JPH0489128A - Method and device for controlling extrusion of extruded shape material - Google Patents

Method and device for controlling extrusion of extruded shape material

Info

Publication number
JPH0489128A
JPH0489128A JP19931390A JP19931390A JPH0489128A JP H0489128 A JPH0489128 A JP H0489128A JP 19931390 A JP19931390 A JP 19931390A JP 19931390 A JP19931390 A JP 19931390A JP H0489128 A JPH0489128 A JP H0489128A
Authority
JP
Japan
Prior art keywords
temperature
temp
detection means
measured
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19931390A
Other languages
Japanese (ja)
Other versions
JPH07121409B2 (en
Inventor
Katsumitsu Watanabe
渡辺 捷充
Shigeru Okaniwa
茂 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Nikkei Techno Research Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkei Techno Research Co Ltd, Nippon Light Metal Co Ltd filed Critical Nikkei Techno Research Co Ltd
Priority to JP2199313A priority Critical patent/JPH07121409B2/en
Publication of JPH0489128A publication Critical patent/JPH0489128A/en
Publication of JPH07121409B2 publication Critical patent/JPH07121409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To improve the quality and productivity of an extruded shape material by measuring the surface solid temp. and surface defect temp. right after the extrusion of the shape material and controlling the ram speed and billet heating temp. of an extruder in accordance with the measured values. CONSTITUTION:The surface temp. of the shape material 2 right after the extrusion is continuously measured by a surface solid temp. detecting means 3 and a surface defect temp. detecting means 4. The measured value of the surface solid temp. detecting means 3 is so controlled as not to exceed a preset upper limit temp. at this time. In addition, the ram speed and billet heating temp. of the extruder 1 are so controlled that the temp. difference between the surface defect temp. measured by the surface defect temp. detecting means 4 and the surface solid temp. measured by the surface solid temp. detecting means 3 or the temp. change rate measured by the surface defect temp. detecting means 4 is kept within a specified value.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は押出形材の押出制御方法及びその装置に関す
るもので、更に詳細には、押出機を用いて形材を押出成
形する工程において、押出直後の形材の表面温度を測定
して、形材の品質及び生産性の向上を図れるようにした
押出形材の押出制御方法及びその装置に関するものであ
る。
The present invention relates to an extrusion control method and device for extruded shapes, and more specifically, in the process of extruding a shape using an extruder, the surface temperature of the shape is measured immediately after extrusion, and the surface temperature of the shape is measured. The present invention relates to an extrusion control method for extruded sections and an apparatus therefor, which are capable of improving the quality and productivity of extruded sections.

【従来の技術】[Conventional technology]

従来の押出成形工場においては、押出欠陥は押出成形中
に作業者が目視によって判定し、その判定に基いて押出
速度を低くしたり、ダイスを修正することで対応してい
たため、欠陥の見落しによる不良の多発や歩留りの低下
等が生じ易かった。 そこで、上記問題を解決する手段として、例えば赤外線
温度計によって形材表面温度を押出中に連続的に測定し
、その測定値と事前に設定しておいた上限温度とを比較
し、その大小によって押出機のラム速度あるいはビレッ
ト予熱温度を制御する方法及びその装置が開発されてい
る(特開昭61−119324号公報参照)。
In conventional extrusion molding factories, extrusion defects were visually determined by workers during extrusion molding, and based on the determination, they were dealt with by lowering the extrusion speed or modifying the die, making it easy to overlook defects. This tends to cause frequent occurrence of defects and decrease in yield. Therefore, as a means to solve the above problem, for example, the surface temperature of the shaped material is continuously measured during extrusion using an infrared thermometer, the measured value is compared with a preset upper limit temperature, and the A method and apparatus for controlling the extruder ram speed or billet preheating temperature have been developed (see Japanese Patent Laid-Open No. 119324/1983).

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、従来の方法及び装置では、押出形材の表
面温度は測定できるが、押出中の表面性状(酸化状態、
あらさ、光沢等)や表面欠陥(割れ、ピックアップ、ダ
イスマーク、すし等)を検知することはできなかった。 したがって、押出形材の品質を向上させることができな
いばかりか、生産性の向上を図ることができないという
問題がある。 この発明は上記事情に鑑みなされたもので、押出形材の
表面の実体温度と表面欠陥温度とを同時に測定して、そ
の測定値に基いて押出機のラム速度及びビレット加熱温
度を制御して、形材の品質及び生産性の向上を図れるよ
うにした押出形材の押出制御方法及びその装置を提供し
ようとするものである。
However, with conventional methods and equipment, the surface temperature of extruded profiles can be measured, but the surface properties (oxidation state,
No roughness, gloss, etc.) or surface defects (cracks, pick-ups, dice marks, sushi, etc.) could be detected. Therefore, there is a problem that not only the quality of the extruded shape cannot be improved, but also productivity cannot be improved. This invention was made in view of the above circumstances, and involves simultaneously measuring the actual temperature and surface defect temperature of the surface of an extruded section, and controlling the ram speed of the extruder and the billet heating temperature based on the measured values. It is an object of the present invention to provide an extrusion control method for an extruded section and an apparatus therefor, which can improve the quality and productivity of the section.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、この発明の第1の押出形材
の制御方法は、押出直後の形材表面温度を表面実体温度
検出手段及び表面欠陥温度検出手段にて連続測定し、そ
の際、上記表面実体温度検出手段の測定値(C[)が予
め設定した上限温度(Ctmax、 )を越えないよう
にすると共に、上記表面欠陥温度検出手段によって測定
された表面欠陥温度(Cs )と上記表面実体温度検出
手段にて測定された表面実体温度(cBとの温度差(C
o)又は上記表面欠陥温度検出手段にて測定された温度
変化率(R)が一定値(C又はC−)以内になるように
押出機のラム速度及びビレット加熱温度を制御するよう
にしたことを特徴とするものである。 また、この発明の第2の押出形材の制御装置は、押出直
後の形材の表面実体温度を測定する表面実体温度検出手
段と、上記表面実体温度検出手段と同時に形材の表面欠
陥温度を測定す゛る表面欠陥温度検出手段と、上記両温
度検出手段からの信号と予め設定された設定値とを比較
演算する信号判断手段と、上記信号判断手段からの信号
を受けて押出機のラム速度を制御する速度調整器と、上
記信号判断手段からの信号を受けてビレットの加熱温度
を制御する加熱温度調整器とを具備して成るものである
。 この発明において、上記表面実体温度検出手段は押出形
材の表面実体温度を検知するものであれば任意のもので
よく、例えば多色赤外線放射温度計あるいは渦電流測定
器等を使用することができる。また、上記表面欠陥温度
検出手段は押出形材の表面欠陥温度を検知するものであ
れば任意のものでよく、例えば単色赤外線放射温度計、
ホトセンサーを直線状に並べた撮像素子と走査駆動回路
と映像処理回路とで構成されるセンサー装置、あるいは
、レーサーによる光電子増幅管等を使用することができ
る。この場合、両温度検出手段は押出直後の形材の表面
温度を同時に測定するもので、その測定位置は押出直後
の任意の位置であっても差し支えないが、好ましくは押
出機のダイスに可及的に近接する位置である方がよい。 更に好ましくは測定位置を押出形材の周方向にまで及ば
せるようにする方がよい。 上記信号判断手段は表面実体温度検出手段及び表面欠陥
温度検出手段からの測定値と予め設定された設定値(上
限温度、温度差上限値、温度変化率上限値等)とを比較
演算処理するもので、例えば中央演算処理装置(c p
 u)を有するマイクロコンピュータを使用することが
できる。
In order to achieve the above object, the first extruded section control method of the present invention continuously measures the surface temperature of the section immediately after extrusion using a surface actual temperature detection means and a surface defect temperature detection means, and at that time, The measured value (C[) of the surface actual temperature detection means should not exceed a preset upper limit temperature (Ctmax, The temperature difference between the surface body temperature (cB and the temperature difference (C
o) Or the ram speed of the extruder and billet heating temperature are controlled so that the rate of temperature change (R) measured by the surface defect temperature detection means is within a certain value (C or C-). It is characterized by: Further, the second extruded shape control device of the present invention includes a surface temperature detection means for measuring the surface temperature of the shape immediately after extrusion, and a surface temperature detection means for measuring the surface defect temperature of the shape at the same time. a surface defect temperature detection means for measuring, a signal judgment means for comparing and calculating the signals from both of the temperature detection means and a preset value, and a ram speed of the extruder upon receiving the signal from the signal judgment means. The device is equipped with a speed regulator for controlling the heating temperature, and a heating temperature regulator for controlling the heating temperature of the billet in response to a signal from the signal determining means. In this invention, the surface temperature detecting means may be any device as long as it detects the surface temperature of the extruded shape, and for example, a multicolor infrared radiation thermometer or an eddy current measuring device can be used. . Further, the surface defect temperature detection means may be any means as long as it detects the surface defect temperature of the extruded shape, such as a monochromatic infrared radiation thermometer,
A sensor device consisting of an image pickup device in which photosensors are arranged in a straight line, a scanning drive circuit, and an image processing circuit, a photoelectron amplification tube using a racer, or the like can be used. In this case, both temperature detection means simultaneously measure the surface temperature of the shaped material immediately after extrusion, and the measurement position may be any position immediately after extrusion, but preferably it can be located at the die of the extruder. It is better to be in a location close to the target. More preferably, the measurement position extends to the circumferential direction of the extruded section. The signal judgment means compares and processes the measured values from the surface actual temperature detection means and the surface defect temperature detection means with preset values (upper limit temperature, temperature difference upper limit, temperature change rate upper limit, etc.). For example, the central processing unit (cp
A microcomputer with u) can be used.

【作 用】[For use]

上記のように構成することにより、押出機にて押出成形
された押出直後の形材の表面温度が表面実体温度検出手
段及び表面欠陥温度検出手段にて連続測定され、その測
定値のうち、表面実体温度検出手段の測定値は予め設定
された上限温度と比較演算処理され、また、両温度検出
手段にて測定された測定値の温度差が予め設定された温
度差上限値と比較演算処理されると共に、表面欠陥温度
検出手段にて測定された温度変化率が予め設定された温
度変化率上限値と比較演算処理される。そして、比較演
算処理された信号に基いて押出機のラム速度及びビレッ
トの加熱温度が制御されて、押出形材の品質及び生産性
の向上が図れる。
With the above configuration, the surface temperature of the shaped material immediately after extrusion molded by the extruder is continuously measured by the surface substantial temperature detection means and the surface defect temperature detection means, and among the measured values, the surface temperature The measured value of the actual temperature detection means is subjected to comparison calculation processing with a preset upper limit temperature, and the temperature difference between the measurement values measured by both temperature detection means is subjected to comparison calculation processing with a preset temperature difference upper limit value. At the same time, the temperature change rate measured by the surface defect temperature detection means is compared with a preset temperature change rate upper limit value. Then, the ram speed of the extruder and the billet heating temperature are controlled based on the comparatively calculated signals, thereby improving the quality and productivity of the extruded shape.

【実施例】【Example】

以下にこの発明の実施例を図面に基いて詳細に説明する
。 第1図はこの発明の押出制御装置の概略構成図が示され
ている。 この発明の押出制御装置は、押出機1により押出成形さ
れる押出直後の押出形材2(以下に形材という)の表面
実体温度を測定する表面実体温度検出手段3と、表面実
体温度検出手段3と同時に形材の表面欠陥温度を測定す
る表面欠陥温度検出手段4と、両温度検出手段3.4か
らの信号と予め設定された設定値とを比較演算する信号
判断手段5と、信号判断手段5からの信号を受けて押出
機1のラム速度を制御する速度調整器6と、信号判断手
段5からの信号を受けてビレット加熱装置7aの加熱温
度を制御する加熱温度調整器7とで主要部が構成されて
いる。 表面実体温度検出手段3は例えば多色赤外線放射温度計
にて形成され、表面欠陥温度検出手段4は単色赤外線放
射温度計にて形成される。すなわち、多色赤外線放射温
度計3として以下のような仕様を有するTrueSet
120GO(ウィリアムソン社製)を使用することがで
きる。 TroeSel12000の仕様 ・精度:±1%(フルスケール) ・温度測定範囲=400〜600℃ ・再現性:±0.5% ・周囲環境温度:5〜45℃ ・応答時間=0.5〜15秒(調整可能)・線形比カニ
 O〜10mVdc、 0〜100 made、 0〜
I Vdc1〜5 mA、又は4〜20mA ・電源: 100/ 200Vac、 50/ 60H
zまた、単色赤外線放射温度計4としては以下のような
仕様を有するサーモ・スポット・センサー((株)ジャ
パン・センサー・コーポレイション製)を仕様すること
ができる。 サーモ・スポット・センサーの仕様 ・精度:±1%以内(フルスケール) ・温度測定範囲:100〜2000°C・周囲環境温度
=10〜42℃(回路部)・応答時間=0.1秒(標準
仕様) ・線形比カニ0〜I V、 mV/℃ ・出力線形:リニア ・電源: 100VIC,120Vac、 200Va
c、 220Vac、 240Vacのうちのいずれか
1つ指定、50/60 H2上記両赤外線放射温度計3
,4は、第2図及び第3図に示すように、押出機1のダ
イス8によって成形された直後の形材2の表面位置すな
わちプラテン9の内方に位置する形材2の表面を検出し
得るように配置されている。なお、第2図及び第3図に
おいて、符号10はコンテナ、符号11はコンテナ10
内のビレット12を押圧するラム、符号13はテーブル
、符号14は多色赤外線放射温度計3及び単色赤外線放
射温度計4の光軸である。 信号判断手段5は中央演算処理装置(CP U)を有す
るマイクロコンピュータにて形成されている。 次に、この発明の押出制御方法について、第4図に示す
フローチャートを参照して説明する。 まず、ステップAに示すようにビレット加熱温度T。を
初期設定し、ビレット12を押出機1へ搬入した後(ス
テップB)、ステップCに示すように1本目のラム速度
Rvを設定しくRv =V)、押出を開始する。すると
、多色赤外線放射温度計3及び単色赤外線放射温度計4
が同時に押出直後の形材2の表面実体温度及び表面欠陥
温度を測定する(ステップD1ステップM)。多色赤外
線放射温度計3にて測定された測定値Ctは予め設定さ
れた形材上限温度設定値Ctmax、  と比較される
(ステップE)。ここで、形材上限温度設定値Ctma
x、  は形材2の材質によって異なるが、例えばA2
014合金では、第5図に示すテアリング深さと形材温
度の関係を示すグラフから500℃を設定値とする。ま
た、A3056合金では、第6図に示す単色・多色の温
度差と多色赤外線放射温度計3の最高温度の関係を示す
グラフから500℃を設定値とする。このように設定さ
れた形材上限温度設定値Cjmax、 に対して測定値
Ctが低い場合には総合判断がなされる(ステップF)
。 一方、ステップMに示すように単色赤外線放射温度計4
にて測定された測定値Csは、ステップNに示すように
、多色赤外線放射温度計3によって測定された測定値C
tとの差すなわちC3ct=coが予め設定された温度
差上限値C以下であるか否か?が判断されると共に(ス
テップN)、温度変化率Rが温度変化率上限値C′以下
であるか否か?が判断される(ステップO)。ここで、
温度差C6は、第7図に示すように各ビレットの本数に
おける表面実体温度(第7図においては多色と表示する
)と表面欠陥温度(第7図においては単色と表示する)
との差であるが、ビレット本数の影響はおよそ5本目以
上となると押出と共に表面が悪くなるので、ここではビ
レット本数の温度差C8を表している。また、温度差上
限値Cは、形材2の材質によって異なるが、例えばA2
014合金においては、第8図に示す表面温度と時間の
関係のグラフから10℃を温度差上限値と設定し、また
、A3056合金においては、第7図に示す温度差と時
間の関係のグラフから5℃を温度差上限値と設定する。 また、単色赤外線放射温度計4の温度変化率Rは以下の
ように定義される(第9図参照)。 R= (Cs −−Cs)/ (s −−s)(℃/秒
)ここで、Cs”−C8=20℃とし、 5−−s=0.2〜1(秒) とすると、温度変化率R−20〜100(℃/秒)とな
る。 温度変化率上限値C′は単色赤外線放射温度計4の温度
変化率Rに対する一定値である。第10図に示す温度変
化率上限値C′、形材押出標準速度W及び温度測定時間
間隔(s−−s)の関係のグラフから温度変化率上限値
C′と温度測定時間間隔(s”−s)を求めることがで
きる。 ここで、例えばアルミニウム合金と形材押出標準速度の
関係は以下の表−1に示すようになる。 表−1 上記のようにして、温度差C8及び温度差変化率Rが設
定値CあるいはC′以下である場合には、総合判断がな
される(ステップF)。すなわち、測定値Ctが形材下
限温度設定値り以上か?また、多色赤外線放射温度計3
と単色赤外線放射温度計4の測定値Ct、Csの温度差
C6が温度差下限値E以上か否か?が判断される(ステ
ップF)。 ここで、形材下限温度設定値りは形材2の材質によって
異なるが、例えばA2014合金では、第5図に示すテ
アリング深さと形材温度の関係を示すグラフから400
℃を設定値とする。この温度以下では表面欠陥が少ない
が、機械的強度(性質)が低下する。また、A3056
合金では、第6図に示す単色・多色の温度差と多色赤外
線放射温度計3の最高温度の関係を示すグラフかられか
るように形材下限温度設定値りの設定値は特に指定しな
くてもよい。また、温度差下限値Eも同様に形材2の材
質によって異なるが、ここでは2〜5℃に設定する。ス
テップFに示すように総合判断がなされて条件を満足し
た場合には、ビレット押出が完了したか否か?が判断さ
れる(ステップG)。 そして、ステップHに示すように10ツトの最後のビレ
ットの押出か否か?が判断され、最後のビレットの場合
には押出成形が終了する。 一方、ステップEにおいて多色温度測定値Ctが形材上
限温度設定値Ctmax、以上である場合には、その信
号が速度調整器6に送られてラム速度RVn++が変更
される(ステップ■)。すなわち、前回のラム速度設定
値Vnにラム速度係数Aを掛けた速度(Rv 、−、+
 )に変更・制御する。ここで、ラム速度係数Aは1よ
り小さい値でよいが、望ましくは形材2の押出性と生産
性を考慮して決定され、A1000系、A6000系の
場合は、A−〇、95、A2000系、A3000系の
場合は、A=0.8にとる。また、上記信号は加熱温度
調整器7に伝達されて次回のビレット加熱温度が制御さ
れる(ステップJ)。すなわち、次回ビレット加熱温度
T。−1=TnX13が設定される。ここでBは次回ビ
レット加熱係数で、1より小さい値でよいが、望ましく
は形材の押出性と生産性を考慮して決定され、A200
0系、A3000系の場合は、B=0.98、A100
O系、A6000系の場合は、B=0.95にとる。 ステップNにおいて温度差C6が温度差上限値C以上の
場合、又は、ステップ0において温度変化率Rが温度変
化率上限値C−以上である場合には、上記と同様にその
信号が速度調整器6、加熱温度調整器7に伝達されてラ
ム速度及び次回ビレット加熱温度が制御される(ステッ
プ■、ステップJ)。 また、ステップFにおいて多色温度測定値Ctが形材下
限温度設定値り以下あるいは温度差C6が温度差下限値
E以下の場合は、その信号が速度調整器6、加熱温度調
整器7に伝達されて、次回ビレット加熱温度Tn+1=
TnXB−が制御されると共に、次回ラム速度Rv、や
+=VnXA−が制御される(ステップK、ステップL
)。ここでB−は次回ビレット加熱温度係数で、1より
大きい値でよいが、望ましくは形材2の押出性と生産性
を考慮して決定され、A2000系、A3000系の場
合は、B==1.02、A100O系、A6000系の
場合は、B−=1.05にとる。 また、A′は次回ラム速度係数で、1より大きい値でよ
いが、望ましくは同様に形材2の押出性と生産性を考慮
して決定され、A2000系、A3000系の場合は、
A′=1.02、A100O系、A6000系の場合は
、A−=1.1にとる。 なお、上記実施例では形材2の表面実体温度検出手段が
多色赤外線放射温度計3である場合について説明したが
、この多色赤外線放射温度計3にかえて渦電流測定器を
使用することもできる。また、上記実施例では表面欠陥
温度検出手段に単色赤外線放射温度計4を使用した場合
について説明したが、必ずしも表面欠陥温度検出手段は
単色赤外線放射温度計4である必要はなく、例えばホト
センサーを直線状に並べた撮像素子と走査駆動回路と映
像処理回路とで構成されるセンサー装置、あるいは、レ
ーザーによる光電子増幅管等を使用することができる。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a schematic diagram of the extrusion control device of the present invention. The extrusion control device of the present invention includes a surface temperature detection means 3 for measuring the surface temperature of an extruded section 2 immediately after extrusion (hereinafter referred to as the section) extruded by an extruder 1; 3. At the same time, a surface defect temperature detection means 4 measures the surface defect temperature of the profile, a signal judgment means 5 compares and calculates the signals from both temperature detection means 3 and 4 with a preset setting value, and a signal judgment means 3. A speed regulator 6 for controlling the ram speed of the extruder 1 in response to a signal from the means 5, and a heating temperature regulator 7 for controlling the heating temperature of the billet heating device 7a in response to a signal from the signal determining means 5. The main parts are configured. The surface substantial temperature detection means 3 is formed, for example, by a multicolor infrared radiation thermometer, and the surface defect temperature detection means 4 is formed by a monochromatic infrared radiation thermometer. That is, a TrueSet having the following specifications as the multicolor infrared radiation thermometer 3 is used.
120GO (manufactured by Williamson) can be used. TroeSel12000 specifications/Accuracy: ±1% (full scale) ・Temperature measurement range = 400 to 600℃ ・Reproducibility: ±0.5% ・Ambient environment temperature: 5 to 45℃ ・Response time = 0.5 to 15 seconds (Adjustable)・Linear ratio crab O~10mVdc, 0~100 made, 0~
I Vdc 1~5 mA or 4~20 mA ・Power supply: 100/200Vac, 50/60H
Furthermore, as the monochromatic infrared radiation thermometer 4, a Thermo Spot Sensor (manufactured by Japan Sensor Corporation) having the following specifications can be used. Thermo Spot Sensor Specifications - Accuracy: Within ±1% (full scale) - Temperature measurement range: 100 - 2000°C - Ambient environment temperature = 10 - 42°C (circuit part) - Response time = 0.1 seconds ( Standard specifications) ・Linear ratio 0 to IV, mV/℃ ・Output linearity: Linear ・Power supply: 100VIC, 120Vac, 200Va
c, specify one of 220Vac, 240Vac, 50/60 H2 Both of the above infrared radiation thermometers 3
, 4 detect the surface position of the profile 2 immediately after being molded by the die 8 of the extruder 1, that is, the surface of the profile 2 located inside the platen 9, as shown in FIGS. 2 and 3. It is arranged so that it can be done. In addition, in FIGS. 2 and 3, reference numeral 10 is a container, and reference numeral 11 is a container 10.
13 is a table, and 14 is an optical axis of a multicolor infrared radiation thermometer 3 and a monochromatic infrared radiation thermometer 4. The signal determining means 5 is formed by a microcomputer having a central processing unit (CPU). Next, the extrusion control method of the present invention will be explained with reference to the flowchart shown in FIG. First, as shown in step A, the billet heating temperature T is determined. After initially setting the billet 12 and carrying it into the extruder 1 (step B), the first ram speed Rv is set as shown in step C (Rv = V), and extrusion is started. Then, the multicolor infrared radiation thermometer 3 and the monochromatic infrared radiation thermometer 4
At the same time, the actual surface temperature and surface defect temperature of the shaped material 2 immediately after extrusion are measured (Step D1, Step M). The measurement value Ct measured by the multicolor infrared radiation thermometer 3 is compared with a preset upper limit temperature setting value Ctmax of the shape material (step E). Here, the upper limit temperature setting value Ctma of the shape material
x, varies depending on the material of the section 2, but for example, A2
For the 014 alloy, the set value is 500° C. based on the graph showing the relationship between tearing depth and profile temperature shown in FIG. Further, for the A3056 alloy, the set value is 500° C. based on the graph shown in FIG. 6 showing the relationship between the temperature difference between monochrome and multicolor and the maximum temperature of the multicolor infrared radiation thermometer 3. If the measured value Ct is lower than the upper limit temperature setting value Cjmax of the shaped material set in this way, a comprehensive judgment is made (Step F).
. On the other hand, as shown in step M, the monochromatic infrared radiation thermometer 4
As shown in step N, the measured value Cs measured by the multicolor infrared radiation thermometer 3 is the measured value Cs measured by the multicolor infrared radiation thermometer 3.
t, that is, C3ct=co, is less than or equal to the preset temperature difference upper limit value C? is determined (step N), and whether the temperature change rate R is less than or equal to the temperature change rate upper limit value C'? is determined (step O). here,
As shown in Fig. 7, the temperature difference C6 is the surface actual temperature (indicated as multicolor in Fig. 7) and the surface defect temperature (indicated as monochrome in Fig. 7) for each number of billets.
However, the influence of the number of billets is such that the surface deteriorates with extrusion when the number of billets exceeds approximately 5, so here the temperature difference C8 of the number of billets is expressed. Further, the temperature difference upper limit value C varies depending on the material of the profile 2, but for example, A2
For the 014 alloy, 10°C was set as the upper limit of the temperature difference based on the graph of the relationship between surface temperature and time shown in Figure 8, and for the A3056 alloy, the graph of the relationship between temperature difference and time shown in Figure 7 was set. 5°C is set as the upper limit value of the temperature difference. Further, the temperature change rate R of the monochromatic infrared radiation thermometer 4 is defined as follows (see FIG. 9). R = (Cs - - Cs) / (s - -s) (℃/sec) Here, if Cs'' - C8 = 20℃ and 5 - -s = 0.2 to 1 (second), the temperature change The temperature change rate upper limit C' is a constant value for the temperature change rate R of the monochromatic infrared radiation thermometer 4. The temperature change rate upper limit C' shown in FIG. ', the standard extrusion speed W of the shape material, and the temperature measurement time interval (s--s) can be used to determine the temperature change rate upper limit C' and the temperature measurement time interval (s''-s). Here, for example, the relationship between the aluminum alloy and the standard extrusion speed of the shape material is shown in Table 1 below. Table 1 As described above, if the temperature difference C8 and the temperature difference change rate R are less than the set value C or C', a comprehensive judgment is made (step F). In other words, is the measured value Ct greater than or equal to the lower limit temperature setting value for the shape material? In addition, multicolor infrared radiation thermometer 3
Is the temperature difference C6 between the measured values Ct and Cs of the monochromatic infrared radiation thermometer 4 greater than or equal to the temperature difference lower limit value E? is determined (step F). Here, the lower limit temperature setting value for the shape material differs depending on the material of the shape material 2, but for example, in the case of A2014 alloy, from the graph showing the relationship between the tearing depth and the shape material temperature shown in FIG.
The set value is ℃. Below this temperature, there are fewer surface defects, but the mechanical strength (properties) decreases. Also, A3056
For alloys, as shown in the graph shown in Figure 6 which shows the relationship between the temperature difference between monochrome and multicolor and the maximum temperature of the multicolor infrared radiation thermometer 3, the setting value of the lower limit temperature of the shape should not be specified. You don't have to. Further, the temperature difference lower limit value E also varies depending on the material of the profile 2, but is set to 2 to 5°C here. If the comprehensive judgment is made and the conditions are satisfied as shown in step F, is the billet extrusion completed or not? is determined (step G). And whether to extrude the final 10 billets as shown in step H? is determined, and in the case of the last billet, extrusion molding ends. On the other hand, if the multicolor temperature measurement value Ct is equal to or higher than the upper limit temperature setting value Ctmax in step E, the signal is sent to the speed regulator 6 to change the ram speed RVn++ (step 2). In other words, the previous ram speed setting value Vn is multiplied by the ram speed coefficient A (Rv, -, +
) changes and controls. Here, the ram speed coefficient A may be a value smaller than 1, but it is preferably determined by considering the extrudability and productivity of the shape material 2, and in the case of A1000 series and A6000 series, it is For A3000 series, A=0.8. Further, the above signal is transmitted to the heating temperature regulator 7 to control the next billet heating temperature (step J). That is, the next billet heating temperature T. −1=TnX13 is set. Here, B is the next billet heating coefficient, which may be a value smaller than 1, but is preferably determined in consideration of the extrudability and productivity of the shape material, and A200
For 0 series and A3000 series, B=0.98, A100
In the case of O series and A6000 series, B=0.95. If the temperature difference C6 is greater than or equal to the temperature difference upper limit C in step N, or if the temperature change rate R is greater than or equal to the temperature change rate upper limit C- in step 0, the signal is sent to the speed regulator in the same manner as above. 6. The temperature is transmitted to the heating temperature regulator 7, and the ram speed and next billet heating temperature are controlled (Step 2, Step J). Further, in step F, if the multicolor temperature measurement value Ct is below the lower limit temperature setting value of the shape material or the temperature difference C6 is below the temperature difference lower limit value E, the signal is transmitted to the speed regulator 6 and the heating temperature regulator 7. Then, the next billet heating temperature Tn+1=
TnXB- is controlled, and the next ram speed Rv, +=VnXA- is controlled (step K, step L
). Here, B- is the next billet heating temperature coefficient, which may be a value larger than 1, but is preferably determined by considering the extrudability and productivity of the shape material 2. In the case of A2000 series and A3000 series, B== 1.02, and in the case of A100O series and A6000 series, B-=1.05. In addition, A' is the next ram speed coefficient, which may be a value larger than 1, but is preferably determined in consideration of the extrudability and productivity of the section 2. In the case of A2000 series and A3000 series,
In the case of A'=1.02, A100O series and A6000 series, A-=1.1. In the above embodiment, the case where the surface temperature detection means of the profile 2 is a multicolor infrared radiation thermometer 3 has been described, but an eddy current measuring device may be used instead of the multicolor infrared radiation thermometer 3. You can also do it. Furthermore, in the above embodiment, a case has been described in which the monochromatic infrared radiation thermometer 4 is used as the surface defect temperature detecting means, but the surface defect temperature detecting means does not necessarily have to be the monochromatic infrared radiation thermometer 4. For example, a photo sensor is used as the surface defect temperature detecting means. A sensor device composed of linearly arranged image pickup elements, a scanning drive circuit, and an image processing circuit, a photoelectron amplifier tube using a laser, or the like can be used.

【発明の効果】【Effect of the invention】

以上に説明したように、この発明は上記のように構成さ
れているので、以下のような効果が得られる。 1)押出形材の押出直後の表面実体温度と表面欠陥温度
を測定し、その測定値に基いてラム速度及びビレット加
熱温度を制御するため、形材の品質(形状、表面欠陥及
び組織等)を向上することができる。 2)ラム速度を表面欠陥の発生しない範囲で可能な限り
大きくすることができるので、生産性が向上する。 3)形材表面欠陥の見落しによる不良の発生を防止し、
歩留りを向上させることができる。
As explained above, since the present invention is configured as described above, the following effects can be obtained. 1) Measure the actual surface temperature and surface defect temperature of the extruded section immediately after extrusion, and control the ram speed and billet heating temperature based on the measured values, so the quality of the section (shape, surface defects, texture, etc.) can be improved. 2) Productivity is improved because the ram speed can be increased as much as possible without causing surface defects. 3) Preventing defects due to overlooked surface defects of the shape material,
Yield can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の押出形材の制御装置の概略構成図、
第2図はこの発明における表面実体温度検出手段及び表
面欠陥温度検出手段の配置状態を示す概略構成図、第3
図は第2図の側面図、第4図はこの発明の制御方法を説
明するフローチャート、第5図はテアリング深さと形材
温度の関係を示すグラフ、第6図は温度差と多色赤外線
放射温度計の最高温度の関係を示すグラフ、第7図は形
材の表面温度と時間の関係を示すグラフ、第8図は別の
形材の表面温度と時間の関係を示すグラフ、第9図は第
8図に示す単色赤外線放射温度計による形材表面温度と
時間の関係の一部を拡大して示すグラフ、第10図は温
度変化率、形材押出標準速度及び温度測定時間間隔の関
係を示すグラフである。 符号説明 (1)・・・押出機 (2)・・・押出形材 (3)・・・表面実体温度検出手段 (多色赤外線放射温度計) (4)・・・表面欠陥温度検出手段 (単色赤外線放射温度計) (5)・・・信号判断手段 (6)・・・速度調整器 (7)・・・加熱温度調整器 第 図 形材温度(°C) 多色赤外線放射温度計の最高、1度(°C)第7図 時間(秒)
FIG. 1 is a schematic diagram of a control device for an extruded shape according to the present invention;
FIG. 2 is a schematic configuration diagram showing the arrangement of the surface substantial temperature detection means and surface defect temperature detection means in the present invention;
The figure is a side view of Figure 2, Figure 4 is a flowchart explaining the control method of the present invention, Figure 5 is a graph showing the relationship between tearing depth and profile temperature, and Figure 6 is temperature difference and multicolor infrared radiation. A graph showing the relationship between the maximum temperature of a thermometer, Figure 7 is a graph showing the relationship between the surface temperature of a shape and time, Figure 8 is a graph showing the relationship between the surface temperature of another shape and time, Figure 9 is a graph showing an enlarged part of the relationship between the surface temperature of the shape and time measured by the monochromatic infrared radiation thermometer shown in Figure 8, and Figure 10 is the relationship between the rate of temperature change, the standard extrusion speed of the shape, and the temperature measurement time interval. This is a graph showing. Description of symbols (1)...Extruder (2)...Extruded shape (3)...Surface substantial temperature detection means (multicolor infrared radiation thermometer) (4)...Surface defect temperature detection means ( Single color infrared radiation thermometer) (5)...Signal judgment means (6)...Speed regulator (7)...Heating temperature regulator Figure material temperature (°C) Maximum of multicolor infrared radiation thermometer , 1 degree (°C) Figure 7 Time (seconds)

Claims (2)

【特許請求の範囲】[Claims] (1)押出直後の形材表面温度を表面実体温度検出手段
及び表面欠陥温度検出手段にて連続測定し、その際、上
記表面実体温度検出手段の測定値(Ct)が予め設定し
た上限温度(Ctmax.)を越えないようにすると共
に、上記表面欠陥温度検出手段によって測定された表面
欠陥温度(Cs)と上記表面実体温度検出手段にて測定
された表面実体温度(Ct)との温度差(Co)又は上
記表面欠陥温度検出手段にて測定された温度変化率(R
)が一定値(C又はC′)以内になるように押出機のラ
ム速度及びビレット加熱温度を制御するようにしたこと
を特徴とする押出形材の押出制御方法。
(1) The surface temperature of the shaped material immediately after extrusion is continuously measured by the surface substance temperature detection means and the surface defect temperature detection means, and at that time, the measured value (Ct) of the surface substance temperature detection means is the preset upper limit temperature ( Ctmax.) and the temperature difference (Cs) measured by the surface defect temperature detection means and the surface substance temperature (Ct) measured by the surface substance temperature detection means. Co) or the temperature change rate (R
) is within a certain value (C or C'), the ram speed of the extruder and the billet heating temperature are controlled.
(2)押出直後の形材の表面実体温度を測定する表面実
体温度検出手段と、 上記表面実体温度検出手段と同時に形材の表面欠陥温度
を測定する表面欠陥温度検出手段と、上記両温度検出手
段からの信号と予め設定された設定値とを比較演算する
信号判断手段と、上記信号判断手段からの信号を受けて
押出機のラム速度を制御する速度調整器と、 上記信号判断手段からの信号を受けてビレットの加熱温
度を制御する加熱温度調整器とを具備して成ることを特
徴とする押出形材の押出制御装置。
(2) Surface substantial temperature detection means for measuring the surface temperature of the shaped material immediately after extrusion; Surface defect temperature detection means for simultaneously measuring the surface defect temperature of the shaped material; a signal judgment means for comparing and calculating a signal from the signal judgment means with a preset setting value; a speed regulator for controlling the ram speed of the extruder in response to a signal from the signal judgment means; 1. An extrusion control device for extruded shapes, comprising: a heating temperature regulator that controls the heating temperature of a billet in response to a signal.
JP2199313A 1990-07-30 1990-07-30 Method and apparatus for controlling extrusion of extruded profile Expired - Fee Related JPH07121409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199313A JPH07121409B2 (en) 1990-07-30 1990-07-30 Method and apparatus for controlling extrusion of extruded profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199313A JPH07121409B2 (en) 1990-07-30 1990-07-30 Method and apparatus for controlling extrusion of extruded profile

Publications (2)

Publication Number Publication Date
JPH0489128A true JPH0489128A (en) 1992-03-23
JPH07121409B2 JPH07121409B2 (en) 1995-12-25

Family

ID=16405727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199313A Expired - Fee Related JPH07121409B2 (en) 1990-07-30 1990-07-30 Method and apparatus for controlling extrusion of extruded profile

Country Status (1)

Country Link
JP (1) JPH07121409B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325694A (en) * 1993-03-15 1994-07-05 Granco Clark, Inc. Extrusion billet taper quenching system
US5435161A (en) * 1993-10-22 1995-07-25 Aluminum Company Of America Extrusion method utilizing variable billet preheat temperature
JP2009248188A (en) * 2008-04-11 2009-10-29 Sumitomo Light Metal Ind Ltd Extrusion method for metallic material
CN107930531A (en) * 2017-11-17 2018-04-20 汪高华 A kind of mixing granulation pelletizing machine with firing and explosion prevention

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119324A (en) * 1984-11-14 1986-06-06 Fujisash Co Temperature measuring method of aluminum extrusion shape stock and method and device for extrusion control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119324A (en) * 1984-11-14 1986-06-06 Fujisash Co Temperature measuring method of aluminum extrusion shape stock and method and device for extrusion control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325694A (en) * 1993-03-15 1994-07-05 Granco Clark, Inc. Extrusion billet taper quenching system
US5435161A (en) * 1993-10-22 1995-07-25 Aluminum Company Of America Extrusion method utilizing variable billet preheat temperature
JP2009248188A (en) * 2008-04-11 2009-10-29 Sumitomo Light Metal Ind Ltd Extrusion method for metallic material
CN107930531A (en) * 2017-11-17 2018-04-20 汪高华 A kind of mixing granulation pelletizing machine with firing and explosion prevention
CN107930531B (en) * 2017-11-17 2023-10-13 汪高华 Mixed granulating and granulating machine with explosion-proof and flame-proof functions

Also Published As

Publication number Publication date
JPH07121409B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
EP0089130A1 (en) System for controlling temperature of molten resin in cylinder of extruder
JPH0489128A (en) Method and device for controlling extrusion of extruded shape material
JP2007098756A (en) Method and system for control of vulcanization
JP3258325B2 (en) Apparatus for extruding and processing metal or plastic profiles
US7354492B2 (en) Method for optimising the production technology of rolled products
US20100236310A1 (en) Edge flatness monitoring
JPH03281008A (en) Generation of heat streak predicting method and temperature sensor roll
US5116554A (en) Method of making a film having uniform thickness
JP3776622B2 (en) Product temperature control method during extrusion quenching
JPH08193887A (en) Method for measuring temperature of material in hot rolling line
JP2576298B2 (en) Pipe length measuring method and apparatus
JP6625908B2 (en) Preforming equipment and method for forging
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
JPH1134095A (en) Method and apparatus for measuring bank size in bank molding
JP3610338B2 (en) Method and apparatus for temper rolling of metal strip
JP2797055B2 (en) Die height control method of forging press
Husmann et al. Measurement of rings via image processing during and after radial-axial ring rolling
EP2357263A1 (en) Method for controlling variation of grain refining ability of al-ti-c alloy by controlling compression ratio
JP3234001B2 (en) Vulcanizer temperature controller
CN118023307A (en) Infrared temperature measuring device for hot-rolled aluminum plate and precision compensation method
WO2002016869A1 (en) Method of detecting and identifying thickness of sheet-like food, method of manufacturing sheet-like food, and devices therefor
JP2738571B2 (en) Automatic extrusion system
KR100273099B1 (en) Measure and cutting system for crop
JP2000343588A (en) Method for extrusion-molding synthetic resin pipe
JP3310181B2 (en) Extrusion control method and extrusion control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees