JPH0489308A - Production of mixture of magnesium hydroxide and magnesium carbonate anhydride - Google Patents

Production of mixture of magnesium hydroxide and magnesium carbonate anhydride

Info

Publication number
JPH0489308A
JPH0489308A JP19918990A JP19918990A JPH0489308A JP H0489308 A JPH0489308 A JP H0489308A JP 19918990 A JP19918990 A JP 19918990A JP 19918990 A JP19918990 A JP 19918990A JP H0489308 A JPH0489308 A JP H0489308A
Authority
JP
Japan
Prior art keywords
mixture
magnesium hydroxide
magnesium
reaction
magnesium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19918990A
Other languages
Japanese (ja)
Inventor
Noriaki Mizutani
水谷 憲明
Kenji Tanaka
健司 田中
Tetsuhiko Morifuji
森藤 徹彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP19918990A priority Critical patent/JPH0489308A/en
Publication of JPH0489308A publication Critical patent/JPH0489308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To improve flame retardant property by partly carbonating Mg(OH)2 to prepare a mixture of Mg(OH)2 and MgCO3.3H2O and effecting the hydrothermal reaction of this mixture. CONSTITUTION:Into a Mg(OH)2 slurry containing 10-80g/l concn. MgO, CO2 is blown by the flow rate of 10-600l/min per 1kg of MgO to >=10vol.% to effect carbonation at normal temp. to 50 deg.C. pH of the reaction liquid varies with the production of MgCO3.3H2O according to proceeding of the carbonation. It varies from about 10 of the Mg(OH)2 slurry to a specified value at which the molar ratio of MgCO3.3H2O to Mg(OH)2 is 0.1-1.0, and more preferably 0.3-0.6. Then this slurry is subjected to hydrothermal reaction at 120-200 deg.C for 1-20 hours, cooled and filtered to separate the solid content. This product is washed with water and dried to obtain the Mg(OH)2.MgCO3 mixture.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱可塑性樹脂の難燃剤として好適に使用し得
る水酸化マグネシウム・無水炭酸マグネシウム混合物の
麹造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for making koji of a mixture of magnesium hydroxide and anhydrous magnesium carbonate that can be suitably used as a flame retardant for thermoplastic resins.

〔従来の技術及び発明が解決しようとする課題〕水酸化
マグネシウムや炭酸マグネシウムは、熱可塑性樹脂の難
燃剤として知られている。
[Prior Art and Problems to be Solved by the Invention] Magnesium hydroxide and magnesium carbonate are known as flame retardants for thermoplastic resins.

しかしながら、水酸化マグネシウムな熱可塑性樹脂に配
合した場合、熱可塑性樹脂が白華して外観の低下を招く
という問題があった。
However, when blended with a thermoplastic resin such as magnesium hydroxide, there is a problem in that the thermoplastic resin efflorescences, resulting in a deterioration in appearance.

lた、炭酸マグネシウムをポリ塩化ビニルやポリエチレ
ンなどの熱可塑性樹脂に配合した場合、難燃化効果の発
現が不十分であるといったI’!1mlがあった。
In addition, when magnesium carbonate is blended with thermoplastic resins such as polyvinyl chloride and polyethylene, the flame retardant effect is insufficient. There was 1ml.

さらにまた、これらの水酸化マグネシウムと炭酸マグネ
シウムとを混合して熱可塑性樹脂に配合することが考え
られるが、本発明者らが確認したところによると、水酸
化マグネシウムと炭酸マグネンウムとを混合機により混
合したものを配合した熱可塑性樹脂は、例えば、射出成
型を行なった場合に成型品にフラッシュ模様が生じたり
、光沢が低下したりする上、引張強度や衝撃強度の低下
が着しく、実用に供することができなかった。
Furthermore, it is conceivable to mix these magnesium hydroxide and magnesium carbonate and blend them into a thermoplastic resin, but the inventors have confirmed that magnesium hydroxide and magnesium carbonate are mixed in a mixer. For example, when thermoplastic resins containing these mixtures are injection-molded, flash patterns may appear in the molded product, the gloss may be reduced, and the tensile strength and impact strength may deteriorate, making it difficult to put into practical use. I was unable to provide it.

そこで、本発明者らは、外観や機械的強度の低下のない
熱可塑性樹脂用難燃剤を開発することを目的として鋭意
研究を重ねてきた。
Therefore, the present inventors have conducted extensive research with the aim of developing a flame retardant for thermoplastic resins that does not reduce appearance or mechanical strength.

〔1lII!lを解決するための手段〕七の結果、水酸
化マグネシウムを一部炭酸化した後に水熱反応すること
によって水酸化マグネシウムと無水炭酸マグネシウムと
の混合物が得られること、得られた水酸化マグネシウム
と無水炭酸マグネシウムとの混合物は混合機による息な
る物理的な混合物と興なり、熱可塑性樹脂に配合するこ
とにより、外観や機械的強度を著しく低下させることな
く難燃効果を付与するものであることを見出し、本発明
を提案するに至った。
[1lII! [Means for solving 1] As a result of 7, a mixture of magnesium hydroxide and anhydrous magnesium carbonate can be obtained by partially carbonating magnesium hydroxide and then subjecting it to a hydrothermal reaction, and the obtained magnesium hydroxide and The mixture with anhydrous magnesium carbonate is created as a physical mixture using a mixer, and by blending it into a thermoplastic resin, it imparts flame retardant effects without significantly reducing the appearance or mechanical strength. They discovered this and came to propose the present invention.

即ち、本発明は、水酸化マグネシウムを一部炭酸化して
水酸化マグネシウムと炭酸マグネシウム3水塩との混合
物を得、次いで、該混合物を水熱合成することを特徴と
する水酸化マグネシウム・無水炭酸マグネシウム混合物
の製造方法である。
That is, the present invention provides magnesium hydroxide/carbonate anhydride, which is characterized in that magnesium hydroxide is partially carbonated to obtain a mixture of magnesium hydroxide and magnesium carbonate trihydrate, and then the mixture is hydrothermally synthesized. This is a method for producing a magnesium mixture.

本発明における原料である水散化マグネシウムは、通常
、スラリーの状態で用いられる。
Water-dispersed magnesium, which is a raw material in the present invention, is usually used in the form of a slurry.

スラリーの濃度は、反応液量を少なくして反応装置を小
さくする一方、反応液の粘度上昇により反応の進行が妨
げられるのを防ぐために、一般にはMgOとしてlO〜
8011/Itであり、好ましくは20〜s o 11
/lの範囲である。
The concentration of the slurry is generally adjusted to 10 to 10% as MgO in order to reduce the amount of reaction liquid to make the reaction apparatus smaller and to prevent the progress of the reaction from being hindered by an increase in the viscosity of the reaction liquid.
8011/It, preferably 20 to s o 11
/l range.

水酸化マグネシウムの炭酸化反応は、公知の方法が何ら
制限なく採用されるが、一般にハ水散化マグネシウムの
スラリー中にCO2ガスを吹き込むことによって行なわ
する。戻限化反応なC02ガスを吹き込むことによって
行なう場合、CO□ガスの濃度は、反応効率の点から濃
い方が好ましいが、通常はlO容量弧以上であれば良い
。また、CO□ガスの流量は、スラリーのallガスの
吸収能力及び攪拌効果の点から、水散化マグネシウムの
スラリー中のMg01!Kg当り、10〜600//分
の範囲から採用することが好ましい。
The carbonation reaction of magnesium hydroxide can be carried out by any known method without any limitation, but is generally carried out by blowing CO2 gas into a slurry of aqueous dispersion of magnesium. When the reaction is carried out by blowing CO2 gas into the back-limiting reaction, it is preferable that the concentration of CO□ gas is higher from the viewpoint of reaction efficiency, but it is usually sufficient as long as it is equal to or higher than the 1O capacity arc. In addition, the flow rate of CO□ gas is determined from the viewpoint of the absorption capacity of all gases of the slurry and the stirring effect, and the Mg01! It is preferable to adopt from a range of 10 to 600/min per kg.

炭酸化反応は、水酸化マグネシウムと炭酸マグネシウム
3水塩との混合物を得るためには、反応温度が常温〜5
0℃の範囲であることが好ましい。反応温度が50℃を
越えた場合には、炭酸マグネシウム3水塩がさらに反応
して塩基性炭酸マグネシウムを生成し、本発明で目的と
する水酸化マグネシウムと無水炭酸マグネシウムとの混
合物が得られないことがある。
In the carbonation reaction, in order to obtain a mixture of magnesium hydroxide and magnesium carbonate trihydrate, the reaction temperature must be between room temperature and 50%
Preferably, the temperature is in the range of 0°C. If the reaction temperature exceeds 50°C, magnesium carbonate trihydrate further reacts to produce basic magnesium carbonate, and the mixture of magnesium hydroxide and anhydrous magnesium carbonate that is the objective of the present invention cannot be obtained. Sometimes.

水酸化マグネシウムの炭酸化の程度は、熱可塑性樹脂の
外観と機械的強度とを損わなず、難燃効果の優れた水酸
化マグネシウム・無水炭酸マグネシウム混合物を得るた
めには、炭酸マグネシウム3水墳の水酸化マグネシウム
に対するそル比でα1〜1、好筐しくはα3〜α6の範
囲となるように選択することが好適である。
In order to obtain a magnesium hydroxide/anhydrous magnesium carbonate mixture that does not impair the appearance and mechanical strength of the thermoplastic resin and has an excellent flame retardant effect, the degree of carbonation of magnesium hydroxide must be determined by It is preferable to select so that the solenoid ratio to magnesium hydroxide is in the range of α1 to 1, preferably α3 to α6.

反応液のPHは、炭酸化反応の程度に応じて次のように
変化する。即ち、水酸化マグネシウムのスラリーのPH
4110iii度であり、これを炭酸化すると炭酸化の
程度に応じて反応液のPHは低下し、PHは約8に到る
。さらに炭酸化を行なうと反応液のPHは上昇を開始し
、約9まで上昇した後、再びPHは低下を始める。ここ
で、水酸化マグネシウムのスラリーのPHが炭酸化によ
って低下を始め、PHが&5に至ったときが、縦置マグ
ネシウム3水塩の水酸化マグネシウムに対するモル比が
α5の点であり、また、炭酸化の進行に伴って反応液の
PHが極小点を過ぎて上昇を開始し、極大点に至ったと
倉が、上記のモル比が1の点である。従って、水酸化マ
グネジ9ムの炭酸化反応中のPHを測定することによっ
て炭酸化反応の終点を容易に決定することができる。
The pH of the reaction solution changes as follows depending on the degree of carbonation reaction. That is, the pH of the slurry of magnesium hydroxide
When this is carbonated, the pH of the reaction solution decreases depending on the degree of carbonation, reaching about 8. When carbonation is further carried out, the pH of the reaction solution starts to rise, and after rising to about 9, the pH starts to fall again. Here, when the pH of the slurry of magnesium hydroxide starts to decrease due to carbonation and reaches &5, the molar ratio of vertically placed magnesium trihydrate to magnesium hydroxide is α5, and As the reaction progresses, the pH of the reaction solution passes the minimum point and begins to rise, reaching the maximum point at which the molar ratio is 1. Therefore, the end point of the carbonation reaction can be easily determined by measuring the pH during the carbonation reaction of magnesium hydroxide.

このようにして、炭酸マグネシウムと水酸化マグネシウ
ムとの混合物を得ることができる。
In this way, a mixture of magnesium carbonate and magnesium hydroxide can be obtained.

本発明においては、こうして得られた炭酸!グネシウム
3水塩と水酸化マグネシウムとの混合物の水熱反応が行
なわれる。水熱反応により炭酸マグネシウム3水墳は無
水炭酸マグネシウムになり、本発明の目的とする水酸化
マグネシウム・無水炭駿マグネシウム混合物を得ること
がで富る。水熱反応は、炭酸化により得られた炭酸マグ
ネシウム3水塩と水酸化マグネシウムの混合物がスラリ
ーの成層で実施すれば良い。水熱反応の条件は、120
〜200℃の温度範囲で、1〜20時間の度応時間が好
適に採用される。反応中は、十分に攪拌することが好ま
しい。
In the present invention, the carbonic acid obtained in this way! A hydrothermal reaction of a mixture of magnesium trihydrate and magnesium hydroxide is carried out. Due to the hydrothermal reaction, the magnesium carbonate 3 water tomb becomes anhydrous magnesium carbonate, making it possible to obtain a mixture of magnesium hydroxide and anhydrous magnesium carbonate, which is the object of the present invention. The hydrothermal reaction may be carried out by stratifying a slurry of a mixture of magnesium carbonate trihydrate and magnesium hydroxide obtained by carbonation. The conditions for the hydrothermal reaction are 120
Temperatures ranging from 1 to 20 hours and temperature ranges from 1 to 20 hours are preferably employed. It is preferable to stir thoroughly during the reaction.

こうして本発明の目的とする水酸化マグネシウム・無水
炭酸マグネシウム混合物を得ることができる。この水酸
化マグネシウム・無水炭酸マグネシウム混合物は、X!
1回折によれば、水酸化マグネシウムと無水炭酸マグネ
シウムの夫々に基づく回折ピークが認められることから
、夫青の化合物の混合物であることがわかる。しかし、
これら夫々の化合物の混合機等による単なる物理的な混
合物とは興なり、化学反応に基づいてミクロにブレンド
されているものと考えられる。このために、本発明によ
り得られた水酸化!グネシウム・無水炭酸マグネシウム
混合物は、熱可塑性樹脂の■燃剤として好適に使用する
ことができる。
In this way, a mixture of magnesium hydroxide and anhydrous magnesium carbonate, which is the object of the present invention, can be obtained. This magnesium hydroxide/anhydrous magnesium carbonate mixture is X!
According to 1st diffraction, diffraction peaks based on magnesium hydroxide and anhydrous magnesium carbonate are observed, which indicates that the product is a mixture of fluorine compounds. but,
It is thought that these compounds are not merely physically mixed by a mixer or the like, but are micro-blended based on chemical reactions. For this purpose, the hydroxide obtained according to the invention! The gnesium/anhydrous magnesium carbonate mixture can be suitably used as a combustion agent for thermoplastic resins.

〔効 果〕〔effect〕

本発明の方法により得られた水酸化、グネシウム・無水
炭酸マグネシウム混合物を熱可塑性樹脂に配合すること
により、白華やフラッシュ模様発生による外観を低下さ
せることなく、また、引張強度や衝撃強度を著しく低下
させることなく熱可塑性41を脂のII燃性な崗止させ
ることができる。このような優れた効果は、水酸化マグ
ネシウムと無水炭酸マグネシウムの単なる物理的な混合
物では得られなかった効果である。
By blending the hydroxide, magnesium and anhydrous magnesium carbonate mixture obtained by the method of the present invention into a thermoplastic resin, the appearance is not deteriorated due to efflorescence or flash patterns, and the tensile strength and impact strength are significantly increased. Thermoplastic 41 can be made to be flammable to fat without degrading it. Such excellent effects could not be obtained with a mere physical mixture of magnesium hydroxide and anhydrous magnesium carbonate.

〔実施例〕〔Example〕

以下に、本発明をさらに具体的に説明するために実施例
および比較例を示すが、本発明はこれらの実施例に限定
されるものではない。
Examples and comparative examples are shown below to further specifically explain the present invention, but the present invention is not limited to these examples.

実施例1 海水法で得られた水酸化マグネシウムスラリー液(Mg
Oとして50g//)10/に95容量憾のCO2ガス
を吹込み、常温で一部炭酸化した。CO2ガスは水酸化
マグネシウムスラリー液のMg01 kg1当り601
/分で反応液のPHが&6になるまで吹き込んだ。この
スラリー液を170℃で4時間水熱反応を行なった。室
温まで冷却後、生成物を取り出し、減圧濾過して固形分
を分離し、水洗後、110℃で10時間乾燥した。この
乾燥物を粉砕して粉末とした。得られた生成物は、X線
回折の結果、水酸化マグネシウムと無水炭酸!グネシウ
ムの混合物であると同定された。化学分析の結果、生成
物の組成はMg Co 、・2Mg(OH) 、である
ことが示された。また、BET法比法面表面積 611
1’/jiであり、走査型電子顕微鏡写真よりこの粒子
は不定形であることがわかった。示差熱分析の結果から
求めた結晶水の脱離開始温度は360℃であった。
Example 1 Magnesium hydroxide slurry liquid (Mg
95 volumes of CO2 gas was blown into the flask (50 g as O) and partially carbonated at room temperature. CO2 gas is 601 per kg of Mg01 of magnesium hydroxide slurry liquid.
/min until the pH of the reaction solution reached &6. This slurry liquid was subjected to a hydrothermal reaction at 170°C for 4 hours. After cooling to room temperature, the product was taken out, filtered under reduced pressure to separate solid content, washed with water, and dried at 110° C. for 10 hours. This dried product was ground into powder. As a result of X-ray diffraction, the obtained product was magnesium hydroxide and carbonic acid anhydride! It was identified as a mixture of gnesium. Chemical analysis showed the composition of the product to be Mg Co , .2Mg(OH). In addition, BET ratio slope surface area 611
1'/ji, and scanning electron micrographs revealed that the particles were amorphous. The desorption onset temperature of crystal water determined from the results of differential thermal analysis was 360°C.

実施例2 市販の水酸化マグネシウムを水に懸濁させ、全量を10
jとしてMgO濃度をaoi/1に調整した。このスラ
リー液を30℃で炭酸化した。95容量襲のCO2ガス
を水酸化!グネシウムのスラリー液のMg01 kg当
り5017分で吹き込み、PHが9.2になるまで反応
を続けた。この度応液を140℃で8時間水熱反応を行
なった。その後は実施例1と同様に行なって白色粉末を
得た。生成物の組成はMgC0,・3Mg (OH)z
であり、走査型電子顕微鏡写真よりこの粒子は不定形で
あることがわかった。BET法比法面表面積6111’
/gであった。また、結晶水の脱離温度は360℃であ
ったー 実施例3および比較例 実施例1及び2で得た水酸化マグネシウム・無水炭酸マ
グネシウム混合物囚及び(6)、市販の水酸化マグネシ
ウムΩ、市販の無水炭酸マグネシウム0、さらに0と0
をモル比2:lで混合した粉体(ト)の各A−10kl
をステアリン酸ソーダ水溶液に添加し、80℃で30分
間攪拌したのち減圧濾過し、水洗したのち120℃で5
時間乾燥してステアリン酸ソーダ処理物を得た。この処
理物を粉砕して90メツシュ全通とした。これらの試料
は、いずれもステアリン酸に換算して約6重量弧のステ
アリン酸ソーダを吸着していた。
Example 2 Commercially available magnesium hydroxide was suspended in water, and the total amount was 10
The MgO concentration was adjusted to aoi/1 as j. This slurry liquid was carbonated at 30°C. Hydrogenates 95 volumes of CO2 gas! The gnesium slurry liquid was blown in for 5017 minutes per kg of Mg, and the reaction was continued until the pH reached 9.2. This time, the reaction solution was subjected to a hydrothermal reaction at 140°C for 8 hours. Thereafter, the same procedure as in Example 1 was carried out to obtain a white powder. The composition of the product is MgC0,・3Mg (OH)z
Scanning electron micrographs revealed that the particles were irregular in shape. BET ratio normal surface area 6111'
/g. In addition, the desorption temperature of crystal water was 360°C - the magnesium hydroxide/anhydrous magnesium carbonate mixture obtained in Example 3 and Comparative Examples 1 and 2 and (6), commercially available magnesium hydroxide Ω, Commercially available anhydrous magnesium carbonate 0, further 0 and 0
Each A-10kl of powder (g) mixed at a molar ratio of 2:l
was added to an aqueous solution of sodium stearate, stirred at 80°C for 30 minutes, filtered under reduced pressure, washed with water, and stirred at 120°C for 5 minutes.
After drying for hours, a sodium stearate treated product was obtained. This treated material was pulverized to give a total of 90 meshes. All of these samples adsorbed approximately 6 weight arcs of sodium stearate in terms of stearic acid.

ポリプロピレン8ゆを単独で、また、上記試料の夫に1
0に9と混合し、押出様を用いて押出温度的230℃で
ペレット化した。得られたペレットを用いて240℃で
射出成型して厚さ、約2インチの射出成型板を製造した
8 ml of polypropylene alone and 1 ml of the above sample
0 and 9 were mixed and pelletized using an extruder at an extrusion temperature of 230°C. The obtained pellets were injection molded at 240° C. to produce an injection molded plate with a thickness of approximately 2 inches.

この射出成型板の外観、衝撃強度、引張強度を測定し、
その結果を第1表に示した。
We measured the appearance, impact strength, and tensile strength of this injection molded plate.
The results are shown in Table 1.

尚、第1表中の各物性は次の方法に従って測定した。In addition, each physical property in Table 1 was measured according to the following method.

l) メルトフローインデックス  JIS  K  
6758にjlE拠2) アイゾツト衝撃強度    
JIS  K 7110に準拠3)引張強度     
   JIS K 7113に準拠4)白華性 サンシャインワエザーメーターにより紫外線を100時
間照射後の外観を次の基準で評価した。
l) Melt flow index JIS K
Based on 6758 2) Izotsu impact strength
Based on JIS K 7110 3) Tensile strength
Based on JIS K 7113 4) Appearance after irradiation with ultraviolet rays for 100 hours using an efflorescence sunshine weather meter was evaluated according to the following criteria.

@: 変化なし ○: 一部白華 ×: 全体的に白華 5)ml燃注 UL規格94VE 燃性規格)に準拠 (米国プラスチック離@: no change ○: Some efflorescence ×: Overall efflorescence 5) ml fuel injection UL standard 94VE Compliant with flammability standards) (US plastic withdrawal)

Claims (1)

【特許請求の範囲】[Claims] (1)水酸化マグネシウムを一部炭酸化して水酸化マグ
ネシウムと炭酸マグネシウム3水塩との混合物を得、次
いで、該混合物を水熱反応することを特徴とする水酸化
マグネシウム・無水炭酸マグネシウム混合物の製造方法
(1) A magnesium hydroxide/anhydrous magnesium carbonate mixture characterized by partially carbonating magnesium hydroxide to obtain a mixture of magnesium hydroxide and magnesium carbonate trihydrate, and then subjecting the mixture to a hydrothermal reaction. Production method.
JP19918990A 1990-07-30 1990-07-30 Production of mixture of magnesium hydroxide and magnesium carbonate anhydride Pending JPH0489308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19918990A JPH0489308A (en) 1990-07-30 1990-07-30 Production of mixture of magnesium hydroxide and magnesium carbonate anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19918990A JPH0489308A (en) 1990-07-30 1990-07-30 Production of mixture of magnesium hydroxide and magnesium carbonate anhydride

Publications (1)

Publication Number Publication Date
JPH0489308A true JPH0489308A (en) 1992-03-23

Family

ID=16403623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19918990A Pending JPH0489308A (en) 1990-07-30 1990-07-30 Production of mixture of magnesium hydroxide and magnesium carbonate anhydride

Country Status (1)

Country Link
JP (1) JPH0489308A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872169A (en) * 1994-12-02 1999-02-16 Flamemag International Gie Magnesium process
JP2008137845A (en) * 2006-12-01 2008-06-19 Tateho Chem Ind Co Ltd Method of producing magnesium oxide
CN104743585A (en) * 2015-03-04 2015-07-01 上海应用技术学院 Method for preparing flame retardant grade magnesium hydroxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872169A (en) * 1994-12-02 1999-02-16 Flamemag International Gie Magnesium process
JP2008137845A (en) * 2006-12-01 2008-06-19 Tateho Chem Ind Co Ltd Method of producing magnesium oxide
CN104743585A (en) * 2015-03-04 2015-07-01 上海应用技术学院 Method for preparing flame retardant grade magnesium hydroxide

Similar Documents

Publication Publication Date Title
KR101357426B1 (en) Precipitated magnesium carbonate
KR100607429B1 (en) Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
AU743581B2 (en) Synthetic resin composition having resistance to thermal deterioration and molded articles
US4698379A (en) Magnesium hydroxide, process for its production and resin composition containing it
KR910003344B1 (en) Process for the preparation of large surface area finely divided precipitated calcium carbonate and filled polymeric compositions of matter containing said calcium carbonate
KR100200082B1 (en) Composite metal hydroxide and its use
Oualha et al. Development of metal hydroxide nanoparticles from eggshell waste and seawater and their application as flame retardants for ethylene-vinyl acetate copolymer (EVA)
US9061920B2 (en) Precipitated magnesium carbonate
JP4775950B2 (en) Resin composition and molded article containing calcium hydroxide
JP2009114016A (en) Magnesium hydroxide flame retarder, its manufacturing method, and flame retardant composition
KR101895093B1 (en) Fibrous basic magnesium sulfate powder and method for producing same
JPS59223225A (en) Manufacture of calcium carbonate
JP3107926B2 (en) Flame retardant and flame retardant resin composition
JPH0489308A (en) Production of mixture of magnesium hydroxide and magnesium carbonate anhydride
US4980395A (en) Process for the preparation of large surface area, finely divided precipitated calcium carbonate and filled polymeric compositions of matter containing said calcium carbonate
JP2826973B2 (en) Composite metal hydroxide
JPH0948614A (en) Surface-modified lime and surface modification and production unit
GB2168984A (en) A powdery filler for plastics
JP3154535B2 (en) Composite metal hydroxide and use thereof
JPS61219717A (en) Production of plate calcium carbonate