JPH0488001A - Method for continuous polymerization - Google Patents

Method for continuous polymerization

Info

Publication number
JPH0488001A
JPH0488001A JP20483190A JP20483190A JPH0488001A JP H0488001 A JPH0488001 A JP H0488001A JP 20483190 A JP20483190 A JP 20483190A JP 20483190 A JP20483190 A JP 20483190A JP H0488001 A JPH0488001 A JP H0488001A
Authority
JP
Japan
Prior art keywords
polymerization
reaction
polymer
inert gas
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20483190A
Other languages
Japanese (ja)
Inventor
Kazunari Inaguma
稲熊 和成
Hiroaki Yamaguchi
浩明 山口
Yasuhisa Otani
泰久 大谷
Masakazu Nakao
中尾 雅一
Kuniyasu Kawabe
邦康 河辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP20483190A priority Critical patent/JPH0488001A/en
Publication of JPH0488001A publication Critical patent/JPH0488001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

PURPOSE:To control polymerization degree with a high accuracy and carry out continuous polymerization by performing the polymerization in the former period to a specific rate of reaction and then polymerization in the latter period in a horizontal type polymerizer and a forced extruding reactor and subsequently regulating the flow rate of an inert gas so as to provide the polymer viscosity, etc., within the ranges of the target set values. CONSTITUTION:By-products, volatile components and solvents, etc., produced by reaction are distilled away in rectifying columns 3 and 3' and condensers 4, 4', 9 and 9' and polymerization is carried out. In the process, the polymerization stage (I) in the former period until the rate of reaction attains 20-90% leading to the prescribed reaction end point is carried out in low-viscosity polymerizers 2 and 2' and the polymerization stage (II) in the latter period to the completion of the reaction is performed by using a horizontal type polymerizer 8 and a forced extrusion reactor 13 by extrusion flow. An inert gas is introduced into the horizontal polymerizer 8 and the viscosity and/or melting point and/or softening point of the polymer are measured. A monomer is continuously polymerized while regulating the flow rate of the inert gas so that the aforementioned viscosity and/or melting point and/or softening point may be within the ranges of the target set values.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は横型重合装置を用いる連続重合方法に関するも
のであり、更に詳しくは不活性ガスを重合装置内に導入
し、生成する重合体の重合度を精度良く制御する連続重
合方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a continuous polymerization method using a horizontal polymerization device, and more specifically, to a method for introducing an inert gas into the polymerization device and polymerizing the produced polymer. This invention relates to a continuous polymerization method that accurately controls the polymerization rate.

〔従来の技術〕[Conventional technology]

従来連続重合反応により重合体を得るに際してその重合
度を制御する方法として、不活性ガスの導入量制御によ
る重合促進が特公昭5352597号公報により提案さ
れている。これはカプロラクタムの連続重合法において
、留出水量を検出しこれがほぼ一定になるように不活性
ガスの導入量を制御しながら重合度を進める方法である
が、留出水量を検出しているため、重合後期では留出水
量の変化が微小でその変化量の検出が難しく、精密な重
合度の制御が困難であるという欠点がある。
Conventionally, as a method for controlling the degree of polymerization when obtaining a polymer by continuous polymerization reaction, acceleration of polymerization by controlling the amount of inert gas introduced has been proposed in Japanese Patent Publication No. 5352597. This is a method used in the continuous polymerization method for caprolactam, in which the amount of distilled water is detected and the degree of polymerization is increased while controlling the amount of inert gas introduced so that this remains almost constant. However, in the late stage of polymerization, the change in the amount of distilled water is so small that it is difficult to detect the amount of change, and it is difficult to precisely control the degree of polymerization.

又従来、高粘度の系の重合を行うために、横型連続重合
装置が考案されている。これは、横位に置かれた、円筒
状あるいは楕円筒状容器からなり、表面更新能力に優れ
た攪拌翼を備え、この攪拌翼と槽壁面とのクリアランス
を小さく取ることができるように工夫した重合槽で、重
合物を供給口から取り出し口まで押し出し流れによって
水平方向に移動しつつ重合させる装置である。併しこの
装置だけでは高粘度領域での最終物性のコントロールが
困難であった。
In addition, horizontal continuous polymerization apparatuses have been devised to perform polymerization of high viscosity systems. This consists of a cylindrical or elliptical container placed horizontally, equipped with stirring blades with excellent surface renewal ability, and designed to minimize the clearance between the stirring blades and the tank wall. This is a device in which polymerization is carried out in a polymerization tank while moving the polymer in the horizontal direction from the supply port to the take-out port using extrusion flow. However, it was difficult to control the final physical properties in the high viscosity region using only this device.

又ポリマーの重縮合反応、塊状重合反応を行わせるため
の装置としてエクストルーダ型の反応装置を用いること
も提案されている。例えば特公昭52−17555号公
報では、25〜60重量%の未反応モノマー、溶剤、揮
発成分等を含むメチルメタクリレート系重合体から該揮
発成分を除去して製造する方法においてエクストルーダ
型反応装置を用いることが提案されているが、本装置で
多量の揮発成分を除去するには、装置内空間容積が小さ
いため大型化するという欠点がある。
It has also been proposed to use an extruder type reactor as a device for carrying out polycondensation reactions and bulk polymerization reactions of polymers. For example, in Japanese Patent Publication No. 52-17555, an extruder type reactor is used in a method for producing a methyl methacrylate polymer containing 25 to 60% by weight of unreacted monomers, solvents, volatile components, etc. by removing the volatile components. However, in order to remove a large amount of volatile components using this device, there is a drawback that the device needs to be large because the space inside the device is small.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術では、重合反応の反応後期において、重合体
の急激な粘度上昇により攪拌軸への重合体の巻き付きや
反応槽内での付着が生じ、攪拌混合や重合体の抜き出し
が不可能である、あるいは重合体の重合度の制御が困難
であった。
With conventional technology, in the late stage of the polymerization reaction, the rapid increase in the viscosity of the polymer causes the polymer to wrap around the stirring shaft or adhere in the reaction tank, making it impossible to stir and mix or extract the polymer. , or it was difficult to control the degree of polymerization of the polymer.

また重合体の分子量分布の制御可能な製造装置や製造方
法は少なく、あったとしても専ら重合体の分子量分布を
狭くする工夫のなされたものであって、分子量にある特
定の分布をもたせた重合体を簡単に製造することのでき
る装置や方法はなかった。
In addition, there are few manufacturing devices and manufacturing methods that can control the molecular weight distribution of polymers, and even if there are, they are only methods that narrow the molecular weight distribution of polymers, and only those that are designed to narrow the molecular weight distribution of polymers. There was no equipment or method that could easily produce a combination.

又従来技術では、制御因子(温度、圧力、攪拌速度等)
に対して応答性及び操作性に欠け、重合体の重合度を精
度よく制御することが困難であり、これらの困難が克服
でき、且つ容易に且つ経済的に実施し得る方法が望まれ
ていた。
In addition, in the conventional technology, control factors (temperature, pressure, stirring speed, etc.)
It is difficult to accurately control the degree of polymerization of the polymer, and there has been a desire for a method that can overcome these difficulties and can be implemented easily and economically. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は上記課題を解決するために、連続重合反応
において反応で生成する副生成物、揮発成分及び反応に
用いる溶剤等の留出量が重合体の重合度に寄与するため
、キャリアーガスとして不活性ガスを重合装置内に導入
し、その流量を調節することにより、重合体の重合度を
敏速且つ高精度に制御することができることが判明した
In order to solve the above-mentioned problems, the present inventors have solved the above problem by using a carrier gas, since the distillation amount of by-products, volatile components, and solvents used in the reaction in continuous polymerization reactions contribute to the degree of polymerization of the polymer. It has been found that the degree of polymerization of the polymer can be controlled quickly and with high precision by introducing an inert gas into the polymerization apparatus and adjusting its flow rate.

又連続重合方法において如何なる高粘度の重合体でも定
量排出可能な強制押し出し反応装置を用いることにより
、重合体の重合度を制御できることが判明した。
Furthermore, it has been found that the degree of polymerization of the polymer can be controlled by using a forced extrusion reactor capable of quantitatively discharging any high-viscosity polymer in the continuous polymerization method.

即ち本発明は、反応で生成する副生成物、揮発成分及び
反応に用いる溶剤等を留出させながら重合を行わせる連
続重合法に於いて、製造工程が所定の反応終点に至る2
0から90%の反応度に達するまでの前期重合工程と、
反応を終了させるまでの後期重合工程とから成り、該後
期重合工程において押し出し流れによる横型重合装置及
び強制押し出し反応装置を用い、不活性ガスを上記横型
重合装置に導入し、重合体の粘度及び/又は融点及び/
又は軟化点を測定し、これらが目標設定値範囲内に入る
様に不活性ガスの導入量を調整することを特徴とする連
続重合法に係るものである。又本発明は、反応で生成す
る副生成物、揮発成分及び反応に用いる溶剤等を留出さ
せながら重合を行わせる連続重合法に於いて、製造工程
が所定の反応終点に至る20から90%の反応度に達す
るまでの前期重合工程と、反応を終了させるまでの後期
重合工程とから成り、該後期重合工程において押し出し
流れによる横型重合装置及び強制押し出し反応装置を用
い、不活性ガスを上記横型重合装置に導入−喝 し、横型重合装置の撹拌機及び/又は出口ポンプの負荷
を測定し、これらが目標設定値範囲内に入る様に不活性
ガスの導入量を調整することを特徴とする連続重合法に
係るものである。
That is, the present invention is a continuous polymerization method in which polymerization is carried out while distilling by-products produced in the reaction, volatile components, solvents used in the reaction, etc., and the production process reaches a predetermined reaction end point.
An early polymerization step until a reactivity of 0 to 90% is reached;
In the latter stage polymerization step, a horizontal polymerization device using an extrusion flow and a forced extrusion reactor are used, and an inert gas is introduced into the horizontal polymerization device to control the viscosity and/or or melting point and/or
Alternatively, it relates to a continuous polymerization method characterized by measuring the softening point and adjusting the amount of inert gas introduced so that the softening point falls within a target set value range. In addition, the present invention is a continuous polymerization method in which polymerization is carried out while distilling by-products generated in the reaction, volatile components, solvents used in the reaction, etc., in which the production process reaches a predetermined reaction end point by 20 to 90%. The process consists of an early polymerization step until the reactivity is reached, and a late polymerization step until the reaction is completed. It is characterized by introducing the inert gas into the polymerization apparatus, measuring the load on the stirrer and/or outlet pump of the horizontal polymerization apparatus, and adjusting the amount of inert gas introduced so that these fall within the target set value range. It is related to continuous polymerization method.

上記の如く本発明に於いては、重合後期における重合体
の急激な粘度上昇を、横型重合装置の反応槽の出口粘度
、反応装置の撹拌機負荷等を検出し、これらの検出値が
設定値範囲内に入る様に不活性ガスのガス流量を調整す
ることにより重合体の重合度を精度よく調整することが
でき、この際の操作はオンライン、オフラインを問わな
い。又ガス流量の調整方法についても特に限定はない。
As described above, in the present invention, the rapid increase in viscosity of the polymer in the late stage of polymerization is detected by the outlet viscosity of the reaction tank of the horizontal polymerization apparatus, the load of the stirrer of the reaction apparatus, etc., and these detected values are set as the set value. By adjusting the flow rate of the inert gas so that it falls within the range, the degree of polymerization of the polymer can be adjusted with high accuracy, and the operation at this time can be performed online or offline. There is also no particular limitation on the method of adjusting the gas flow rate.

反応系に導入する不活性ガスとしては反応に影響を与え
ず、反応温度で気体である物質が凡て使用できるが、N
2. He、 Ar等があげられ、特に窒素ガスが好ま
しい。かかる不活性ガスは重合生成物の劣化を防ぐのに
も役立つ。
As the inert gas introduced into the reaction system, any substance that does not affect the reaction and is a gas at the reaction temperature can be used, but N
2. Examples include He, Ar, etc., with nitrogen gas being particularly preferred. Such inert gases also serve to prevent deterioration of the polymerization product.

本発明の適用される重合反応の重合形態及び重合方法に
ついては特に限定はないが、縮重合反応、即ち水素、水
、アンモニア、アルコール、ハロゲン化水素、塩類など
の低分子を離脱するポリアミド、ポリエステル、ポリウ
レタン、フェノール樹脂、アルキド樹脂、エポキシ樹脂
、シリコン樹脂などの重合反応が好ましい。これらの重
合方法に於いては、脱離する低分子を積極的に系外に放
出することにより反応は生成側に移行する。
There are no particular limitations on the polymerization form and method of the polymerization reaction to which the present invention is applied. Polymerization reactions of polyurethane, phenol resin, alkyd resin, epoxy resin, silicone resin, etc. are preferred. In these polymerization methods, the reaction shifts to the production side by actively releasing the desorbed low molecules out of the system.

本発明の連続重合反応が行われる反応槽型式は横型重合
装置であり、反応の進行中揮発成分を除去し得る装置形
式を有し、気液界面積が大となる重合装置を使用するの
がより効果的である。かかる横型重合装置に於いて、連
続重合反応を行うに際しては原料を装置内に一定の割合
で連続的に送太し、且つ排出する連続操作方法が採用さ
れる。
The reaction tank type in which the continuous polymerization reaction of the present invention is carried out is a horizontal polymerization apparatus, and it is preferable to use a polymerization apparatus that has a device type that can remove volatile components during the progress of the reaction and has a large gas-liquid interface area. more effective. In such a horizontal polymerization apparatus, when performing a continuous polymerization reaction, a continuous operation method is adopted in which raw materials are continuously fed into the apparatus at a constant rate and then discharged.

不活性ガスはその流量がコントロールし得る導入手段(
定量フィードも含む)により反応装置内に導入されるが
、ガス流量(体積流量)は反応装置のサイズに応じて設
定される。余り少量では効果が無いし、余り多量ではロ
ス分が多くなり経済的でない。又導入方法は特に問わな
いが、気相中へ導入し、流れ方向に対して並流、向流を
問わず、更にその位置及び個数は特に問わない。
Inert gas is introduced by means of introduction whose flow rate can be controlled (
(including metered feed) into the reactor, and the gas flow rate (volume flow rate) is set according to the size of the reactor. If the amount is too small, there will be no effect, and if the amount is too large, there will be a lot of loss, making it uneconomical. The method of introduction is not particularly limited, but the introduction into the gas phase may be carried out in parallel or countercurrent to the flow direction, and the position and number thereof are not particularly limited.

本発明に於いては、重合体の粘度等の物性が測定される
が、測定はオンライン、オフラインを問わないが、通常
オンラインの方が好ましく、反応形態によっては両者を
行う方が好ましい場合もある。又測定方法も特に問わな
い。又粘度の代用として樹脂の融点、軟化点等を用いて
もよい。粘度測定法としては、回転、振動、細管式、落
下式等があるが、特に限定はない。
In the present invention, physical properties such as viscosity of the polymer are measured, and measurement can be done online or offline, but online is usually preferable, and depending on the reaction form, it may be preferable to perform both. . Also, the measurement method is not particularly limited. Also, the melting point, softening point, etc. of the resin may be used as a substitute for the viscosity. Viscosity measuring methods include rotation, vibration, capillary type, drop type, etc., but are not particularly limited.

又本発明に於いては、重合装置の負荷を測定することも
できる。即ち、撹拌機、出口ポンプ等の駆動部の動力、
電流値、トルク値或いは軸反力等を測定することにより
その負荷を測定し得る。
In the present invention, it is also possible to measure the load on the polymerization apparatus. In other words, the power of driving parts such as stirrers and outlet pumps,
The load can be measured by measuring the current value, torque value, shaft reaction force, etc.

又重合体の粘度と重合装置駆動部の負荷を測定し、両者
の検出値が設定値範囲内に入るように不活性ガス流量を
調整すれば、重合度の調整がより精密に行える。
Further, the degree of polymerization can be adjusted more precisely by measuring the viscosity of the polymer and the load on the polymerization apparatus drive section, and adjusting the flow rate of the inert gas so that both detected values fall within the set value range.

本発明に使用する横型重合装置としては、押し出し流れ
による連続重合装置であって、流れ方向に対しては実質
的に混合能力がなく半径方向に対して混合能力を有する
、流れ方向に平行な駆動軸を有する攪拌機構を備える連
続重合装置が好ましい。かかる連続重合装置には流れ方
向に1個又は複数個の重合前駆体供給口を備え、且つそ
の後部に少なくとも1個の重合生成物取り出し口を備え
る様にすることもできる。而してこの装置を用い、重合
前駆体を複数の供給口から連続的に分割供給し、重合生
成物取り出し口に向けて連続的且つバックミキシングす
ることなく重合物を攪拌移送させ、その後一定位置に設
置された取り出し口から重合生成物を連続的に取り出し
て分子量分布を制御した重合物を得ることができる。
The horizontal polymerization device used in the present invention is a continuous polymerization device using extrusion flow, and has a drive parallel to the flow direction, which has substantially no mixing ability in the flow direction but has mixing ability in the radial direction. A continuous polymerization apparatus equipped with a stirring mechanism having a shaft is preferred. Such a continuous polymerization apparatus may be equipped with one or more polymerization precursor feed ports in the flow direction and at least one polymerization product outlet at the rear thereof. Using this device, the polymerization precursor is continuously dividedly supplied from multiple supply ports, the polymer is continuously stirred and transferred toward the polymerization product outlet without back-mixing, and then the polymerization precursor is fed at a certain position. The polymerization product can be continuously taken out from the takeout port installed in the holder to obtain a polymer with a controlled molecular weight distribution.

或いは又少なくとも1個の重合前駆体供給口を備え、流
れ方向に複数個の重合生成物取り出し口を備え、且つ該
重合生成物の混合装置を備える様にすることもできる。
Alternatively, it may be provided with at least one polymerization precursor supply port, a plurality of polymerization product outlet ports in the flow direction, and a mixing device for the polymerization products.

而してこの連続重合装置を用い、重合前駆体を供給口か
ら連続的に供給し、重合生成物取り出し口に向けて連続
的且つバックミキシングすることなく重合物を攪拌移送
させ、その後複数の重合生成物取り出し口より連続的に
分割取り出しを行い、次いで該分割取り出し重合生成物
を混合して分子量分布を制御した重合物を得ることがで
きる。
Using this continuous polymerization device, the polymerization precursor is continuously supplied from the supply port, and the polymer is continuously stirred and transferred toward the polymerization product output port without back-mixing, and then multiple polymerizations are performed. It is possible to continuously take out the product in portions from the product take-out port, and then mix the separated polymerization products to obtain a polymer with a controlled molecular weight distribution.

かかる本発明の重合装置及び重合方法によって重合度の
制御を行い得る重合反応は、ポリスチレンのようなラジ
カル重合反応、及びポリエステル、ポリアミドのような
重縮合反応などである。又上記連続重合装置の供給口か
ら供給される重合前駆体はモノマー又はその混合物、モ
ノマー間反応による低分子量化合物、即ちプレポリマー
等であって、重合に関与するモノマー単位を含んだ均−
組成物又は均一混合物である。
Polymerization reactions whose degree of polymerization can be controlled by the polymerization apparatus and polymerization method of the present invention include radical polymerization reactions such as polystyrene, and polycondensation reactions such as polyester and polyamide. The polymerization precursor supplied from the supply port of the continuous polymerization apparatus is a monomer or a mixture thereof, a low molecular weight compound produced by a reaction between monomers, ie, a prepolymer, etc., and is a homogeneous polymer containing monomer units involved in polymerization.
composition or homogeneous mixture.

又、必要に応じて染顔料、ポリマー特性改良剤など各種
の粉体を加えることも可能である。
It is also possible to add various powders such as dyes and pigments and polymer property improvers, if necessary.

本発明の連続重合方法は、製造工程が所定の反応終点に
至る20〜90%の反応度に達するまでの前期重合工程
と、反応を終了させるまでの後期重合工程に分割される
。この前期重合工程とは主反応の前段階に行う重合工程
であり、反応装置形式、操作条件等については特に問わ
ない。
The continuous polymerization method of the present invention is divided into an early polymerization step until a reactivity of 20 to 90%, which is the predetermined reaction end point, is reached, and a latter polymerization step until the reaction is terminated. This early polymerization step is a polymerization step performed before the main reaction, and the type of reactor, operating conditions, etc. are not particularly limited.

本発明において、かかる前期重合工程を経て横型重合装
置に供給された重合前駆体は、押し出し流れとなって生
成物取り出し口まで運ばれる。ここで押し出し流れとは
、流れ方向に垂直な面内での混合は十分であり、且つ流
れ方向に沿った混合(バックミキシング)が実質的にな
いものを言う。本発明にあっては、押し出し流れを用い
ることが、重合度の制御性を上げるために必須のことで
ある。バックミキシングが起きると重合物の重合度が制
御困難となるからである。
In the present invention, the polymerization precursor supplied to the horizontal polymerization apparatus through such an early polymerization step is conveyed to the product outlet in the form of an extrusion flow. Here, the extrusion flow refers to a flow in which there is sufficient mixing in a plane perpendicular to the flow direction, and there is substantially no mixing (back mixing) along the flow direction. In the present invention, it is essential to use an extrusion flow in order to improve the controllability of the degree of polymerization. This is because when back mixing occurs, it becomes difficult to control the degree of polymerization of the polymer.

上述の条件を満たす攪拌機構としては、塊状重合反応に
用いられるバックミキシングの起きない機構のものであ
って、例えば、−軸の正方向スクリューや多段回転円盤
やパドル等、或いは多軸の正方向スクリューや多段回転
円盤やパドル等を用いることによって特に好ましい効果
を得ることができる(正常回転時に流れ方向に移送する
向きにねじりのあるスクリューを正方向スクリューと呼
ぶこととする)。
The stirring mechanism that satisfies the above conditions is a mechanism that does not cause back mixing and is used in bulk polymerization reactions, such as a negative-axis forward direction screw, multi-stage rotating disk, paddle, etc., or a multi-axis forward direction screw, etc. Particularly favorable effects can be obtained by using a screw, a multi-stage rotating disk, a paddle, etc. (A screw that is twisted in the direction of transport in the flow direction during normal rotation will be referred to as a forward screw).

本発明に於いては、上記横型重合装置として複数個の供
給口及び/又は複数個の取り出し口を設けたものを使用
することにより、分子量にある特定の分布をもたせた重
合体を簡単に製造し得る。又上記強制押し出し反応装置
は複数個の供給口を設けてもよい。
In the present invention, by using a horizontal polymerization apparatus having a plurality of supply ports and/or a plurality of discharge ports, it is possible to easily produce a polymer having a specific distribution of molecular weight. It is possible. Further, the forced extrusion reaction device may be provided with a plurality of supply ports.

次に、本発明の実施に用いられる反応装置の例を第1図
を用いて詳しく説明する。本反応装置は、1槽または数
種から成る前期重合工程Iと、前期重合工程で生成され
た低分子量物の供給口、第1図では7及び高分子量物の
取り出し口11を複数個有する、流動状態が押し出し流
れである横型重合槽8及び強制押し出し反応装置13か
らなる後期重合工程■により構成される。
Next, an example of a reaction apparatus used in carrying out the present invention will be explained in detail with reference to FIG. This reactor has a first polymerization step I consisting of one tank or several types, a supply port for a low molecular weight product produced in the first polymerization step, 7 in FIG. 1, and a plurality of outlets 11 for high molecular weight products. The latter stage polymerization step (2) consists of a horizontal polymerization tank 8 whose fluid state is an extrusion flow and a forced extrusion reaction device 13.

第1図は重合反応が前期重合工程及び後期重合工程にお
いて連続方式で行われる場合の例であるが、重合反応を
前期重合工程においてはバッチ方式で行い、後期重合工
程においては連続方式で行ういわゆるセミパッチ方式も
可能である。上記2法の内、前者は自動運転が可能であ
ることから大量生産を行う場合に有利であり、後者はセ
ミパッチ方式であることから定常状態に達するまでの時
間をほとんど必要とせず、品種切り替えの際の製品ロス
分が少なく多品種少量生産を行う場合に有利である。
Figure 1 shows an example in which the polymerization reaction is carried out in a continuous manner in the early polymerization step and the latter polymerization step. A semi-patch method is also possible. Of the above two methods, the former is advantageous for mass production as it allows for automatic operation, while the latter is a semi-patch method, requiring almost no time to reach a steady state, making it easier to change product types. This method is advantageous for high-mix, low-volume production since there is little product loss during production.

前期重合工程の具体的構成例を第1図に基づいて説明す
る。
A specific example of the structure of the first stage polymerization step will be explained based on FIG.

■の部分は精留塔3,3”、コンデンサー4.4”、撹
拌機、移送ポンプ6.6°及び圧力制御部5.5”を具
備する反応槽列2.2″であり、好ましくは滞留量の変
動に関わらず優れた混合性能を有するものがよい。また
後期重合工程■は複数個の低分子量物供給ロア、高分子
量物取り出し口11、コンデンサー9及び圧力制御部1
0を具備する高粘度対応が可能な押し出し流れによる横
型重合槽8並びに移送ポンプ16.16’、コンデンサ
ー9′及び圧力制御部10′ を具備する強制押し出し
反応装置13から成る。横型重合槽内での分子量分布の
制御は、低分子量物の供給方法及び/又は高分子量物の
取り出し方法によるが、この内供給方法により分子量を
制御する場合には、低分子量物の供給口の数は任意であ
るが、多(なりすぎてもあまり意味はなく、攪拌翼の段
数とのバランスや重合前駆体の供給量分配の操作性の簡
便さを考慮すると、流れ方向に2〜30カ所とするのが
好ましい。供給口の間の間隔は目的とする分子量分布に
あわせて任意に選ぶことができる。一方、取り出し方法
により分子量分布を制御する場合、供給方法により制御
する場合と同様の意味で取り出し口が多すぎても効果的
でなく、流れ方向に2〜20カ所とすることが好ましい
。供給口と取り出し口との最短間隔は、得られる重合物
の分子量の高分子量側の最小値を決定する要因であり、
高分子量物を得る目的の場合には短ずぎることは好まし
くない。
Part (2) is a reaction tank row 2.2" equipped with a rectification column 3.3", a condenser 4.4", an agitator, a transfer pump 6.6" and a pressure control section 5.5", and is preferably It is preferable to have excellent mixing performance regardless of fluctuations in retention amount. In addition, the latter stage polymerization step
It consists of a horizontal polymerization tank 8 with an extrusion flow capable of handling high viscosity, and a forced extrusion reactor 13 equipped with a transfer pump 16, 16', a condenser 9' and a pressure control section 10'. Controlling the molecular weight distribution in a horizontal polymerization tank depends on the method of supplying low molecular weight substances and/or the method of taking out high molecular weight substances, but when controlling the molecular weight by this feeding method, the control of the supply port of low molecular weight substances The number is arbitrary, but there is no point in having too many. Considering the balance with the number of stages of stirring blades and the ease of operation of distributing the supply amount of polymerization precursor, it is recommended to set 2 to 30 locations in the flow direction. It is preferable that the interval between the supply ports be arbitrarily selected according to the desired molecular weight distribution.On the other hand, when the molecular weight distribution is controlled by the take-out method, it has the same meaning as when it is controlled by the supply method. It is not effective if there are too many take-out ports, and it is preferable to have 2 to 20 take-out ports in the flow direction.The shortest distance between the supply port and the take-out port is the minimum value on the high molecular weight side of the molecular weight of the obtained polymer. is a determining factor,
When the purpose is to obtain a high molecular weight product, it is not preferable that the length is too short.

複数個の供給口からの重合前駆体の供給量配分は、目的
とする重合体の分子量分布に応じて、設置された複数個
の供給口の内のいずれかの供給口を用いるか、及び/又
は流量調節弁によって行う。複数個の取り出し口からの
取り出しの場合も全く同様に、目的とする重合物の分子
量分布に応じて調節を行う。
The supply amount of the polymerization precursor from the plurality of supply ports can be distributed depending on the molecular weight distribution of the target polymer, by using one of the plurality of supply ports installed, and/or by using one of the plurality of supply ports installed. Or by using a flow control valve. In the case of extraction from a plurality of extraction ports, adjustment is made in exactly the same manner depending on the molecular weight distribution of the target polymer.

横型重合槽8から強制押し出し反応装置への供給は好ま
しくは重合体粘度が1o00cP以上の高粘度となった
時点で行われる。即ち、横型重合槽8の取り出し口11
から取り出された高粘度重合物は更に移送ポンプ16に
より強制押し出し反応装置、例えば背型反応装置、連続
混練機、押込み装置を有するスタチックミキサー、好ま
しくはエクストルーダ型反応装置13に導入され、連続
的に重合物を押し出し輸送して重合反応を継続させる。
The supply from the horizontal polymerization tank 8 to the forced extrusion reactor is preferably carried out when the polymer viscosity reaches a high viscosity of 1000 cP or more. That is, the outlet 11 of the horizontal polymerization tank 8
The high viscosity polymer taken out is further introduced by a transfer pump 16 into a forced extrusion reactor, such as a back type reactor, a continuous kneader, a static mixer having a pushing device, preferably an extruder type reactor 13, and is continuously extruded. The polymer is extruded and transported to continue the polymerization reaction.

次に本発明の後期重合工程における不活性ガスによる重
合体の重合度制御方法について図面について説明する。
Next, a method for controlling the polymerization degree of a polymer using an inert gas in the latter stage polymerization step of the present invention will be explained with reference to the drawings.

第2図は本発明に使用される横型重合装置の部分のフロ
ーシートを示す略示図であり、21は横型重合槽、22
は重合生成物の抜き出し定量ポンプ、23は粘度計、2
4はガス流量調整装置、25は攪拌機モーター、26は
駆動部負荷によるガス流量制御装置、26”は粘度によ
るガス流量制御装置である。27はコンデンサー、28
は重合原料導入口であり、29は重合体取出口、30は
不活性ガス導入口、31は攪拌翼である。
FIG. 2 is a schematic diagram showing a flow sheet of a horizontal polymerization apparatus used in the present invention, in which 21 is a horizontal polymerization tank, 22
23 is a metering pump for extracting the polymerization product; 23 is a viscometer; 2
4 is a gas flow rate adjustment device, 25 is an agitator motor, 26 is a gas flow rate control device based on drive unit load, 26'' is a gas flow rate control device based on viscosity, 27 is a condenser, 28
29 is a polymerization raw material inlet, 29 is a polymer outlet, 30 is an inert gas inlet, and 31 is a stirring blade.

本発明に於いては、出口重合体の粘度(軟化点、融点)
を粘度計23により測定し、この測定値が目標設定値範
囲内に入る様にガス流量制御装置26゛  を介してガ
ス流量調整装置24によりN2ガス等の不活性ガスの導
入口30からの導入量を調整する。或いは攪拌機モータ
ー25或いはポンプ22の負荷を駆動モーター電流値或
いはトルク検出器によるトルク値として測定し、この測
定値が目標設定値範囲内に入る様にガス流量制御装置2
6を介してガス流量調整装置24により不活=16 性ガスの導入口2Ωからの導入量を調整する。これによ
り得られる重合体の重合度を容易に調整し得る。
In the present invention, the viscosity (softening point, melting point) of the exit polymer
is measured by the viscometer 23, and inert gas such as N2 gas is introduced from the inlet 30 via the gas flow rate controller 26' and the gas flow rate regulator 24 so that the measured value falls within the target set value range. Adjust amount. Alternatively, the load on the stirrer motor 25 or pump 22 is measured as a drive motor current value or a torque value by a torque detector, and the gas flow rate controller 2 is adjusted so that this measured value falls within the target set value range.
The amount of inert=16 gas introduced from the inlet 2Ω is adjusted by the gas flow rate adjusting device 24 via the inert gas flow rate adjusting device 24 via the inert gas flow rate adjustment device 24 via the inert gas flow rate adjustment device 24 via the inert gas flow rate adjusting device 24. The degree of polymerization of the resulting polymer can be easily adjusted.

又、本発明に用いる横型重合装置に於いては、重縮合の
場合には水やアルコール等の低分子量の副生物が発生す
るので、これを留去するための加温、抜き出し機構が必
要である。この副生物或いは低分子揮発物の抜き出し機
構として排出口を設けることもできる。加温のためには
重合装置の外側及び/又は攪拌軸内部に熱媒ジャケット
のような熱伝達機構を設けるとよい。このような熱伝達
機構はまた、ラジカル重合などの場合には除熱に用いる
ことができる。
Furthermore, in the horizontal polymerization apparatus used in the present invention, low molecular weight by-products such as water and alcohol are generated during polycondensation, so a heating and extraction mechanism is required to distill them off. be. An exhaust port can also be provided as a mechanism for extracting this by-product or low-molecular volatile material. For heating, a heat transfer mechanism such as a heat medium jacket may be provided outside the polymerization apparatus and/or inside the stirring shaft. Such heat transfer mechanisms can also be used for heat removal in cases such as radical polymerization.

重合生成物の分子量分布を制御するには、槽内温度、圧
力、供給量バランス又は重合生成物取り出し量のバラン
スの制御の他、攪拌移送機構の回転速度を変えることに
よっても行い得る。
The molecular weight distribution of the polymerization product can be controlled by changing the rotational speed of the agitation transfer mechanism in addition to controlling the tank internal temperature, pressure, supply amount balance, or balance of the amount of polymerization product taken out.

〔実 施 例〕〔Example〕

以下に実施例を挙げて本発明を更に詳細に説明するが、
本発明はこれらの実施例に限定されるものではない。
The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited to these examples.

尚、例中の部は重量部である。Note that parts in the examples are parts by weight.

実施例1 各々の槽容積が50βである連続槽型反応槽2段からな
る前期重合工程と、槽容積が40j2である横型重合槽
と空間容積が1.5j2であるエクストルーダ型反応装
置からなる後期重合工程によって構成される第1図に示
す装置によりポリエステル系重合体を製造した。酸成分
としてテレフタル酸12,5部、コハク酸9.0部、ま
たアルコール成分としてポリオキシプロピレン(2,2
)2.2−ヒス(4−ヒドロキシフェニル)フロパン7
5部を、及び反応触媒として酸化第1スズ0.3部を合
計量20kg/Hrとなるように連続的に原料供給口1
へ供給した。前期重合工程において反応温度を220℃
、圧力を第ト槽で常圧、第2櫂で約−500mmHgと
なるように制御した。また反応時間は第1槽、第2槽と
も2時間であり、エステル化反応率は70%であった。
Example 1 The first stage polymerization step consisted of two stages of continuous tank type reaction tanks each having a tank volume of 50β, and the second stage consisted of a horizontal polymerization tank with a tank volume of 40j2 and an extruder type reaction device with a space volume of 1.5j2. A polyester polymer was produced using the apparatus shown in FIG. 1, which is constructed by a polymerization process. Terephthalic acid 12.5 parts and succinic acid 9.0 parts were used as acid components, and polyoxypropylene (2.2 parts) was used as alcohol component.
)2.2-His(4-hydroxyphenyl)furopane 7
5 parts and 0.3 parts of stannous oxide as a reaction catalyst in a total amount of 20 kg/Hr at raw material supply port 1.
supplied to. In the first polymerization step, the reaction temperature was set at 220°C.
The pressure was controlled to be normal pressure in the first tank and approximately -500 mmHg in the second tank. Further, the reaction time was 2 hours for both the first tank and the second tank, and the esterification reaction rate was 70%.

引き続き後期重合工程では横型重合槽の反応温度を21
0℃、エクストルーダ型反応装置の反応温度を215℃
になるように制御し、前期重合工程で得られた低分子量
物を、横型重合槽に供給した。更に横型重合槽で反応し
た重合体を連続的にエクストルーダ型反応槽に供給した
。なお、横型重合槽としては第2図に示す装置を用い、
その出口重合体の軟化点(高滓製フローテスターにより
測定)の目標設定値は120℃として軟化点120±0
.5℃の範囲外を制御作動域として本発明の制御因子で
あるN2流量を制御することにより軟化点を制御した。
Subsequently, in the late polymerization step, the reaction temperature of the horizontal polymerization tank was increased to 21°C.
0℃, reaction temperature of extruder type reactor 215℃
The low molecular weight product obtained in the previous polymerization step was supplied to the horizontal polymerization tank. Furthermore, the polymer reacted in the horizontal polymerization tank was continuously supplied to an extruder type reaction tank. In addition, as a horizontal polymerization tank, the apparatus shown in Fig. 2 was used.
The target setting value of the softening point of the exit polymer (measured with a flow tester made by Takashi) is 120°C, and the softening point is 120 ± 0.
.. The softening point was controlled by controlling the N2 flow rate, which is a control factor of the present invention, with a control operation range outside the range of 5°C.

この間、1週間の連続運転から得られた横型重合槽の出
口重合体及びエクストルーダ型反応装置の出口重合体の
樹脂軟化点の変動はそれぞれ120±1℃、150±1
℃であった。またエクストルーダ型反応装置の出口重合
体のエステル化反応率は93%の色調の優れた重合体で
あった。この実施例の前期重合工程でのエステル化反応
度は75.3%であった。ここで軟化点とは、高化式フ
ローテスター(CFT−500,高滓製作所製)を用い
、ダイスの細孔の径1mm、長さ1mm、荷重20kg
/cm2、昇温速度6℃/分の条件下で1cm3の試料
を溶融流出させた時の流出開始点から流出終了点の高さ
の172に相当する温度を軟化点とする。
During this period, the fluctuations in the resin softening points of the polymer at the outlet of the horizontal polymerization tank and the polymer at the outlet of the extruder type reactor obtained from one week of continuous operation were 120±1℃ and 150±1℃, respectively.
It was ℃. Further, the esterification reaction rate of the polymer at the outlet of the extruder type reactor was 93%, and the polymer had an excellent color tone. The degree of esterification reaction in the first polymerization step of this example was 75.3%. Here, the softening point is measured using a Koka type flow tester (CFT-500, manufactured by Takasugi Seisakusho), with a die pore diameter of 1 mm, length of 1 mm, and a load of 20 kg.
The softening point is defined as the temperature corresponding to the height of 172 from the start point to the end point when a 1 cm3 sample is melted and flowed out under conditions of a temperature increase rate of 6° C./cm2 and a temperature increase rate of 6° C./min.

〔発明の効果〕〔Effect of the invention〕

重合体の粘度(融点、軟化−点)及び/又は駆動部負荷
を検出して、不活性ガスのガス流量を調整することで重
合度を敏速且つ高精度に制御することが可能であり、操
作性が容易であり、且つ他の操作因子(温度、真空度、
滞留量、攪拌速度等)に比べて応答性が良好である。更
に不活性ガスの導入により、重合体の劣化防止と品質の
安定化を達成し得る。特に本発明によれば如何なる高粘
度の重合体でも定量排出可能な強制押し出し反応装置を
用いることにより、高粘度の重合体の重合度を制御し得
る。
By detecting the viscosity (melting point, softening point) of the polymer and/or the load on the drive unit and adjusting the gas flow rate of the inert gas, it is possible to control the degree of polymerization quickly and with high precision. easy to operate, and other operating factors (temperature, degree of vacuum,
(retention amount, stirring speed, etc.). Furthermore, by introducing an inert gas, it is possible to prevent deterioration of the polymer and stabilize its quality. In particular, according to the present invention, the degree of polymerization of a high viscosity polymer can be controlled by using a forced extrusion reactor capable of quantitatively discharging any high viscosity polymer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用される連続重合装置の一例のフロ
ーシートを示す略示図であり、第2図はその横型重合槽
の部分のフローシートを示す略示図である。 ■・・・前期重合工程 ■・・・後期重合工程 1.1′・・・原料供給部 2.2″・・・低粘度重合槽 3.3′・・・精留塔 4.4”、 9.9’  ・・・コンデンサー5、5’
 、 10.10” ・・・圧力制御部6、6’ 、 
16.16’ ・・・移送ポンプ7・・・低分子量物供
給口及び流量制御部訃・・横型重合槽 11・・・高分子量物取り出し口及び流量制御部12・
・・冷却機 13・・・強制押し出し反応装置 21・・・横型重合槽 22・・・重合生成物の抜き出し定量ポンプ23・・・
粘度計 24・・・ガス流量調整装置 25・・・攪拌機モーター 26・・・駆動部負荷によるガス流量制御装置26″・
・・粘度によるガス流量制御装置27・・・コンデンサ
ー 28・・・重合原料導入口 29・・重合体取出口 30・・・不活性ガス導入口 31・・・攪拌翼
FIG. 1 is a schematic diagram showing a flow sheet of an example of a continuous polymerization apparatus used in the present invention, and FIG. 2 is a schematic diagram showing a flow sheet of a horizontal polymerization tank portion thereof. ■... Early polymerization step ■... Late polymerization step 1.1'... Raw material supply section 2.2''... Low viscosity polymerization tank 3.3'... Rectification column 4.4'', 9.9'...Condenser 5, 5'
, 10.10"...Pressure control section 6, 6',
16.16'...Transfer pump 7...Low molecular weight substance supply port and flow rate control unit...Horizontal polymerization tank 11...High molecular weight substance outlet and flow rate control unit 12.
...Cooler 13...Forced extrusion reaction device 21...Horizontal polymerization tank 22...Polymerization product extraction metering pump 23...
Viscometer 24...Gas flow rate adjustment device 25...Agitator motor 26...Gas flow rate control device 26'' by drive unit load
...Viscosity-based gas flow rate control device 27...Condenser 28...Polymerization raw material inlet 29...Polymer outlet 30...Inert gas inlet 31...Agitator blade

Claims (1)

【特許請求の範囲】 1 反応で生成する副生成物、揮発成分及び反応に用い
る溶剤等を留出させながら重合を行わせる連続重合法に
於いて、製造工程が所定の反応終点に至る20から90
%の反応度に達するまでの前期重合工程と、反応を終了
させるまでの後期重合工程とから成り、該後期重合工程
において押し出し流れによる横型重合装置及び強制押し
出し反応装置を用い、不活性ガスを上記横型重合装置に
導入し、重合体の粘度及び/又は融点及び/又は軟化点
を測定し、これらが目標設定値範囲内に入る様に不活性
ガスの導入量を調整することを特徴とする連続重合法。 2 反応で生成する副生成物、揮発成分及び反応に用い
る溶剤等を留出させながら重合を行わせる連続重合法に
於いて、製造工程が所定の反応終点に至る20から90
%の反応度に達するまでの前期重合工程と、反応を終了
させるまでの後期重合工程とから成り、該後期重合工程
において押し出し流れによる横型重合装置及び強制押し
出し反応装置を用い、不活性ガスを上記横型重合装置に
導入し、横型重合装置の撹拌機及び/又は出口ポンプの
負荷を測定し、これらが目標設定値範囲内に入る様に不
活性ガスの導入量を調整することを特徴とする連続重合
法。
[Scope of Claims] 1. In a continuous polymerization method in which polymerization is carried out while distilling by-products generated in the reaction, volatile components, solvents used in the reaction, etc., from 20 to 20 when the manufacturing process reaches a predetermined reaction end point. 90
The process consists of an early polymerization step until a reactivity of 10% is reached, and a later polymerization step until the reaction is completed. A continuous method characterized by introducing the polymer into a horizontal polymerization apparatus, measuring the viscosity and/or melting point and/or softening point of the polymer, and adjusting the amount of inert gas introduced so that these fall within the target set value range. Polymerization method. 2 In a continuous polymerization method in which polymerization is carried out while distilling by-products generated in the reaction, volatile components, solvents used in the reaction, etc., the manufacturing process reaches a predetermined reaction end point from 20 to 90 days.
The process consists of an early polymerization step until a reactivity of 10% is reached, and a later polymerization step until the reaction is completed. A continuous method characterized by introducing the inert gas into a horizontal polymerization apparatus, measuring the load on the stirrer and/or outlet pump of the horizontal polymerization apparatus, and adjusting the amount of inert gas introduced so that these fall within the target set value range. Polymerization method.
JP20483190A 1990-07-31 1990-07-31 Method for continuous polymerization Pending JPH0488001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20483190A JPH0488001A (en) 1990-07-31 1990-07-31 Method for continuous polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20483190A JPH0488001A (en) 1990-07-31 1990-07-31 Method for continuous polymerization

Publications (1)

Publication Number Publication Date
JPH0488001A true JPH0488001A (en) 1992-03-19

Family

ID=16497109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20483190A Pending JPH0488001A (en) 1990-07-31 1990-07-31 Method for continuous polymerization

Country Status (1)

Country Link
JP (1) JPH0488001A (en)

Similar Documents

Publication Publication Date Title
US2758915A (en) Apparatus for continuous polymerization
CN101942044B (en) Method for the continuous implementation of polymerisation processes
JP5231390B2 (en) Method and apparatus for processing high viscosity products
US3390965A (en) Reactor for the manufacture of polyethylene phthalates
US4328327A (en) Continuous bulk polymerization process for preparing copolymer of aromatic vinyl monomer and maleic anhydride
US4042768A (en) Continuous solvent-free polymerization of vinyl derivatives
US7776277B2 (en) Polymerization method and polymerization apparatus
JPS6331481B2 (en)
US4138544A (en) Preparation of polycondensate by one-step melt condensation in a vacuum
US7931872B2 (en) Polymerization processor
US7638094B2 (en) Method for the continuous production of melt polymers in a tubular reactor
US9598518B2 (en) Continuous bulk polymerization of vinyl monomers
JP5615266B2 (en) Biopolymer production method and apparatus
JPH0113726B2 (en)
JPH0488001A (en) Method for continuous polymerization
JPH0270704A (en) Apparatus and method for continuous polymerization
JPH08259676A (en) Polymerization of lactic acid and polymerizer
JPH0476023A (en) Continuous polymerization
KR20230009934A (en) Development of continuous glycolide-L-lactide copolymer production process
US3446772A (en) Process for preparing high molecular weight polyalkylene terephthalates by intimately mixing a molten stream of low molecular weight polyalkylene terephthalate with a melt of higher molecular weight polyalkylene terephthalate
JP3590383B2 (en) Continuous production method of polyester-based polymer
JPH0517505A (en) Continuous polymerization unit and continuous polymerization using the same
JPS5943049B2 (en) Continuous production method of polyester
JPS5851962B2 (en) Continuous polymerization method and apparatus for styrenic copolymer