関数(hl)、切出し山の位置(払出し段)補
正関数(h2)、銘柄補正関数(h3)、ヤード在庫量
補正関数(h4)をそれぞれ学習する方法が考えられる
が、本発明では以下の理由で切出し山の位置(払出し段
)補正関数(h2)、銘柄補正関数(h3)を学習する
ようにした。
Next, the learning method will be explained. It varies depending on the conveyance loader, the position of the cutting pile (unloading stage), the brand, the amount of stock in the yard, etc. Therefore, the method for learning the cutting efficiency function is to learn the payout function (hl), the cutting mountain position (payout stage) correction function (h2), the brand correction function (h3), and the yard stock amount correction function (h4). However, in the present invention, the cutting peak position (dispensing stage) correction function (h2) and brand correction function (h3) are learned for the following reasons.

■払出し関数(hl)は第7図すの時間が搬送量比例し
、切出し能率に反比例して変わるのみであり、山の形状
はほとんど変わらない。
(2) The time shown in Fig. 7 (hl) changes only in proportion to the amount of conveyance and inversely to the cutting efficiency, and the shape of the peaks hardly changes.

■切出し山の位置(払出し段)補正関数(h2)も余り
変わらないが、銘柄補正関数(h3)を学習するために
は、この関数も学習した方が処理しやすい。
■The position of the cutting peak (payout stage) correction function (h2) does not change much, but in order to learn the stock correction function (h3), it is easier to process if this function is also learned.

■銘柄補正関数(h3)は銘柄の性状変化によって経時
的に変化する。
■The brand correction function (h3) changes over time due to changes in the properties of the brand.

■ヤード在庫量補正関数(h4)はあまり変化する要素
は無い。
■The yard stock amount correction function (h4) does not have many elements that change.

第13図は切出し山の位置(払出し段)補正関数(h2
)と銘柄補正関数(h3)の学習方法を示したフローチ
ャートである。搬送作業が終了するたびに以下の条件チ
エツクを行い、全ての条件が成立した時にのみデータを
採集する。
Figure 13 shows the position (dispensing stage) correction function (h2
) and a method of learning the stock correction function (h3). The following conditions are checked every time the conveyance work is completed, and data is collected only when all conditions are met.

■搬送途中に切出し山の位置(払出し段)変更が無い。■There is no change in the position of the cutting pile (dispensing stage) during transportation.

■ヤード在庫量が取切り在庫(ヤード在庫量補正関数(
h4)のS値、最上段の在庫が無くなるヤード在庫量)
より多い。
■The amount of yard inventory is the cut-off inventory (yard inventory amount correction function)
h4) S value, yard inventory amount when the top inventory is exhausted)
is more than.

■搬送量が十分多い。■The conveyance amount is sufficiently large.

そして、採集したデータをもとにオペレータの判断に従
って銘柄別に次式で学習制御している。
Then, based on the collected data, learning control is performed for each brand according to the operator's judgment using the following formula.

(a)切出し位置(払出し段)補正関数(h2)の学習
(学習値) j −(Σ1段目からの搬送量/切出し関
数(第5図すの値))/n n:1段目のデータ数 (b)銘柄補正関数(h3)の学習 (学習値)b−(Σ(学習値)j)/mm:払出し段数 [発明の効果] 以上のようにこの発明によれば、従来はヤード現況、コ
ンベヤやローダの修理状況、パース荷役状況、日々の配
合計画などをもとに約30分かけて2時間分の搬送作業
計画を立案するのがやっとであったが、これらの情報を
知識オブジェクトとし、熟練オペレータの操業知識を知
識ベースとして整理し、更に切出し能率関数を設けるこ
とにより僅か3分で1直分の搬送作業計画を精度よく立
案できるようになった。これにより技術の標準化・伝承
、作業負荷の軽減に繋がった。また、立案した91”i 搬送作業計画を作業明細間合登録画面で作業明細として
登録し、プロセス計算機で作業の進捗状況を管理し、作
業終了時に次作業の作業明細を下位制御装置に送信する
ことによりオペレータの介在なしにコンベヤやローダを
自動的に機動・停止出初るようになった。更に、搬送実
績をもとに切出し能率関数を学習制御する機能を付加し
たことて搬送作業計画の精度向上に繋がった。
(a) Learning of the cutting position (dispensing stage) correction function (h2) (learning value) j - (Σ conveyance amount from the 1st stage / cutting function (value in Figure 5)) / n n: 1st stage Number of data (b) Learning of brand correction function (h3) (learning value) b - (Σ (learning value) j) / mm: Number of dispensing stages [Effects of the invention] As described above, according to this invention, conventionally It took about 30 minutes to draw up a 2-hour transportation work plan based on the current situation, the repair status of the conveyor and loader, the perspective cargo handling situation, the daily mix plan, etc., but it was difficult to draw up a 2-hour transportation work plan based on the current situation, the repair status of the conveyor and loader, the perspective cargo handling situation, and the daily mix plan. By organizing the operating knowledge of skilled operators as a knowledge base and providing a cutting efficiency function, it is now possible to accurately plan one shift's transport work in just three minutes. This has led to the standardization and transmission of technology and a reduction in workload. In addition, the created 91"i transport work plan is registered as a work detail on the work detail interval registration screen, the progress of the work is managed on the process computer, and the work details of the next work are sent to the lower-level control device when the work is completed. As a result, the conveyor and loader can now be automatically moved and stopped without operator intervention.Furthermore, a function has been added to learn and control the cutting efficiency function based on the conveyance record, improving the accuracy of conveyance work planning. This led to improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る原料ヤードの最適搬
送制御装置における搬送作業計画立案装置の構成を示す
ブロック図、第2図は前記実施例に係る原料ヤードの最
適搬送制御装置における搬送作業管理装置の構成を示す
ブロック図、第3図は第1図の搬送作業計画立案装置の
動作を示したフローチャート、第4図は第1図において
搬送作業計画の立案に使われる知識オブジェクトの内容
を示す説明図、第5図、第6図、第7図及び第8図は切
出し能率を計画するために用いる切出し関数(旧)、切
出し山の位置(払出し段)補正関数(h2)、銘柄補正
関数(h3)及びヤード在庫量補正関数(h4)の特性
図、第9図は配合槽銘柄の在庫量予測計算例を示す説明
図、第10図は配合槽銘柄の最低在庫量評価関数の特性
図、第11図は在庫保持時間評価関数の特性図、第12
図は切替作業評価関数の特性図、第13図は学習方法の
動作を示すフローチャートである。 第14図は原料ヤードの搬送制御装置の構成を示すブロ
ック図、第15図は従来のコンベヤや移動機への起動・
停止指示方法を示すフローチャートである。
FIG. 1 is a block diagram showing the configuration of a transport work planning device in an optimal transport control system for a raw material yard according to an embodiment of the present invention, and FIG. A block diagram showing the configuration of the work management device, FIG. 3 is a flowchart showing the operation of the transportation work planning device shown in FIG. 1, and FIG. Figures 5, 6, 7, and 8 are explanatory diagrams showing the cutting function (old) used to plan the cutting efficiency, the cutting peak position (paying stage) correction function (h2), and the brand name. Characteristic diagrams of the correction function (h3) and yard inventory amount correction function (h4), Figure 9 is an explanatory diagram showing an example of inventory prediction calculation for blending tank brands, and Figure 10 shows the minimum inventory evaluation function for blending tank brands. Characteristic diagram, Figure 11 is a characteristic diagram of inventory holding time evaluation function, Figure 12
The figure is a characteristic diagram of the switching work evaluation function, and FIG. 13 is a flowchart showing the operation of the learning method. Fig. 14 is a block diagram showing the configuration of a material yard conveyance control device, and Fig. 15 is a block diagram showing the configuration of a conveyance control device for a raw material yard.
It is a flowchart which shows the stop instruction method.

Claims (1)

【特許請求の範囲】 ヤードに銘柄別に山状にして仮置した原料炭を石炭配合
槽に搬送する作業計画を日々の配合計画や配合槽の在庫
量推移等をもとに立案し、オペレータの介在なしにコン
ベヤやローダを自動的に起動・停止する原料ヤードの最
適搬送制御装置において、 ヤード現況、コンベヤやローダの修理状況、バース荷役
状況、日々の配合計画などの各データを含む知識オブジ
ェクトと、 この知識オブジェクトの各データ及び操業知識が格納さ
れている知識ベースに基づいて配合槽の在庫切れが無く
、かつ、搬送能率が最大となるように搬送作業計画を立
案する推論手段と、 搬送量、ローダ、銘柄及び払出しの位置別に異る切出し
能率関数を設けて搬送時間を決定する手段と、 搬送作業実績をもとに切出し能率関数を演算して知識オ
ブジェクトの搬送能率のデータを更新する学習手段と、 立案結果を作業明細として登録し、作業開始前に下位シ
ステムに送信することによりコンベヤやローダを自動的
に起動・停止をする制御手段とを備えたことを特徴とす
る原料ヤードの最適搬送制御装置。
[Claims] A work plan for transporting coking coal temporarily stored in piles by brand in the yard to a coal blending tank is drawn up based on the daily blending plan and changes in inventory in the blending tank, and the operator In an optimal conveyance control system for a raw material yard that automatically starts and stops conveyors and loaders without any intervention, knowledge objects containing various data such as the current status of the yard, the repair status of conveyors and loaders, the berth cargo handling status, and daily mixing plans are used. , an inference means for formulating a transport work plan so that there is no out-of-stock of the mixing tank and the transport efficiency is maximized based on the knowledge base in which each data of the knowledge object and operational knowledge are stored; and a transport amount. , means to determine the transport time by setting different cutting efficiency functions for each loader, brand, and delivery position, and learning to calculate the cutting efficiency function based on the transport work results and update the transport efficiency data of the knowledge object. and a control means for automatically starting and stopping conveyors and loaders by registering planning results as work details and transmitting them to lower-level systems before starting work. Conveyance control device.
JP20383490A 1990-08-02 1990-08-02 Optimal transfer control device for raw material yard Expired - Lifetime JP2626202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20383490A JP2626202B2 (en) 1990-08-02 1990-08-02 Optimal transfer control device for raw material yard

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20383490A JP2626202B2 (en) 1990-08-02 1990-08-02 Optimal transfer control device for raw material yard

Publications (2)

Publication Number Publication Date
JPH0489709A true JPH0489709A (en) 1992-03-23
JP2626202B2 JP2626202B2 (en) 1997-07-02

Family

ID=16480477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20383490A Expired - Lifetime JP2626202B2 (en) 1990-08-02 1990-08-02 Optimal transfer control device for raw material yard

Country Status (1)

Country Link
JP (1) JP2626202B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320106A (en) * 2004-05-07 2005-11-17 Nippon Steel Corp Tank filling schedule preparation method for raw material tank and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320106A (en) * 2004-05-07 2005-11-17 Nippon Steel Corp Tank filling schedule preparation method for raw material tank and its device

Also Published As

Publication number Publication date
JP2626202B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
CA2132376C (en) Method of and apparatus for scheduling parts deliverer running and method of managing parts deliverers
CN103910201B (en) The secondary raw material feeding system autocontrol method of a kind of steel-making
CN201322855Y (en) Laser-location automatic feeding control system
US20060287926A1 (en) System and method for building loads from requisitions
CN101926498B (en) Full-automatic sugar kitchen system and process thereof
CN109213088B (en) Intelligent logistics control method for stock yard
US20190087918A1 (en) Logistics method and system for planning sequencing of bulk material containers
JPH0489709A (en) Optimum conveyance control device for raw material yard
JP2013237878A (en) Feedstock transportation control apparatus and feedstock transportation control method
EP1961539A2 (en) A method of weighing of loose fractions and equipment for carrying out this method
CN112101855B (en) Chinese medicine extraction system and method for intelligent Chinese medicine manufacture and computer readable storage medium
CN103662722A (en) Coal blending system and process
JPH11236116A (en) Material carry control system
JPH08143134A (en) Sintered ore carriage plan control system
JP3065709B2 (en) Blast furnace feed control system
JP2878055B2 (en) Raw material transport control system
JPH0489708A (en) Optimum conveyance control device for raw material yard
KR102242054B1 (en) Ptl system using multi-conveyor device and control method thereof
JPH11100127A (en) Raw material handling control method
WO2009093543A1 (en) Method, device, and program for making plan to feed raw material into tank and computer readable recording medium
JPH0228762A (en) Car dispatching system
JP3340512B2 (en) Conveyor transfer control method and transfer control device
JPH07227831A (en) Maintenance control device of ready-mixed concrete manufacturing plant
JP3290482B2 (en) Operation schedule creation device for product processing equipment
JP2501678B2 (en) Raw fuel transportation control method