JPH0486599A - Method and material for removing strontium and/or antimony - Google Patents

Method and material for removing strontium and/or antimony

Info

Publication number
JPH0486599A
JPH0486599A JP2202077A JP20207790A JPH0486599A JP H0486599 A JPH0486599 A JP H0486599A JP 2202077 A JP2202077 A JP 2202077A JP 20207790 A JP20207790 A JP 20207790A JP H0486599 A JPH0486599 A JP H0486599A
Authority
JP
Japan
Prior art keywords
solution
antimony
mno2
adsorbent
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2202077A
Other languages
Japanese (ja)
Inventor
Yuzuru Yanagisawa
柳澤 譲
Kazuyoshi Mochizuki
望月 一慶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP2202077A priority Critical patent/JPH0486599A/en
Publication of JPH0486599A publication Critical patent/JPH0486599A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Removal Of Specific Substances (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To enable the removal of strontium Sr and/or antimony Sb efficiently by treating a high basic concentration solution by a removing material containing manganese dioxide (MnO2). CONSTITUTION:A removing material containing MnO2 is worked in a form of powder, particle, fiber or the like and a quantity of use thereof is determined according to the concentrations of Sr and Sb in a solution. pH of a solution to be treated is appropriately above about 5 in an NaNO3 system when iodine is contained and preferably above about 7 viewed from performance of an adsorbent. The pH is not limited specifically in an Na2 SO4 system and a phosphate system but preferably above about 7. There is no limit specifically when phosphoric acid is produced. For example, a raw liquid 5 is supplied with a raw material pump 2 from a tank 5 to a column 3 packed with about 1g of a particulate spinel type MnO2 as adsorbent 4 with a mesh of about 100 or less and 200 or more and the solution treated leaving a line 6 is analyzed about 420 min. later and no Sr was detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ストロンチウムまたはアンチモンを含む溶液
、特に高塩濃度下の溶液(廃液)からストロンチウム及
び/またはアンチモンを除去する方法及びそれに用いる
除去材に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for removing strontium and/or antimony from a solution containing strontium or antimony, particularly a solution (waste liquid) at a high salt concentration, and a removal material used therein. Regarding.

本発明において溶液(廃液)とは、水、親水性溶媒及び
その混合物を溶媒とする溶液をいう。
In the present invention, a solution (waste liquid) refers to a solution using water, a hydrophilic solvent, or a mixture thereof as a solvent.

(従来の技術) ストロンチウムやアンチモンの除去については従来技術
の1例として、原子力分野の廃水処理があげられる。
(Prior Art) An example of conventional technology for removing strontium and antimony is wastewater treatment in the nuclear field.

すなわち、核燃料の再処理工場、原子力発電所等の原子
力施設から発生する放射性低レベル濃縮廃液には、20
0〜400g/Rの硝酸ナトリウム及び約O〜200g
/ρの炭酸すトリウム、5〜50g/βの亜硝酸ナトリ
ウム等の塩(以下これらを総称してNaNO3系と称す
)、約25%の硫酸ナトリウム及び約12%のホウ酸ナ
トリウム等の塩(以下これらを総称してNa、SO4系
と称す)を主体とし高塩濃度条件下で、Sr、Cs等の
放射性陽イオン核種が含まれている。
In other words, radioactive low-level concentrated waste liquid generated from nuclear facilities such as nuclear fuel reprocessing plants and nuclear power plants contains 20
0-400g/R sodium nitrate and about 0-200g
/ρ sodium carbonate, 5 to 50 g/β salts such as sodium nitrite (hereinafter collectively referred to as NaNO3), approximately 25% sodium sulfate, and approximately 12% sodium borate salts ( These are hereinafter collectively referred to as Na and SO4 systems), and under high salt concentration conditions, radioactive cation nuclides such as Sr and Cs are included.

また、U、Puの溶媒抽出工程からの廃溶媒(TBP(
)リブチルリン酸)+n−ドデカン等)の処理方法の一
つとして液相酸化法が提案されており、この溶媒が液相
酸化された主たる成分が約150 g/gのリン酸等で
ある廃液(以下これらを総称してリン酸系と称す)中に
は、アンチモン等の放射性陽イオン核種が含まれている
In addition, waste solvent (TBP) from the solvent extraction process of U and Pu
) Libutyl phosphoric acid) + n-dodecane, etc.) A liquid phase oxidation method has been proposed as one of the methods for treating oxidized waste liquid (such as 150 g/g of phosphoric acid, etc.) in which this solvent is liquid phase oxidized. (hereinafter collectively referred to as phosphoric acid) contains radioactive cation nuclides such as antimony.

このような溶液の処理方法として、NaNO2、Na2
Cox等を含むN a N Ox系では溶液中にSr等
のほかにCa、Mg等のイオンが200ppm以上存在
するので、無機系の吸着材でSrを吸着除去することが
試みられている。
As a treatment method for such a solution, NaNO2, Na2
In NaNOx systems containing Cox and the like, in addition to Sr and the like, ions such as Ca and Mg are present at 200 ppm or more in the solution, so attempts have been made to adsorb and remove Sr using an inorganic adsorbent.

また、一方、これらの溶液から製品としてのリン酸を製
造する場合、原料中に不純物が含まれていると不純物の
多い製品となり不具合を生じるが、例えば、蒸留を行っ
てより純粋な製品を得るときには、製品の歩止まり量が
減る等の不具合が生じることとなる。
On the other hand, when producing phosphoric acid as a product from these solutions, if the raw materials contain impurities, the product will have many impurities and problems will occur, but for example, distillation can be used to obtain a purer product. Sometimes, problems such as a decrease in the yield of the product occur.

(発明が解決しようとする課題) すなわち、上記原子力分野の従来技術では、下記のよう
な解決すべき課題がある。
(Problems to be Solved by the Invention) In other words, the above-mentioned conventional technology in the field of nuclear energy has the following problems to be solved.

1)上記N a N Ox系では溶液中のSrを吸着さ
せる際、Ca、Mgが存在すると吸着性が低下し、吸着
材の使用量が大幅に増加する。
1) When adsorbing Sr in a solution in the above NaNOx system, the presence of Ca and Mg lowers the adsorption ability and significantly increases the amount of adsorbent used.

2)リン酸系ではsbを共沈させるのに、pHを約7に
保ち、かつ、共沈時間も長くとる必要があり、経時的p
H値の変動に弱い。
2) In order to coprecipitate sb in a phosphoric acid system, it is necessary to maintain the pH at about 7 and take a long coprecipitation time.
Weak against fluctuations in H value.

3)また、上記のリン酸を製造する場合には上述のよう
な問題点がある。
3) Furthermore, when producing the above-mentioned phosphoric acid, there are the above-mentioned problems.

本発明は、上記従来技術の有する問題点の解決を図るも
ので、溶液中からストロンチウム及び/またはアンチモ
ンを効率的に除去する方法及び除去材を提供することを
目的とする。
The present invention aims to solve the problems of the above-mentioned prior art, and aims to provide a method and a removal material for efficiently removing strontium and/or antimony from a solution.

(課題を解決するための手段) 本発明者らは、上記問題点を克服すべく、種々検討を行
った結果、二酸化マンガンを処理材として所定条件下で
利用することによりその目的を達成しうることを見出し
、この知見に基づき本発明をなすに至った。
(Means for Solving the Problems) The present inventors have conducted various studies in order to overcome the above-mentioned problems, and as a result, the present inventors have found that the purpose can be achieved by using manganese dioxide as a treatment material under specified conditions. Based on this finding, the present invention has been completed.

すなわち本発明は、(1)高塩濃度の溶液を二酸化マン
ガンにより処理しストロンチウム及び/またはアンチモ
ンを除去することを特徴とする方法、及び(2)ストロ
ンチウム及び/またはアンチモンを除去する二酸化マン
ガンを含有してなることを特徴とする除去材を提供する
ものである。
That is, the present invention provides (1) a method characterized in that a solution with a high salt concentration is treated with manganese dioxide to remove strontium and/or antimony, and (2) a method containing manganese dioxide that removes strontium and/or antimony. The object of the present invention is to provide a removal material characterized by the following.

本発明は除去能率上高塩濃度下の溶液に対して適用され
おおむね飽和濃度付近までの溶液、すなわち飽和濃度の
50%以上、好ましくは80%以上、特に好ましくは9
0%以上の溶液に適する。
The present invention is applied to solutions with high salt concentrations in terms of removal efficiency, and is applied to solutions with a concentration close to saturation, that is, 50% or more of the saturation concentration, preferably 80% or more, particularly preferably 90% or more of the saturation concentration.
Suitable for 0% or higher solutions.

二酸化ンガンは高濃度化の除去において他の処理材にま
さる。
Gun dioxide outperforms other treatments in removing high concentrations.

本発明において原子力分野の1例としてあげたN a 
N O!系ではヨウ素を含む場合には被処理溶液のpH
は5以上がよく、また、吸着材の性能から7以上が好ま
しい。Na2SO4系及びリン酸系ではpHは特に制限
されないが、7以上が好ましい。またリン酸を製造する
場合は特に制限はない。
In the present invention, N a given as an example in the nuclear field
NO! If the system contains iodine, the pH of the solution to be treated is
is preferably 5 or more, and preferably 7 or more in view of the performance of the adsorbent. For Na2SO4 and phosphoric acid systems, the pH is not particularly limited, but is preferably 7 or higher. Moreover, when producing phosphoric acid, there are no particular restrictions.

本発明に用いられる二酸マンガンは式M n Ozで示
される酸化物であり、この中でスピネル型結晶構造のも
のが特に好ましい。
The manganese diaate used in the present invention is an oxide represented by the formula M n Oz, and among these, those having a spinel crystal structure are particularly preferred.

本発明において除去材は、粉末状、粒状、繊維状等所望
に応じて任意の形状に加工して利用することができる。
In the present invention, the removal material can be processed into any desired shape such as powder, granules, or fibers.

その用量は特に制限はな(、溶液中のストロンチウム及
びアンチモンの濃度に応じて適宜に決定することができ
る。
The dose is not particularly limited (it can be appropriately determined depending on the concentrations of strontium and antimony in the solution).

また、本発明の除去材は、通常、硝酸、苛性ソーダ等で
再生し再使用することができる。本発明は、バッチ式、
セミパッチ式および連続式のいずれでも実施することが
できる。
Further, the removal material of the present invention can be reused by regenerating it with nitric acid, caustic soda, etc. The present invention is a batch type,
Both semi-patch and continuous methods can be used.

(発明の効果) 以上のように、本発明による除去方法及び除去材を用い
ると、 1)原子力分野の1例では、Sr、Sbが効率よく除去
できるほかに、N a N Ox系、リン酸系の溶液を
それぞれ単独処理するばかりではなく、これらを混合し
た場合にも一括処理することができるので管理すべき液
種を減らすことができる。
(Effects of the Invention) As described above, when the removal method and removal material according to the present invention are used, 1) In one example in the field of nuclear power, in addition to efficiently removing Sr and Sb, Not only can each solution in the system be treated individually, but also when they are mixed, they can be treated all at once, so the number of liquid types to be managed can be reduced.

2)また直接リン酸を製造する場合には、製品としての
リン酸の精製がたやすくでき、かつ、仮に蒸留を必要と
する場合でも不純物が除去されているため釜残留物が少
なくなることがら、製品の収量が多くなる。
2) In addition, when producing phosphoric acid directly, it is easy to purify the phosphoric acid as a product, and even if distillation is required, impurities are removed, so there is less residue in the pot. , the product yield will be higher.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例1 原液として400g/42のN a N Oz  50
 g/ρのN a 2 COz  50 g / I2
のNaNO2;Sr ; Ca :Mgイオンとしてそ
れぞれ5:300 : 300ppmを含み、pH7の
水溶液をを第1図に示した装置で処理した。
Example 1 400 g/42 N a N Oz 50 as stock solution
g/ρ N a 2 COz 50 g/I2
An aqueous solution containing 5:300:300 ppm of NaNO2; Sr; Ca: Mg ions and having a pH of 7 was treated with the apparatus shown in FIG.

すなわち原液タンク1から原液5を原液輸送ポンプ2で
0.3m1l/minの速度で吸着剤4として100メ
ツシユ下200メツシユ上の粒状スピネル型二酸化マン
ガン1gを充填したカラム3(内径8mm、肉厚700
mm)に供給した。
That is, a column 3 (inner diameter 8 mm, wall thickness 700 mm) filled with 1 g of granular spinel type manganese dioxide of 100 mesh below 200 mesh as adsorbent 4 was transferred from stock solution tank 1 to stock solution 5 using stock solution transport pump 2 at a rate of 0.3 ml/min.
mm).

420分後、ライン6から出る処理済液のSrイオン濃
度を1.C,P、法で分析したが検出されなかった。
After 420 minutes, the Sr ion concentration of the treated liquid coming out of line 6 was reduced to 1. It was analyzed using C and P methods, but it was not detected.

実施例2 実施例1の原液にsbとして5ppmを加えた以外は実
施例1と同様に処理試験を行った。
Example 2 A treatment test was conducted in the same manner as in Example 1 except that 5 ppm of sb was added to the stock solution of Example 1.

250分後、ライン6から出る被処理液のSr、Sbを
1.C,P、法で分析した結果、これらは検出されなか
った。
After 250 minutes, the Sr and Sb of the liquid to be treated coming out from line 6 was reduced to 1. As a result of analysis using the C, P, method, these were not detected.

実施例3.4、比較例1〜7 実施例2と同様の液組成で各種吸着剤のバッチ・テスト
を行った。吸着剤は100メツシユ下200メツシユ上
の粒径にし、吸着剤の0.1gを30℃で2日間10r
mの液に浸した。結果を表1にホす。
Example 3.4, Comparative Examples 1 to 7 Batch tests of various adsorbents were conducted using the same liquid composition as in Example 2. The adsorbent has a particle size of 100 mesh below 200 mesh, and 0.1 g of the adsorbent is heated at 30°C for 2 days at 10 rpm.
I immersed it in the solution of m. The results are shown in Table 1.

表−1より二酸化マンガン特にスピネル型のものがきわ
めて高い分配係数を示すことが分かる。
It can be seen from Table 1 that manganese dioxide, especially spinel type, exhibits an extremely high distribution coefficient.

実施例5 実施例2の液紀成からCa、Mgイオンを除き同様に処
理試験を行った。結果は実施例2と同様であった。
Example 5 A treatment test was conducted in the same manner as in Example 2 except that Ca and Mg ions were removed. The results were similar to Example 2.

実施例6 実施例1の原液にリン酸イオンとして約5000ppm
を加え実施例1と同様な操作を行った。
Example 6 Approximately 5000 ppm of phosphate ion was added to the stock solution of Example 1.
was added and the same operation as in Example 1 was performed.

420分後でも、ライン6から出る処理済液にSrは検
出されなかった。
Even after 420 minutes, no Sr was detected in the treated liquid coming out of line 6.

実施例7 実施例1の原液を250 g/ρ硫酸ナトリウム、12
0 g/DIホウ酸ナトリウムにかえ実施例1と同様の
操作を行った。結果は同様に良好であった。
Example 7 The stock solution of Example 1 was added to 250 g/ρ sodium sulfate, 12
The same operation as in Example 1 was performed except that 0 g/DI sodium borate was used. The results were equally good.

実施例8 実施例1の原液の陰イオンを200 g/9リン酸に代
え、他の陽イオンは同一の条件で実施した。結果は、実
施例1とほぼ同様であった。
Example 8 The anion in the stock solution of Example 1 was replaced with 200 g/9 phosphoric acid, and the other cations were carried out under the same conditions. The results were almost the same as in Example 1.

実施例9 実施例8にsbとして5ppm加えて同様に実施した。Example 9 The same procedure as in Example 8 was carried out by adding 5 ppm of sb.

結果は実施例8とほぼ同様であった。The results were almost the same as in Example 8.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するのに用いられるフローシ
ートの1例を示す。
FIG. 1 shows an example of a flow sheet used to carry out the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)高塩濃度の溶液を二酸化マンガンにより処理して
ストロンチウム及び/またはアンチモンを除去すること
を特徴とする方法。
(1) A method characterized by treating a solution with a high salt concentration with manganese dioxide to remove strontium and/or antimony.
(2)ストロンチウム及び/またはアンチモンを除去す
る二酸化マンガンを含有してなることを特徴とする除去
材。
(2) A removal material containing manganese dioxide that removes strontium and/or antimony.
JP2202077A 1990-07-30 1990-07-30 Method and material for removing strontium and/or antimony Pending JPH0486599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202077A JPH0486599A (en) 1990-07-30 1990-07-30 Method and material for removing strontium and/or antimony

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202077A JPH0486599A (en) 1990-07-30 1990-07-30 Method and material for removing strontium and/or antimony

Publications (1)

Publication Number Publication Date
JPH0486599A true JPH0486599A (en) 1992-03-19

Family

ID=16451576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202077A Pending JPH0486599A (en) 1990-07-30 1990-07-30 Method and material for removing strontium and/or antimony

Country Status (1)

Country Link
JP (1) JPH0486599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379510A (en) * 2012-03-20 2015-02-25 阿海珐有限公司 Process for removal of radioactive contamination from wastewater
US9682360B2 (en) 2012-12-20 2017-06-20 Hitachi-Ge Nuclear Energy, Ltd. Radionuclide adsorbent, method of producing radionuclide adsorbent and production apparatus thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379510A (en) * 2012-03-20 2015-02-25 阿海珐有限公司 Process for removal of radioactive contamination from wastewater
US9527756B2 (en) 2012-03-20 2016-12-27 Areva Gmbh Process for removal of radioactive contamination from wastewater
US9682360B2 (en) 2012-12-20 2017-06-20 Hitachi-Ge Nuclear Energy, Ltd. Radionuclide adsorbent, method of producing radionuclide adsorbent and production apparatus thereof

Similar Documents

Publication Publication Date Title
KR102058277B1 (en) Liquid radioactive waste treatment and recovery method thereof
CA2101261C (en) Method of composite sorbents manufacturing
WO2014110014A1 (en) Strontium and cesium specific ion-exchange media
US4983302A (en) Complex preparation-process for decreasing the non-radioactive salt content of waste solutions of nuclear power stations
KR20150137201A (en) A method for preparing silicotitanate and Cs adsorbent
Wu et al. Water defluoridation with activated alumina
CN107847902B (en) Adsorbent for adsorbing iodine compound and/or antimony, method for producing same, and method and apparatus for treating radioactive waste liquid using same
WO2007123436A1 (en) Method for recycling a still residue of liquid radioactive wastes
JPH0486599A (en) Method and material for removing strontium and/or antimony
EP0555996A2 (en) Methods and apparatus for treating aqueous indutrial effluent
KR950009706B1 (en) Method of preparing metal element adsorbent and method of adsorbing and separating metal
JPS5815193B2 (en) How to treat boron-containing water
Faghihian et al. Adsorption of molybdate ion by natrolite and clinoptilolite-rich tuffs
JP6379382B2 (en) Iodine removing agent, removing apparatus and removing method for removing iodine from aqueous solution
JP2017116407A (en) Adsorbent for radioactive antimony, radioactive iodine, and radioactive ruthenium, and radioactive waste liquid treatment method using the adsorbent
Avramenko et al. Application of sorption-reagent materials in the technology of liquid radioactive waste treatment
JP2016176742A (en) Radioactive cesium immobilization method and radioactive cesium absorbing inorganic mineral
US4206048A (en) Process for purification of contaminated water
KR20100030250A (en) Removal method of iodine mixtures from aqueous solution
JPH0486600A (en) Method and material for removing iodine
RU2330340C2 (en) Method of extracting radionuclides from water solutions
Nelson et al. Inorganic ion exchange separation of cesium from purex-type high-level radioactive wastes
RU2817393C1 (en) Method of processing liquid radioactive wastes
KR102654512B1 (en) Adsorbent for removing radionuclides and manufacturing method thereof
Papynov et al. Manganese oxide-based sorbent for Sr-90 radionuclide removal from seawater