JPH048886A - Pressurized storage pump - Google Patents

Pressurized storage pump

Info

Publication number
JPH048886A
JPH048886A JP11058290A JP11058290A JPH048886A JP H048886 A JPH048886 A JP H048886A JP 11058290 A JP11058290 A JP 11058290A JP 11058290 A JP11058290 A JP 11058290A JP H048886 A JPH048886 A JP H048886A
Authority
JP
Japan
Prior art keywords
water
elevated
pumping
pump
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11058290A
Other languages
Japanese (ja)
Inventor
Wataru Takahashi
亘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUGA KOGYO KK
Original Assignee
SUGA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUGA KOGYO KK filed Critical SUGA KOGYO KK
Priority to JP11058290A priority Critical patent/JPH048886A/en
Publication of JPH048886A publication Critical patent/JPH048886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Domestic Plumbing Installations (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Pipeline Systems (AREA)

Abstract

PURPOSE:To simplify the constitution of a pumping system with the use of a single column pipe in an elevated tank system for zoning by installing at least one or more storage pumps and the like having a control means capable of changing a flowrate at constant delivery pressure, and actuated on the basis of output from a pressure sensor. CONSTITUTION:When a water amount in a given elevated tank 9 is reduced to a water replenishment level, a control panel 14 opens a feed valve 10, according to detection by a level gauge 12. Also, the control panel 14, upon receipt of a signal from a pressure sensor 6 for detecting a pressure drop due to the opening of the feed valve 10, actuates the first and second variable speed pump units, corresponding to tanks for water pumping. Furthermore, when water is pumped into the predetermined elevated tank 9 and nears a full level, the control panel 14 controls the operation of storage pumps 4 and 7, according to output from the level gauge 12, and adjusts a delivery rate. In this case, the predetermined floor of a building is provided with a plurality of the elevated tanks 9, according to a zoning, and the tanks 9 are connected to a single column pipe 8 continuous to a reservoir 3 via an attached feed valve 10.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は加圧揚水システムに関し、更に詳述すれば、高
層建築等の給水方式として知られる高架水槽方式が複数
系統に分けられて構成される所謂ヅーニングによる給水
を行う場合に好適となる加圧揚水システムに関する。
The present invention relates to a pressurized water pumping system, and more specifically, the present invention relates to a pressurized water pumping system, and more specifically, the present invention relates to a pressurized water pumping system that is suitable for supplying water by so-called zoning, which is constructed by dividing the elevated water tank system, which is known as a water supply system for high-rise buildings, into multiple systems. Regarding pumping systems.

【従来の技術】[Conventional technology]

従来、高層建築物等に適用される高架水槽方式において
、給水が大規模化した場合、高架水槽への揚水は複数系
統にゾーン化されて行っている。 第2図は、ゾーニングを行った給水方式を例示したもの
で、給水エリアに応してゾーニングにされた複数の高架
水槽が、水道本管1と連通した一つの受水槽3とヘッダ
20を介してそれぞれ別系の揚水管21〜25で接続さ
れ、且つ各県に配置した揚水ポンプ26〜30により揚
水されている。 又、各高架水槽9はリレー31を付属した複数電極32
が配置され、該水槽の液面が検出されて対応する揚水ポ
ンプが運転されると共に、この電極からの電気信号は中
央監視盤33に導かれて各水槽における満水及び減水警
報を表示している。
Conventionally, in the elevated water tank system applied to high-rise buildings, etc., when the scale of water supply becomes large, water is pumped to the elevated water tank in multiple zones. FIG. 2 shows an example of a water supply system with zoning, in which a plurality of elevated water tanks zoned according to the water supply area are connected to one water tank 3 communicating with the water main 1 via a header 20. The water is connected by separate pumping pipes 21 to 25, and pumped up by pumps 26 to 30 located in each prefecture. Moreover, each elevated water tank 9 has a plurality of electrodes 32 attached to a relay 31.
is arranged, the liquid level of the tank is detected and the corresponding water pump is operated, and the electrical signal from this electrode is led to the central monitoring board 33 to display full and low water alarms for each tank. .

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、このようなゾーニングを行う給水方式で
は、図からも明らかな通り、複数の揚水管及びこの揚水
管と同数の揚水ポンプを必要として、揚水配管系を複雑
にした。又、このような複雑な配管系は、施工を難しく
すると共に、多くの労力及び工期を必要とした。 更に、複数の揚水管等を使用することは、その分設置ス
ペースを占めることになり、換言すれば、例えばポンプ
機械室或いはパイプシャフトはこれら設置のためにスペ
ース拡大が要求された。 又、−本の揚水管による一台の揚水ポンプでの揚水は、
ポンプ性能及び配管系を構成する各部の耐圧性等の限界
から揚水できる高さに制限を生じ、現時点では数百mを
越す様な超高層建物には対応できなかった。 本発明は、上記欠点を解消するためになされたものであ
り、ゾーニングを行う高架水槽方式に於いて好適となる
加圧揚水システムを提供することにある。
However, as is clear from the figure, the water supply system that performs such zoning requires a plurality of pumping pipes and the same number of pumps as the pumping pipes, making the pumping piping system complicated. Moreover, such a complicated piping system made construction difficult and required a lot of labor and construction time. Furthermore, the use of a plurality of pumping pipes, etc., occupies installation space accordingly, and in other words, for example, the space for the pump machine room or pipe shaft needs to be expanded to accommodate these. In addition, the pumping of water with one pump using - lifting pipes is as follows:
The height at which water can be pumped is limited due to limitations in pump performance and the pressure resistance of each part of the piping system, and at present it cannot be used in super high-rise buildings over several hundred meters tall. The present invention has been made in order to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a pressurized water pumping system suitable for an elevated water tank system that performs zoning.

【課題を解決するための手段】[Means to solve the problem]

本発明の上記目的は、少なくとも一つ以上の高架水槽と
、一つの受水槽と前記高架水槽を接続する一本の揚水管
と、前記高架水槽の貯水量を検出するレベルセンサと、
該レベルセンサの出力に基づき前記高架水槽に付属の給
水弁を制御する制御装置と、前記揚水管内の圧力を検出
する圧力センサと、前記揚水管に配置され、吐水圧一定
にして変流量できる制御手段を有し且つ前記圧力センサ
の出力に基づいて起動される少なくとも一台以上の揚水
ポンプと、を備えた加圧揚水システムにより達成される
The above-mentioned object of the present invention is to provide at least one elevated water tank, one water receiving tank and one water pump connecting the elevated water tank, and a level sensor that detects the amount of water stored in the elevated water tank.
A control device that controls a water supply valve attached to the elevated water tank based on the output of the level sensor, a pressure sensor that detects the pressure in the pumping pipe, and a control that is arranged in the pumping pipe and can vary the amount of water while keeping the discharge pressure constant. This is achieved by a pressurized water pumping system including at least one water pump that is activated based on the output of the pressure sensor.

【作用】[Effect]

揚水管を一本としたことにより、揚水系の構成を簡素化
し、設置スペースの削減が図れる。又、同様の理由から
、配管工事が簡単化でき且つ工期も短縮できる。 又、必要に応じて、−本の揚水管路中に複数の揚水ポン
プを設置すると、揚水系各部の耐圧性或いは一台の揚水
ポンプのポンプ性能を越えて揚水を行うことができ、例
えば超高層建物に於いでもの対応できる。 又、レベルセンサの設置により、高架水槽内の貯水量の
増減を段階的に検出し、且つ表示できる。
By using only one pumping pipe, the configuration of the pumping system can be simplified and the installation space can be reduced. Furthermore, for the same reason, piping work can be simplified and the construction period can be shortened. Also, if necessary, by installing multiple pumps in one pumping pipe, it is possible to pump water that exceeds the pressure resistance of each part of the pumping system or the pump performance of a single pump. Can be used in high-rise buildings. Furthermore, by installing a level sensor, it is possible to detect and display stepwise increases and decreases in the amount of water stored in the elevated water tank.

【実施例】【Example】

以下、本発明の実施例を図面に基づいて詳説する。 第1図の一実施例に於いて、従来例と同一構成要素につ
いては同一符号を用いて説明する。 回に於いて、本発明の加圧揚水システムは、建物階下に
設置された一つの受水槽3と水道本管1が引込管2を介
して接続されており、水道本管から給水された水が該受
水槽3に貯水される。 建物の所定階には、ゾーニングにより複数の高架水槽(
本実施例では7つ)9が設置されており、各高架水槽9
は付属する給水弁10を介して前記受水槽3と連通した
一本の揚水管8と接続されている。 前記揚水管8の上流側、すなわち前記受水槽3の出口近
くの管路には、−台の揚水ポンプ4と該ポンプに組み込
まれたインバータ制御器5とからなる第1の可変速ポン
プユニットが配置されており、前記揚水ポンプ4は前記
受水槽3に貯水された水を前記高架水槽9へ加圧揚水で
きる。 なお、前記インバータ制御器5は、前記揚水ポンプ4の
吐水圧力を一定にして吐水量が変量できるように該ポン
プを制御する。 前記揚水ポンプ後流の揚水管8には、揚水管内の圧力を
計測できる圧力センサ6が設けられており、該圧力セン
サ6は前記給水弁10の開閉により生しる圧力変動を検
知すると共に、制御装置を構成する制御盤14と接続さ
れてその出力を該制御盤14へ供給する。 前記圧力センサ6の下流は、逃がし弁15を介して前記
揚水管8が分岐されている。又、前記揚水管8はその配
管路の途中に、咳管路と並置される第2の可変速ポンプ
ユニットを備えている。 この第2の可変速ポンプユニットは中継ポンプとして作
用するもので、先の第1の可変速ポンプユニットと同様
の揚水ポンプ7及び該ポンプに組み込まれたインバータ
制御器5とからなり、基本的には同じ作動原理で動作す
る。 前記第2の可変速ポンプユニットに該当するポンプユニ
ットは、建物の高層化或いは大規模化に伴って給水シス
テムをヅーニングする場合、所定数設置される。一方、
前記ポンプユニントは、複数の高架水槽からの同時給水
要求の可能性に対し、同時給水率を考慮した複数系読分
に対応して、その設置台数及び揚水能力が決定される。 即ち、全系統からの同時給水要求を見込んで設置台数及
び揚水能力を設定することは、不経済である。そのため
仮に、揚水ポンプの揚水能力を超える給水要求が発生し
た場合、前記制御盤14は給水中の高架水槽9の中で貯
水量の多い順に従って対応する水槽の給水弁10を強制
的に閉じ、揚水能力の範囲内で低水位の高架水槽から優
先的に給水を行うように構成している。 なお、この第2の可変速ポンプユニットの後流にも、圧
力センサ6が同様に配置されている。 前記揚水管8と接続された高架水槽9は、下記に述べる
如く構成されるが、ここでは、各水槽は同一構成を有し
ているので、一つの高架水槽について述べるものとする
。 前記高架水槽9は給水管11が接続されており、貯水し
た水が該給水管11を介して重力式により各給水箇所へ
給水される。又、前記高架水槽9は、該水槽の液面を測
定するレベルセンサとしての超音波液面計12を備えて
おり、該液面計出力は変換器13を介して前記制御盤1
4に供給される。 前記制御盤14は前記超音波液面計12からの出力信号
と、前記高架水槽9の水位に応して予め設定される設定
値とを比較し、その結果を、図示しない中央監視パネル
に出力して該パネルが前記高架水槽9の水位を低水位、
補給水位、補給停止水位、満水位の4段階表示できるよ
うに構成している。 又、前記制御盤14は、上記の比較結果に基づいて、対
応する高架水槽9が補給水位を示した場合に前記給水弁
10を開放すると共に、高架水槽9が補給停止水位を示
した場合に前記給水弁10を閉塞できる制御系を備えて
いる。 更に、前記制御盤14は前記給水弁の開閉等により、前
記圧力センサ6が圧力変動を検出した際、この出力に基
づいて前記第1及び第2の可変速ポンプユニットの発停
制御及び流量制御できるように構成している。一方、前
記制御盤14は、配管中に配置される例えば図示しない
逆止弁等の故障により、揚水管8内が異常な高圧になっ
た場合、中央監視パネルに警報信号を送ると共に、前記
逃がし弁15を開放して管内の圧力を低下させるように
構成しており、これにより、システム保護が達成できる
ようになっている。 レベルセンサに適用される前記超音波液面計は、水槽内
の水と上方の空間との境界で超音波を反射させ、それが
戻ってくるまでの時間を測定して、レベル検出しており
、レベルをアナログ的に検出できる。なお、レベルセン
サとしては、この他に公知のフロート式レベルセンサ、
放射線レベルセンサ、差圧式レベルセンサ等の各種セン
サを使用することができる。 又、圧力センサとしては、液面型マノメータ、静電容量
式圧力センサ、半導体圧力センサ等を用いることができ
る。 なお、図示はしてないが、上記実施例の構成においても
、高架水槽方式で通常使用される各弁類及び機器類等は
従来と同様設置されている。 上記のように構成した加圧揚水システムでは、任意の高
架水槽9の貯水量が減って補給水位に達すると、前記液
面計12の検知により制御盤14は所定の給水弁10を
開く。又、前記制御盤14は前記給水弁10の開放によ
る圧力低下を検知する圧力センサ6から信号を受は取る
と、揚水される水槽に対応して第1及び第2の可変速ポ
ンプユニットを、又は何れか一方の可変速ポンプユニッ
トを駆動する。所定の高架水槽9が揚水されて満水状態
に近づくと、制御盤14は液面計12の出力に応じて前
記揚水ポンプ4.7の運転を制御して吐水流量を調整す
る。やがて高架水槽が満水状態になると、制御盤14は
前記給水弁10を閉じると同時に、この状態を検出する
圧力センサ6からの信号に基づいて前記揚水ポンプ4.
7の運転を停止する。又、前記制御盤14は、複数の高
架水槽9から同時に給水要求が生じた場合、各水槽の給
水弁10を開いてそれぞれの水槽に対して揚水を行う。 その際、揚水ポンプの揚水能力を超える給水要求が発生
した場合、既述したように制御され、低水位の水槽から
優先的に給水される。これにより、揚水ポンプは運転効
率が高くなり、−本の揚水管で複数系統の高架水槽への
給水が可能になる。
Hereinafter, embodiments of the present invention will be explained in detail based on the drawings. In the embodiment shown in FIG. 1, the same components as in the conventional example will be described using the same reference numerals. In the pressurized water pumping system of the present invention, one water tank 3 installed under the building floor and a water main pipe 1 are connected via a service pipe 2, and the water supplied from the water main pipe is is stored in the water tank 3. Due to zoning, multiple elevated water tanks (
In this embodiment, seven (7) 9 are installed, and each elevated water tank 9 is installed.
is connected to one water pumping pipe 8 communicating with the water receiving tank 3 via an attached water supply valve 10. On the upstream side of the pumping pipe 8, that is, in the pipeline near the outlet of the water receiving tank 3, there is a first variable speed pump unit consisting of - pumps 4 and an inverter controller 5 built into the pumps. The water pump 4 can pump water stored in the water tank 3 to the elevated water tank 9 under pressure. The inverter controller 5 controls the water pump 4 so that the discharge pressure of the water pump 4 can be kept constant and the amount of water discharged can be varied. A pressure sensor 6 capable of measuring the pressure inside the pump is provided in the water pump 8 downstream of the water pump, and the pressure sensor 6 detects pressure fluctuations caused by opening and closing of the water supply valve 10. It is connected to a control panel 14 constituting a control device and supplies its output to the control panel 14. The pumping pipe 8 is branched downstream of the pressure sensor 6 via a relief valve 15 . Further, the water pumping pipe 8 is provided with a second variable speed pump unit in the middle of the pipe line, which is arranged in parallel with the cough pipe line. This second variable speed pump unit acts as a relay pump, and basically consists of a lift pump 7 and an inverter controller 5 built into the pump, similar to the first variable speed pump unit. operate on the same working principle. A predetermined number of pump units corresponding to the second variable speed pump unit are installed when a water supply system is to be downsized as buildings become taller or larger. on the other hand,
The number of pump units to be installed and the pumping capacity of the pump units are determined in response to multiple system readings that take into account the simultaneous water supply rate, with respect to the possibility of simultaneous water supply requests from a plurality of elevated water tanks. That is, it is uneconomical to set the number of installed units and pumping capacity in anticipation of simultaneous water supply requests from all systems. Therefore, if a water supply request that exceeds the pumping capacity of the water pump occurs, the control panel 14 forcibly closes the water supply valves 10 of the corresponding water tanks in order of the amount of water stored in the elevated water tanks 9 that are being supplied with water. The structure is configured so that water is supplied preferentially from the elevated water tank with the lowest water level within the pumping capacity. Note that a pressure sensor 6 is similarly arranged downstream of this second variable speed pump unit. The elevated water tank 9 connected to the water pumping pipe 8 is constructed as described below, but here, since each water tank has the same configuration, one elevated water tank will be described. A water supply pipe 11 is connected to the elevated water tank 9, and the stored water is supplied to each water supply location via the water supply pipe 11 by gravity. Further, the elevated water tank 9 is equipped with an ultrasonic liquid level gauge 12 as a level sensor for measuring the liquid level of the water tank, and the output of the liquid level gauge is sent to the control panel 1 via a converter 13.
4. The control panel 14 compares the output signal from the ultrasonic level gauge 12 with a preset value set in accordance with the water level of the elevated water tank 9, and outputs the result to a central monitoring panel (not shown). Then, the panel lowers the water level of the elevated water tank 9 to a low water level,
It is configured to display four levels: replenishment water level, replenishment stop water level, and full water level. Also, based on the above comparison results, the control panel 14 opens the water supply valve 10 when the corresponding elevated water tank 9 indicates the replenishment water level, and opens the water supply valve 10 when the elevated water tank 9 indicates the replenishment stop water level. A control system that can close the water supply valve 10 is provided. Further, when the pressure sensor 6 detects a pressure fluctuation due to opening/closing of the water supply valve, etc., the control panel 14 controls the start/stop of the first and second variable speed pump units and the flow rate control based on this output. It is configured so that it can be done. On the other hand, if the inside of the pumping pipe 8 becomes abnormally high pressure due to a failure of a check valve (not shown) arranged in the piping, the control panel 14 sends an alarm signal to the central monitoring panel and The valve 15 is opened to reduce the pressure inside the pipe, thereby achieving system protection. The ultrasonic level gauge, which is applied to a level sensor, detects the level by reflecting ultrasonic waves at the boundary between the water in the aquarium and the space above, and measuring the time it takes for the ultrasonic waves to return. , the level can be detected analogously. In addition, as a level sensor, there are also known float type level sensors,
Various sensors such as radiation level sensors and differential pressure level sensors can be used. Further, as the pressure sensor, a liquid level manometer, a capacitive pressure sensor, a semiconductor pressure sensor, etc. can be used. Although not shown in the drawings, in the configuration of the above embodiment, valves, equipment, etc. that are normally used in the elevated water tank system are installed in the same manner as in the conventional system. In the pressurized water pumping system configured as described above, when the amount of water stored in any elevated water tank 9 decreases and reaches the make-up water level, the control panel 14 opens a predetermined water supply valve 10 as detected by the liquid level gauge 12. Further, when the control panel 14 receives a signal from the pressure sensor 6 that detects a pressure drop due to the opening of the water supply valve 10, it starts the first and second variable speed pump units corresponding to the water tank to be pumped. Or drive either variable speed pump unit. When a predetermined elevated water tank 9 is pumped with water and approaches a full state, the control panel 14 controls the operation of the water pump 4.7 according to the output of the liquid level gauge 12 to adjust the water discharge flow rate. When the elevated water tank eventually becomes full of water, the control panel 14 closes the water supply valve 10 and at the same time closes the water pump 4. based on a signal from the pressure sensor 6 that detects this state.
Stop operation of 7. Further, when a water supply request is made from a plurality of elevated water tanks 9 at the same time, the control panel 14 opens the water supply valve 10 of each tank to pump water to each tank. At this time, if a demand for water supply exceeds the pumping capacity of the water pump, control is performed as described above, and water is supplied preferentially from the tank with the lower water level. As a result, the operation efficiency of the water pump becomes high, and it becomes possible to supply water to multiple systems of elevated water tanks with -1 water pump.

【発明の効果】【Effect of the invention】

以上記載したとおり、本発明の加圧揚水システムは、揚
水管を一本としたことで、揚水系の配管が簡素化され、
これに伴う配管工事の簡単化と工期の短縮が図れる。又
、揚水管の削減とポンプ台数の減少から、これら機材が
占めるポンプ機械室やパイプシャフトでの占有スペース
を低減できる。 更に、中継ポンプを用いることにより、揚水系各部の耐
圧性或いは一台限りのポンプ性能を超えた揚水が可能と
なり、例えば超高層建物での揚水が可能となる。 本発明は、特にゾーニングを行う場合に有効となり、−
本の揚水管で揚水してポンプ台数を低減できることによ
り、契約電力を減らして経済的効果が得られる。 又、レベルセンサに超音波液面計を使用したことにより
、貯水量表示を行うことができる。
As described above, the pressurized water pumping system of the present invention has a single pumping pipe, which simplifies the piping of the pumping system.
This simplifies piping work and shortens the construction period. Furthermore, by reducing the number of pumping pipes and the number of pumps, the space occupied by these equipment in the pump machine room and pipe shaft can be reduced. Furthermore, by using a relay pump, it becomes possible to pump water that exceeds the pressure resistance of each part of the pumping system or the performance of a single pump, and for example, it becomes possible to pump water in a super high-rise building. The present invention is particularly effective when performing zoning, and -
By pumping water using a single pumping pipe and reducing the number of pumps, it is possible to reduce contracted power and obtain economic benefits. Furthermore, by using an ultrasonic liquid level gauge as a level sensor, the amount of water stored can be displayed.

【図面の簡単な説明】 第1図は本発明の一実施例二こよるシステム全体構成図
、第2図は従来例によるシステム構成図である。 図中符号 1・・・水道本管、 2・・・引込管、 3・・・受水槽、 4.7・・・揚水ポンプ、 5・・・インバータ制御器、 6・・・圧力センサ、 8・・・揚水管、 9・・・高架水槽、 10・・・給水弁、 11・・・給水管、 12・・・超音波液面計、 13・・・変換器、 14・・・制御盤、 15・・・逃がし弁
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall system configuration diagram according to an embodiment of the present invention, and FIG. 2 is a system configuration diagram according to a conventional example. Reference numerals in the figure 1... Water main pipe, 2... Service pipe, 3... Water tank, 4.7... Lifting pump, 5... Inverter controller, 6... Pressure sensor, 8 ... Lifting pipe, 9 ... Elevated water tank, 10 ... Water supply valve, 11 ... Water supply pipe, 12 ... Ultrasonic liquid level gauge, 13 ... Converter, 14 ... Control panel , 15... relief valve

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一つ以上の高架水槽と、一つの受水槽と前記
高架水槽を接続する一本の揚水管と、前記高架水槽の貯
水量を検出するレベルセンサと、該レベルセンサの出力
に基づき前記高架水槽に付属の給水弁を制御する制御装
置と、前記揚水管内の圧力を検出する圧力センサと、前
記揚水管に配置され、吐水圧一定にして変流量できる制
御手段を有し且つ前記圧力センサの出力に基づいて起動
される少なくとも一台以上の揚水ポンプと、を備えた加
圧揚水システム。
at least one elevated water tank, one water pump connecting one water receiving tank and the elevated water tank, a level sensor that detects the amount of water stored in the elevated water tank, and the elevated water tank based on the output of the level sensor. a control device for controlling a water supply valve attached to the water supply valve, a pressure sensor for detecting the pressure in the pumping pipe, and a control means disposed in the pumping pipe that can vary the amount of water while keeping the water discharge pressure constant, and the output of the pressure sensor. a pressurized water pumping system comprising at least one or more water pumps activated on the basis of
JP11058290A 1990-04-27 1990-04-27 Pressurized storage pump Pending JPH048886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11058290A JPH048886A (en) 1990-04-27 1990-04-27 Pressurized storage pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11058290A JPH048886A (en) 1990-04-27 1990-04-27 Pressurized storage pump

Publications (1)

Publication Number Publication Date
JPH048886A true JPH048886A (en) 1992-01-13

Family

ID=14539497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11058290A Pending JPH048886A (en) 1990-04-27 1990-04-27 Pressurized storage pump

Country Status (1)

Country Link
JP (1) JPH048886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001774A1 (en) * 2014-07-04 2016-01-07 Gomez, Oscar System for the storage of drinking water for human consumption
JP2019501334A (en) * 2016-01-12 2019-01-17 ヒ ジョン,ジェ Buoyancy generator
WO2019119086A1 (en) * 2017-12-20 2019-06-27 Fundação Edson Queiroz Indirect system, with pumping, for supplying cold water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001774A1 (en) * 2014-07-04 2016-01-07 Gomez, Oscar System for the storage of drinking water for human consumption
JP2019501334A (en) * 2016-01-12 2019-01-17 ヒ ジョン,ジェ Buoyancy generator
WO2019119086A1 (en) * 2017-12-20 2019-06-27 Fundação Edson Queiroz Indirect system, with pumping, for supplying cold water

Similar Documents

Publication Publication Date Title
US5901744A (en) Water supply system for a water source with limited flow capability
US6491060B2 (en) Controlled sewage sump network system
US7818973B2 (en) Air-conditioning system and method of installing energy recovery apparatus
AU2002221145B2 (en) System and method of pressure distribution and pressure regulation for heating and air-conditioning units, and a very high-rise building utilizing the same
JP2001192893A (en) Double pressure vessel chemical material dispenser unit
EP1126089B1 (en) High level water supplying and distributing system
WO2007103043A2 (en) Liquid dispense system
JP4996953B2 (en) Increased pressure water supply system for medium to high-rise buildings
US6715691B2 (en) Pressure distribution and regulation in high-rise buildings
JPH048886A (en) Pressurized storage pump
JP3063890B2 (en) Earthquake response type water supply system
JP6121267B2 (en) Booster water supply system
US4072168A (en) Dual standpipe arrangement supplementing a water supply system
JPH08291798A (en) Water feed device
US20030221722A1 (en) Method of damping surges in a liquid system
JPH06102909B2 (en) Automatic water supply system
JPH08159078A (en) Revolution control water supply system with small water quantity stop function
JP2000110225A (en) Method and device for controlling pump in vacuum sewerage system
KR100550131B1 (en) System and Method of pressure distribution and pressure regulation for heating and air-conditioning units, and a very high-rise building utilizing the same
JP3872437B2 (en) Water supply system in waterworks
JP2011137305A (en) Boost water supply system
JPH07268914A (en) Underwater pump and water receiving tank integrated pressurized water supply system
JPS6326460Y2 (en)
JPH0123674B2 (en)
KR100305243B1 (en) Apparatus For Suppling Water Using Air Pressure