JPH0485379A - Heat-resistant resin paste and ic using the same - Google Patents

Heat-resistant resin paste and ic using the same

Info

Publication number
JPH0485379A
JPH0485379A JP19816790A JP19816790A JPH0485379A JP H0485379 A JPH0485379 A JP H0485379A JP 19816790 A JP19816790 A JP 19816790A JP 19816790 A JP19816790 A JP 19816790A JP H0485379 A JPH0485379 A JP H0485379A
Authority
JP
Japan
Prior art keywords
heat
resistant resin
resin
fine particles
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19816790A
Other languages
Japanese (ja)
Other versions
JP3087290B2 (en
Inventor
Hiroshi Nishizawa
西沢 廣
Kenji Suzuki
健司 鈴木
Noburu Kikuchi
宣 菊地
Takayuki Saito
斉藤 高之
Tonobu Sato
佐藤 任延
Shunichiro Uchimura
内村 俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP02198167A priority Critical patent/JP3087290B2/en
Publication of JPH0485379A publication Critical patent/JPH0485379A/en
Application granted granted Critical
Publication of JP3087290B2 publication Critical patent/JP3087290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain an optimized resin paste which is thixotropic, is capable of forming uniform films with less pinholes and voids, is excellent in heat resistance, mechanical characteristics, etc., of the films, and is useful for forming protective films on the surface of IC, by incorporating a heat-resistant resin, fine particles of the heat-resistant resin and a solvent. CONSTITUTION:The title heat-resistant resin paste contains a heat resistant resin, fine particles of the heat-resistant resin and a solvent. The fine particles are present as a heterogeneous phase in contrast to the homogeneous phase made up of the heat resistant resin and the solvent prior to heat curing, and the fine particles are incorporated in the homogeneous phase of the heat- resistant resin and the solvent after heat curing. The heat-resistant resin may preferably include polyamide resins, polyamideimide resins and polyimide resins. The fine particles are made of the above resins and preferably have an average particle size of 40mum or less. Preferable solvents include lactones and carbonates.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、スクリーン印刷用オーバーコート材に適した
新規な耐熱性樹脂ペーストおよびこれを用いたICに関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel heat-resistant resin paste suitable for an overcoat material for screen printing, and an IC using the same.

(従来の技術) 通常、樹脂溶液は、それ自身ではチキソトロピー性をほ
とんど示さない。チキソトロピーは等温状態においても
変形のために見掛は粘度が一時的に低下する現象として
定義され1例えば印刷中の高ぜん断速度下では粘度が一
時的に低下して流動し、基材に転移後はだれたシ流れた
りしないことが要求されるスクリーン印刷用ペーストに
は必要不可欠な流動特性である。樹脂溶液にチキソトロ
ピー性を付与するための一つの方法は樹脂溶液にフイラ
ーとして樹脂微粒子を分散させてペースト化することで
るる。このようなペーストとしては種々のものが知られ
ている。
(Prior Art) Usually, a resin solution itself exhibits almost no thixotropy. Thixotropy is defined as a phenomenon in which the apparent viscosity temporarily decreases due to deformation even under isothermal conditions.1 For example, under high shear speed during printing, the viscosity temporarily decreases, causing flow and transfer to the base material. This fluidity is essential for screen printing pastes, which are required to not drip or run. One method for imparting thixotropic properties to a resin solution is to disperse fine resin particles as a filler in the resin solution and form it into a paste. Various types of such pastes are known.

耐熱性をそれほど必要としない用途に使用される樹脂溶
液としては0例えばロジン変性フェノール樹脂、ロジン
変性マレイン樹脂、メラミン樹脂。
Examples of resin solutions used in applications that do not require high heat resistance include rosin-modified phenol resins, rosin-modified maleic resins, and melamine resins.

エポキシ樹脂等の樹脂溶液があり、高度な耐熱性が要求
される用途にはポリイミド樹脂の前駆体であるポリアミ
ド酸樹脂、溶媒可溶性のポリイミド樹脂、ポリアミドイ
ミド樹脂、ポリアミド樹脂等の樹脂溶液などが知られて
いる。また、これらの樹脂溶液に分散されてペーストを
形成する樹脂微粒子としては、耐熱性をそれほど必要と
しない用途では脂肪族系ポリアミド樹脂微粒子、メラミ
ン樹脂微粒子、エポキシ樹脂微粒子、フェノール樹脂微
粒子などが知られており、高度な耐熱性が要求される用
途ではポリイミド樹脂微粒子、ポリアミドイミド樹脂微
粒子、ポリアミド樹脂微粒子などが知られている。
There are resin solutions such as epoxy resins, and for applications that require a high degree of heat resistance, resin solutions such as polyamic acid resins, which are precursors of polyimide resins, solvent-soluble polyimide resins, polyamide-imide resins, and polyamide resins are known. It is being In addition, as resin particles that are dispersed in these resin solutions to form a paste, aliphatic polyamide resin particles, melamine resin particles, epoxy resin particles, phenolic resin particles, etc. are known for applications that do not require much heat resistance. For applications requiring high heat resistance, polyimide resin particles, polyamide-imide resin particles, polyamide resin particles, etc. are known.

(発明が解決しようとする課題) 半導体素子、配線板の絶縁膜、保W!膜などに用いるス
クリーン印刷用ペーストには高度な耐熱性。
(Problem to be solved by the invention) Semiconductor elements, insulating films of wiring boards, W protection! Highly heat resistant for screen printing pastes used for membranes, etc.

機械特性、耐湿性および耐食性が要求される。このよう
な用途には上記した耐熱樹脂溶液に無機微粒子か有機微
粒子のフィシを分散させたペーストが開発されている。
Mechanical properties, moisture resistance and corrosion resistance are required. For such uses, a paste has been developed in which inorganic or organic fine particles are dispersed in the above-mentioned heat-resistant resin solution.

しかし、無機微粒子はそれ自身固く、その上比重が大き
いのでペースト中の体積占有率が大きくなるため樹脂が
本来もっている機械特性を著しく損ねる。機械特性が十
分でないと皮膜にクランクが発生し易く、無機微粒子は
半導体素子の表面を傷つけ易いので、無機微粒子を含む
ペーストを用いた絶縁膜、保護膜は信頼性に欠ける。
However, inorganic fine particles are themselves hard and have a high specific gravity, so they occupy a large volume in the paste, significantly impairing the mechanical properties originally possessed by the resin. If mechanical properties are not sufficient, cracks are likely to occur in the film, and inorganic particles tend to damage the surface of semiconductor elements, so insulating and protective films using pastes containing inorganic particles lack reliability.

一方、有機微粒子は上記した問題の解決が期待できる材
料として検討されているが、皮膜中にフィシとして分散
した状態で、結合剤の樹脂と粒子表面との界面に空隙が
でき易く、これが機械特性。
On the other hand, organic fine particles are being studied as a material that is expected to solve the above problems, but when they are dispersed as fissures in the film, they tend to form voids at the interface between the binder resin and the particle surface, which affects the mechanical properties. .

耐湿性及び耐食性を低下させる直接の原因となる。This directly causes a decrease in moisture resistance and corrosion resistance.

樹脂との親和性に乏しい無機微粒子を用いたペーストで
はこの欠陥がより増大する。このように。
This defect is more likely to occur in pastes that use inorganic fine particles that have poor affinity with resins. in this way.

皮膜中に微粒子がフィシとして残存する従来のペースト
ではフィシが無機微粒子及び有機微粒子に関係なく、皮
膜は平均一で空隙やピンホールができ易く、高度な機械
特性、耐湿性及び耐食性が要求される用途に対して必ず
しも満足できるものとはいえなかった。本発明はこのよ
うな問題点を解決するものでメジ、チキソトロピー性を
有し、特にピンホール、空隙の少ない均一な皮膜を形成
でき、皮膜の耐熱性9機械特性、rM湿性及び耐食性に
優れた耐熱性樹脂ペーストおよびこれを用いたIC1に
提供するものである。
With conventional pastes in which fine particles remain as fissures in the film, the fissures are uniform on average, and voids and pinholes are likely to form, regardless of whether the fissures are inorganic or organic, and high mechanical properties, moisture resistance, and corrosion resistance are required. It could not be said that it was necessarily satisfactory for the intended use. The present invention solves these problems and has thixotropic properties, can form a uniform film with especially few pinholes and voids, and has excellent heat resistance, mechanical properties, rM humidity, and corrosion resistance. The present invention provides a heat-resistant resin paste and IC1 using the same.

(課題を解決するための手段) 本発明は耐熱性樹脂、耐熱性樹脂の微粒子および溶剤を
含み、加熱硬化前には微粒子は耐熱性樹脂と溶剤からな
′る均一相に対して平均一として存在し、加熱硬化後に
は耐熱性樹脂、微粒子および溶剤が均一相として存在す
るようにした耐熱性樹脂ペーストおよびこの耐熱性樹脂
ペーストを用いたICに関する。
(Means for Solving the Problems) The present invention includes a heat-resistant resin, fine particles of the heat-resistant resin, and a solvent, and before curing by heating, the fine particles are on average uniform in a homogeneous phase consisting of the heat-resistant resin and the solvent. The present invention relates to a heat-resistant resin paste in which a heat-resistant resin, fine particles, and a solvent exist as a homogeneous phase after heat curing, and an IC using this heat-resistant resin paste.

本発明になる耐熱性樹脂ペーストは、結合剤として主に
機能する耐熱性樹脂及び溶剤を含む溶液とペーストのチ
キソトロピー性付与剤として主に機能する耐熱性樹脂の
微粒子とから構成されている。このペーストにおいて、
耐熱性樹脂の微粒子は配合時には耐熱性樹脂及び溶剤を
含む溶液中に分散してチキソトロピー性を発現し、加熱
硬化時には溶剤に溶解して、最終的に耐熱性樹脂との均
一な皮膜を形成する。本発明における耐熱性樹脂ペース
トハ印刷特性に直接影響するチキソトロピー性に優れ、
得られた皮膜はピンホール、空隙がなく均一であり、優
れた機械特性、耐湿性および耐食性を有する。
The heat-resistant resin paste of the present invention is composed of a solution containing a heat-resistant resin and a solvent that mainly functions as a binder, and fine particles of a heat-resistant resin that mainly functions as a thixotropic agent for the paste. In this paste,
During compounding, heat-resistant resin fine particles are dispersed in a solution containing heat-resistant resin and solvent to develop thixotropic properties, and during heat curing, they dissolve in the solvent and finally form a uniform film with heat-resistant resin. . The heat-resistant resin paste in the present invention has excellent thixotropy, which directly affects printing characteristics,
The resulting film is uniform with no pinholes or voids, and has excellent mechanical properties, moisture resistance, and corrosion resistance.

本発明における耐熱性樹脂は溶剤に可溶性の熱硬化性樹
脂又は熱可塑性樹脂のいずれも使用できる。溶剤に可溶
性の熱硬化性樹脂としては9例えば、末端アセチレン化
ポリイミド樹脂、末端マレイミド化ポリイミド樹脂、末
端ノルボルネン化ポリイミド樹脂、BTレジン(三菱ガ
ス化学社製。
As the heat-resistant resin in the present invention, either a thermosetting resin or a thermoplastic resin soluble in a solvent can be used. Examples of thermosetting resins soluble in solvents include acetylenated polyimide resins, maleimide polyimide resins, norbornene polyimide resins, and BT resin (manufactured by Mitsubishi Gas Chemical Co., Ltd.).

商品名)、ケルイミド(ローン・ブーラン社製。(Product name), Kelimide (manufactured by Lone Boulin).

商品名)等の付加重合型ポリイミド樹脂、メラミン樹脂
、フェノール樹脂、エポキシ樹脂などが用いられる。溶
剤に可溶性の熱可塑性樹脂としては。
Addition polymerization type polyimide resins such as (trade name), melamine resins, phenol resins, epoxy resins, etc. are used. As a thermoplastic resin that is soluble in solvents.

例えば、「プラスチックハンドブック」(朝倉書店、1
979年刊行)の308〜618真に掲載されている耐
熱性樹脂が用いられる。耐熱性1機械特性と溶解性の観
点から、好ましくはポリアミド樹脂、ポリアミドイミド
樹脂、ポリイミド樹脂(ポリイミド樹脂の前駆体でるる
ポリアミド酸樹脂、テトラカルボン酸二無水物とアルコ
ール及び/又はアルコール誘導体とを反応させて得られ
るテトラカルボン酸エステルに、ジアミンを混合または
反応させた組成物又はポリアミド酸エステルオリゴマー
、テトラカルボン酸二無水物ととの二無水物と錯体を形
成しうる溶媒とを反応させて得られる錯体に、ジアミン
を混合または反応させた組成物又はポリアミド酸オリゴ
マー(この溶媒としては、好ましくはN−メチルピロリ
ドン、ピリジン、ε−カプロラクタム等が用いられる)
を含む)が用いられる。
For example, "Plastic Handbook" (Asakura Shoten, 1
The heat-resistant resins listed in vol. 308-618 (published in 1979) are used. Heat Resistance 1 From the viewpoint of mechanical properties and solubility, preferably polyamide resin, polyamideimide resin, polyimide resin (polyamic acid resin which is a precursor of polyimide resin, tetracarboxylic dianhydride and alcohol and/or alcohol derivative) are used. The tetracarboxylic acid ester obtained by the reaction is reacted with a composition obtained by mixing or reacting a diamine, or a polyamic acid ester oligomer, or a solvent capable of forming a complex with the dianhydride and the tetracarboxylic dianhydride. A composition obtained by mixing or reacting a diamine with the obtained complex or a polyamic acid oligomer (N-methylpyrrolidone, pyridine, ε-caprolactam, etc. are preferably used as the solvent)
) are used.

ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹
脂としては9例えば、ポリカルボン酸又はその反応性酸
誘導体とジアミン(例えば1%開昭63−205640
号公報に記載されているもの)又はそのジアミンとホス
ゲン又は塩化チオニルと反応させて得られるジイソシア
ネートとを反応させて得られるものが用いられる。具体
的には、特開昭57−64955号公報に記載されてい
る可溶性ポリアミド樹脂、特開平1−40570号公報
に記載されている可溶性ポリアミドイミド樹脂、特開昭
62−283154号公報に記載されている可溶性ポリ
イミド樹脂などが挙げられる。
Examples of polyamide resins, polyamideimide resins, and polyimide resins include polycarboxylic acids or their reactive acid derivatives and diamines (e.g., 1%
The diisocyanate obtained by reacting the diamine with phosgene or thionyl chloride can be used. Specifically, the soluble polyamide resin described in JP-A-57-64955, the soluble polyamide-imide resin described in JP-A-1-40570, and the soluble polyamide-imide resin described in JP-A-62-283154 Examples include soluble polyimide resins.

熱可塑性樹脂の熱分解開始温度は、好ましくは250℃
以上、特に好ましくIfi350℃以上でめシ、溶剤に
可溶性の熱可塑性樹脂は単独で又は混率発明における耐
熱性樹脂の微粒子は9例えば上記した溶剤に可溶性の耐
熱性樹脂から得られる微粒子が用いられる。耐熱性と機
械特性の観点から、好ましくは上記したポリアミド樹脂
、ポリアミドイミド樹脂、ポリイミド樹脂(ポリイミド
樹脂の前駆体であるポリアミド酸樹脂、テトラカルボン
酸二無水物とアルコール及び/又はアルコール誘導体と
を反応させて得られるテトラカルボン酸エステルに、ジ
アミンを混合または反応させた組成物又はポリアミド酸
エステルオリゴマー、テトラカルボン酸二無水物とこの
二無水物と錯体を形成しうる溶媒とを反応させて得られ
る錯体に。
The thermal decomposition start temperature of the thermoplastic resin is preferably 250°C
As mentioned above, it is particularly preferable that the thermoplastic resin is soluble in a solvent at a temperature of 350° C. or higher, and the fine particles of the heat-resistant resin in the invention are used alone or in a mixed ratio. From the viewpoint of heat resistance and mechanical properties, it is preferable to react the above-mentioned polyamide resin, polyamideimide resin, polyimide resin (polyamic acid resin which is a precursor of polyimide resin, tetracarboxylic dianhydride and alcohol and/or alcohol derivative). A composition obtained by mixing or reacting a diamine with a tetracarboxylic acid ester obtained by reacting a polyamic acid ester oligomer, a tetracarboxylic dianhydride, and a solvent that can form a complex with this dianhydride. into a complex.

ジアミンを混合または反応させた組成物又はポリアミド
酸オリゴマー(この溶媒としては、好ましくはN−メチ
ルピロリドン、ピリジン、ε−カプロラクタム等が用い
られる)を含む)の微粒子が用いられる。
A composition mixed or reacted with a diamine or fine particles of a polyamic acid oligomer (preferably N-methylpyrrolidone, pyridine, ε-caprolactam, etc. are used as the solvent) are used.

耐熱性樹脂の微粒子としては、平均粒子径が40μm以
下であるポリアミド樹脂、ポリアミドイミド樹脂および
ポリイミド樹脂が好ましく用いられる。本発明における
ペーストをスクリーン印刷に用いる場合、ペーストのチ
キソトロピー性。
As the heat-resistant resin fine particles, polyamide resins, polyamideimide resins, and polyimide resins having an average particle diameter of 40 μm or less are preferably used. When the paste in the present invention is used for screen printing, the thixotropic property of the paste.

皮膜の均−性及び膜厚との調和を考慮すると耐熱性樹脂
の微粒子は、好ましくは平均粒子径が0.1〜lOμm
とされる。
Considering the uniformity of the film and the consistency with the film thickness, the fine particles of the heat-resistant resin preferably have an average particle diameter of 0.1 to 10 μm.
It is said that

耐熱性樹脂の微粒子は非水分散重合法ヤ沈殿重合法で得
ることができるが、他の方法0例えば樹脂溶液から回収
した粉末を機械粉砕する方法、樹脂溶液に貧溶媒を加え
ながら高ぜん断下に微粒子化する方法、樹脂溶液の噴霧
油滴を乾燥して微粒子を得る方法等がメジ、任意の方法
が用いられ不。
Fine particles of heat-resistant resin can be obtained by non-aqueous dispersion polymerization or precipitation polymerization, but there are other methods such as mechanically crushing powder recovered from a resin solution, high shear treatment while adding a poor solvent to the resin solution, etc. Methods such as forming the resin solution into fine particles and drying the sprayed oil droplets of the resin solution to obtain fine particles are available, but any method can be used.

熱硬化性と熱可塑性の耐熱性樹脂の微粒子の熱分解開始
温度は、好ましくけ250℃以上、特に好ましく#′1
350℃以上であシ、ガラス転移温度は好ましくは20
0℃以上、特に好ましくは260℃以上でアシ、これら
は単独で又は混合して用い本発明における溶剤は9例え
ば「溶剤ハンドブック」(講談社、1976年刊行)の
143〜852頁に掲載されている溶剤が用いられる。
The thermal decomposition initiation temperature of the thermosetting and thermoplastic heat-resistant resin particles is preferably 250°C or higher, particularly preferably #'1
The glass transition temperature is preferably 350°C or higher, preferably 20°C.
The solvents used in the present invention can be used alone or in combination at temperatures above 0°C, particularly preferably above 260°C. A solvent is used.

例えばN−メチルピロリドン、ジメチルアセトアミド、
ジメチルホルムアミド、1.3−ジメチル−式4、5.
6−チトラヒドロー2(IH)−ピリミジノン、1.3
−ジメチル−2−イミダゾリジノン等の含窒素化合物、
スルホラン、ジメチルスルホキシド等の硫黄化合物、r
−ブチロラクトン、γ−バレロラクトン、r−カプロラ
クトン、r−ヘプタラクトン、α−アセチル−r−ブチ
ロラクトン。
For example, N-methylpyrrolidone, dimethylacetamide,
Dimethylformamide, 1,3-dimethyl-formula 4,5.
6-titrahydro-2(IH)-pyrimidinone, 1.3
-nitrogen-containing compounds such as dimethyl-2-imidazolidinone,
Sulfur compounds such as sulfolane and dimethyl sulfoxide, r
-butyrolactone, γ-valerolactone, r-caprolactone, r-heptalactone, α-acetyl-r-butyrolactone.

e−カプロラクトン等のラクトン類、ジオキサン。Lactones such as e-caprolactone, dioxane.

1.2−ジメトキシエタン、ジエチレングリコールジメ
チル(又はジエチル、ジプロピル、ジブチル)エーテル
、トリエチレングリコールジメチル(又はジエチル、ジ
プロピル、ジブチル)エーテル。
1.2-Dimethoxyethane, diethylene glycol dimethyl (or diethyl, dipropyl, dibutyl) ether, triethylene glycol dimethyl (or diethyl, dipropyl, dibutyl) ether.

テトラエチレングリコールジメチル(又はジエチル、ジ
プロピル、ジブチル)エーテル等のエーテル類、メチル
エチルケトン、メチルイソブチルケトン、シクロヘキサ
ノン、アセトフェノン等のケトン類、ブタノール、オク
チルアルコール、エチレングリコール、グリセリン、ジ
エチレングリコールモノメチル(又はモノエチル)エー
テル、トリエチレングリコールモノメチル(又ハモノエ
チル)エーテル、テトラエチレングリコールモノメチル
(又はモノエチル)エーテル等のアルコール類、フェノ
ール、クレゾール、キシレノール等のフェノール類、酢
酸エチル、酢酸ブチル、エチルセロソルブアセテート、
ブチルセロソルブアセテート等のエステル類、トルエン
1.キシレン、ジエチルベンゼン、シクロヘキサン等の
炭化水素類。
Ethers such as tetraethylene glycol dimethyl (or diethyl, dipropyl, dibutyl) ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetophenone, butanol, octyl alcohol, ethylene glycol, glycerin, diethylene glycol monomethyl (or monoethyl) ether, Alcohols such as triethylene glycol monomethyl (or hamonoethyl) ether, tetraethylene glycol monomethyl (or monoethyl) ether, phenols such as phenol, cresol, xylenol, ethyl acetate, butyl acetate, ethyl cellosolve acetate,
Esters such as butyl cellosolve acetate, toluene 1. Hydrocarbons such as xylene, diethylbenzene, and cyclohexane.

トリクロロエタン、テトラクロロエタン、モノクロロベ
ンゼン等のハロゲン化炭化水素類などが用いられる。
Halogenated hydrocarbons such as trichloroethane, tetrachloroethane, and monochlorobenzene are used.

溶剤の沸点はスクリーン印刷時のペーストの可使時間を
考慮すると100℃以上、特に150℃以上でるること
が好ましい。また、溶剤は版の乳剤膨潤性及びペースト
の吸湿安定性を考慮すると非含窒素系溶剤1例えば、γ
−ブチロラクトン。
The boiling point of the solvent is preferably 100° C. or higher, particularly 150° C. or higher, considering the pot life of the paste during screen printing. In addition, considering the emulsion swelling property of the plate and the moisture absorption stability of the paste, the solvent should be a non-nitrogen-containing solvent 1, for example, γ
-Butyrolactone.

r−バレロラクトン、γ−カプロラクトン、γ−ヘブタ
ラクトン、α−アセチル−r−ブチロラクトン、6−カ
プロラクトン等のラクトン類、エチレンカーボネート、
プロピレンカーボネート等のカーボネート類が好ましく
用いられる。
Lactones such as r-valerolactone, γ-caprolactone, γ-hebutalactone, α-acetyl-r-butyrolactone, 6-caprolactone, ethylene carbonate,
Carbonates such as propylene carbonate are preferably used.

本発明になる耐熱性樹脂ペーストは、加熱硬化前には微
粒子は耐熱性樹脂と溶剤からなる均一相に対して平均一
相として存在し、加熱硬化後には耐熱性樹脂、微粒子お
よび溶剤が均一相として存在するように、耐熱性樹脂、
耐熱性樹脂の微粒子及び溶剤の組成を調整することによ
り得られる。
In the heat-resistant resin paste of the present invention, before heat-curing, the fine particles exist as an average of one phase in a homogeneous phase consisting of the heat-resistant resin and the solvent, and after heat-curing, the heat-resistant resin, the fine particles, and the solvent exist in a homogeneous phase. Heat-resistant resin, to exist as
It can be obtained by adjusting the composition of the heat-resistant resin particles and the solvent.

具体的には例えば、下記した式(1)で表わされる〈夛
返し単位を有する耐熱性樹脂及び耐熱性樹脂の微粒子を
用いる第1表に示す組成が挙げられるが。
Specifically, for example, the composition shown in Table 1 using a heat-resistant resin having a repeating unit and fine particles of the heat-resistant resin represented by the following formula (1) may be mentioned.

これらは本発明の実施態様を示す一例であり、上記し次
耐熱性樹脂ペーストの性質を満足する組成であればよく
、特にこれらに制限されるものでは耐熱性樹脂と耐熱性
樹脂の微粒子とは加熱硬化時に互いに相溶する性質をも
つものが好ましく用いられる。#熱性樹脂は溶剤に対し
て室温及び加熱硬化時によく溶解するものが好ましく用
いられる。耐熱性樹脂の微粒子は溶剤に対して室温では
溶解しないが、加熱硬化時には溶解するものが好ましく
用いられる。
These are examples showing embodiments of the present invention, and any composition that satisfies the properties of the heat-resistant resin paste as described above may be used. Those having the property of being compatible with each other during heat curing are preferably used. #The thermal resin is preferably one that dissolves well in the solvent at room temperature and during heat curing. Preferably, the fine particles of the heat-resistant resin are those that do not dissolve in the solvent at room temperature, but dissolve during heat curing.

耐熱性樹脂と耐熱性樹脂の微粒子の割合は、好ましくは
総量を100重量部として、耐熱性樹脂5〜70重量部
処対して耐熱性樹脂の微粒子95〜30重量部が用いら
れる。耐熱性樹脂の微粒子の割合を多くするとチキソト
ロピー性と乾燥膜厚ペーストのチキソトロピー係数はE
型粘度計(東京計器社製、EHD−U型)tl−用いて
試料量0.49.測定Wl:25℃で測定した。回転数
1rpmと1 orpmのペーストのみかけ粘度、ηl
とηIの比、η1/η10として表される。
The ratio of the heat-resistant resin and the heat-resistant resin fine particles is preferably such that the total amount is 100 parts by weight, and 5-70 parts by weight of the heat-resistant resin is treated with 95-30 parts by weight of the heat-resistant resin fine particles. When the proportion of fine particles of heat-resistant resin is increased, the thixotropic property and dry film thickness of the paste become E
A sample amount of 0.49. Measurement Wl: Measured at 25°C. Apparent viscosity of paste at rotation speed of 1 rpm and 1 orpm, ηl
and ηI, expressed as η1/η10.

耐熱性樹脂と耐熱性樹脂の微粒子のペースト中の濃度は
、好ましくはペーストの粘度が30〜10、000ポア
ズ、チキソトロピー係数が1.5以上となるように調製
される。ペーストの粘度が30ポアズ未満であると印刷
後のペーストにだれが生じ易<、10,000ポアズを
越えると印刷の作業性が低下する。特に好ましくは30
0〜へ000ポアズとされる。具体的Kij、耐熱性樹
脂と耐熱性樹脂の微粒子の総和のペースト中の濃度は、
好ましくFil 0〜90重量%とされる。10重量−
未満であると皮膜の乾燥膜厚を厚くしK〈くなり、90
重量%を越えるとペーストの流動性が損われる。
The concentration of the heat-resistant resin and the heat-resistant resin fine particles in the paste is preferably adjusted so that the paste has a viscosity of 30 to 10,000 poise and a thixotropy coefficient of 1.5 or more. If the viscosity of the paste is less than 30 poise, the paste tends to sag after printing; if it exceeds 10,000 poise, the printing workability decreases. Particularly preferably 30
0 to 000 poise. Specifically, the concentration of the heat-resistant resin and the sum of the heat-resistant resin fine particles in the paste is:
Preferably, the Fil content is 0 to 90% by weight. 10 weight-
If it is less than 90%, the dry film thickness of the film becomes thicker and K becomes less than 90%.
If it exceeds % by weight, the fluidity of the paste will be impaired.

耐熱性樹脂の微粒子を耐熱性樹脂及び溶剤を含む溶液中
に分散させる方法としては通常、塗料分野で行なわれて
いるロール練シ、ミキサー混合などが適用され、十分な
分散が行なわれる方法であれば特KitiIJ限はない
。三本ロールによる複数回の混線が最も好ましい。
As a method for dispersing fine particles of heat-resistant resin in a solution containing heat-resistant resin and a solvent, roll kneading, mixer mixing, etc., which are used in the paint field, are usually used, and any method that achieves sufficient dispersion is used. There is no special limit. Most preferred is multiple crossings using three rolls.

本発明におけるペーストのチキソトロピー係数は1.5
以上とすることが好ましい。1.5未満でおると基板に
転写されたペーストにだれが発生し易く、十分なパター
ン精度が得られにくい。
The thixotropic coefficient of the paste in the present invention is 1.5
It is preferable to set it as above. If it is less than 1.5, the paste transferred to the substrate tends to sag, making it difficult to obtain sufficient pattern accuracy.

本発明のペーストは基材に塗布された後、好ましくは最
終的に150〜500℃で1〜120分間焼付けること
によって強じんな皮膜を形成させることができる。
After the paste of the present invention is applied to a substrate, it is preferably finally baked at 150 to 500°C for 1 to 120 minutes to form a strong film.

本発明のペーストには、必要に応じて消泡剤。The paste of the present invention contains an antifoaming agent if necessary.

顔料、染料、可塑剤、酸化防止剤などを併用して本発明
になる耐熱性樹脂ペーストはシリコンウェハを基板とし
たモノリシックIC,セラミック基板やガラス基板を用
いるハイブリッドIC,サーマルヘッド、イメージセン
サ−、マルチチップ高密度実装基板等のデバイス、フレ
キシブル配線板、リジット配線板等の各種配線板などの
層間絶縁膜及び/又は表面保護膜、各種耐熱印字用イン
ク、耐熱接着剤などに広く利用でき、工業的に極めて有
用でるる。
The heat-resistant resin paste of the present invention using pigments, dyes, plasticizers, antioxidants, etc. can be used for monolithic ICs using silicon wafers as substrates, hybrid ICs using ceramic substrates or glass substrates, thermal heads, image sensors, It can be widely used for devices such as multi-chip high-density mounting boards, interlayer insulation films and/or surface protection films for various wiring boards such as flexible wiring boards and rigid wiring boards, various heat-resistant printing inks, heat-resistant adhesives, etc., and is suitable for industrial use. It is extremely useful.

本発明になる耐熱性樹脂ペーストヲ、モノリシックIC
等の半導体装置の保護膜に用いる場合には、ウラン、ト
リウム等のα線源物質、ナトリウム、カリウム、銅、鉄
等のイオン性不純物などの含量を少なくすることが好ま
しい。保護膜のウラン、トリウム等のα線源物質の総含
量は1 ppb以下が好ましく、よシ好ましくは0.2
ppb以下とされる。これFio、 2乃至I Ppb
を境にして保護膜から放射されるα線の素子の誤動作に
対する影響が急激に減少するからである。得られた保護
膜のウラン、トリウム等のα線源物質の総含量が0.2
乃至1 ppbを超える場合には、前記樹脂の製造に用
いられるモノマ、溶剤、樹脂の精製等に用いられる沈殿
剤、有機液体等を精製することによりウラン、トリウム
等のα線源物質の総含量を減少させることができる。精
製は、樹脂の製造に用いられるモノマ、溶剤、樹脂の精
製等に用いられる沈殿剤、有機液体等を蒸留、昇華、再
結晶、抽出などKよって、また9合成した樹脂溶液を精
製した貧溶媒中に沈殿させる工程を複数回行なうことが
便利である。
Heat-resistant resin paste according to the present invention, monolithic IC
When used as a protective film for semiconductor devices such as the like, it is preferable to reduce the content of α-ray source substances such as uranium and thorium, and ionic impurities such as sodium, potassium, copper, and iron. The total content of α-ray source substances such as uranium and thorium in the protective film is preferably 1 ppb or less, and more preferably 0.2 ppb or less.
It is assumed to be less than ppb. This is Fio, 2 to I Ppb
This is because the influence of the α rays emitted from the protective film on malfunction of the device decreases rapidly after . The total content of α-ray source materials such as uranium and thorium in the obtained protective film was 0.2
- If it exceeds 1 ppb, the total content of α-ray source substances such as uranium and thorium can be reduced by purifying the monomers and solvents used in the production of the resin, precipitants used in the purification of the resin, organic liquids, etc. can be reduced. Purification involves distillation, sublimation, recrystallization, extraction, etc. of monomers, solvents, precipitants used in resin purification, organic liquids, etc. used in resin production, and poor solvents used to purify the synthesized resin solution. It is convenient to carry out the precipitation step several times.

また、使用時の腐食、リークなどを少なくするため、ナ
トリウム、カリウム、銅、鉄等のイオン性不純物の含量
は2 pPm以下が好ましく、よシ好ましくは1 pp
m以下とされる。得られた皮膜のイオン性不純物の総含
量が1乃至2 PPmを超える場合には、上記の樹脂の
製造に用いられるモノマ等を上記の精製と同じ工程で精
製することによシイオン性不純物の総含量を減少させる
ことができる。
In addition, in order to reduce corrosion and leakage during use, the content of ionic impurities such as sodium, potassium, copper, iron, etc. is preferably 2 ppm or less, more preferably 1 ppm.
m or less. If the total content of ionic impurities in the obtained film exceeds 1 to 2 PPm, the total content of ionic impurities can be reduced by purifying the monomers used in the production of the above resin in the same process as the above purification. The content can be reduced.

精製は必ずしも用いられるモノマ等の全てについて行な
う必要はない。例えばモノマのみろるいはモノマおよび
浴剤についてのみ精製を行なってもよい。
It is not necessary to purify all of the monomers used. For example, only the monomer or the monomer and the bath agent may be purified.

本発明におけるICとしては、モノリシックIC,ハイ
ブリッドIC,マルチチップ高密度実装基板等がめる。
The IC in the present invention includes a monolithic IC, a hybrid IC, a multi-chip high-density mounting board, and the like.

モノリシックICは1例えば第3図に示す構造を有する
もので9本発明になる耐熱性樹脂ペーストはLSIチッ
プ2の上に塗工され加熱されて耐熱性樹脂皮膜1(表面
保護膜)とされる。
A monolithic IC 1 has the structure shown in FIG. 3, for example. 9 The heat-resistant resin paste of the present invention is coated on the LSI chip 2 and heated to form a heat-resistant resin film 1 (surface protection film). .

第3図において、1は耐熱性樹脂皮膜、  2FiLS
Iチツプ、3はポンディングワイヤ、4Fi樹脂パンケ
ージ、5はリード、6は支持体である。
In Fig. 3, 1 is a heat-resistant resin film, 2FiLS
I chip, 3 is a bonding wire, 4Fi resin pancake, 5 is a lead, and 6 is a support body.

・・イブリッドICは9例えば第4図に示す構造を有す
るもので、第1層配線11および抵抗層12の上に1本
発明になる耐熱性樹脂ペーストを塗工、加熱して耐熱性
樹脂皮膜10(層間絶縁膜)とされる。この上に、第2
層配線9が形成される。
For example, an hybrid IC has a structure shown in FIG. 4, in which a heat-resistant resin paste according to the present invention is coated on the first layer wiring 11 and the resistance layer 12, and heated to form a heat-resistant resin film. 10 (interlayer insulating film). On top of this, the second
Layer wiring 9 is formed.

第4図において、7はダイオードチップ、8けはんだ、
9#:を第2層配線、10け耐熱性樹脂皮膜。
In Figure 4, 7 is a diode chip, 8 is a solder,
9#: 2nd layer wiring, 10 pieces heat-resistant resin film.

11は第1層配線、12Fi抵抗層、13Fiアルミナ
基板である。
11 is a first layer wiring, a 12Fi resistance layer, and a 13Fi alumina substrate.

マルチチップ高密度実装基板は1例えば第5図に示す構
造を有するもので、セラミック多層配線板20の上に公
知の方法により配線層15.16の形成1本発明になる
耐熱性樹脂ペーストの塗工。
The multi-chip high-density mounting board has the structure shown in FIG. Engineering.

加熱による耐熱性樹脂皮膜14(層間絶縁膜)の形成等
をくり返して、銅/耐熱性樹脂多層配N層19が形成さ
れる。第5図において、17けLSIチップ、18はは
んだである。
By repeating the formation of the heat-resistant resin film 14 (interlayer insulating film) by heating, etc., the copper/heat-resistant resin multilayer N layer 19 is formed. In FIG. 5, there are 17 LSI chips and 18 is solder.

(実施例) 次に1本発F!Aを比較例、実施例によって説明する。(Example) Next, one F! A will be explained using comparative examples and examples.

比較例1 (1)耐熱性樹脂の調製 温度計、かきまぜ機、窒素導入管をつけた四つロフラス
コに窒素ガスを通しながら、1,1,1.3,3゜3−
ヘキサフルオロ−2,2−ビス(4−アミノフェニル)
プロパン0.05モル、2.4’−ジアミノジフェニル
エーテル0.05モル、4.4’−オキシシフタル酸無
水物0.10モルとN−メチルピロリドン400gを仕
込んだ。かく押下、室編で12時間反応を進めた。次い
で、無水酢酸143gとピリジン729を添加し、室温
で12時間放置し念。
Comparative Example 1 (1) Preparation of heat-resistant resin While passing nitrogen gas through a four-hole flask equipped with a thermometer, stirrer, and nitrogen inlet tube, 1, 1, 1.3, 3°3-
Hexafluoro-2,2-bis(4-aminophenyl)
0.05 mol of propane, 0.05 mol of 2.4'-diaminodiphenyl ether, 0.10 mol of 4.4'-oxycyphthalic anhydride, and 400 g of N-methylpyrrolidone were charged. Thus, the reaction was allowed to proceed in the room for 12 hours. Next, 143 g of acetic anhydride and 729 g of pyridine were added, and the mixture was allowed to stand at room temperature for 12 hours.

この溶液を水中に投下し、沈殿した微粒子状の固形樹脂
を回収した。この固形樹脂をメタノールで十分に煮沸洗
浄した後、80℃で10時間減圧乾燥して還元粘度(溶
媒をジメチルホルムアミドと′して、試料濃度0.59
/deで30℃で測定、以下同様) 0.71 (di
/ 9 )の次式のぐシ返し単位を有するポリイミド樹
脂を得た。
This solution was dropped into water, and the precipitated solid resin in the form of fine particles was collected. After thoroughly boiling and washing this solid resin with methanol, it was dried under reduced pressure at 80°C for 10 hours to obtain a reduced viscosity (using dimethylformamide as the solvent, sample concentration of 0.59).
/de measured at 30℃, the same applies hereafter) 0.71 (di
/9) A polyimide resin having a guushigaeshi unit of the following formula was obtained.

(2)耐熱性樹脂の微粒子の調製 温度計、かきまぜ機、窒素導入管および水分定量器をつ
けた四つロフラスコ内に窒素ガスを通しながらピロメリ
ット酸二無水物2189(1モル)とN−メチルピロリ
ドン(水分0.03チ)1672g’に入れ、かくはん
しながら50℃に昇温し、同温度で0.5時間保ち完全
に溶解して均一な溶液とした。これに4.4′−ジアミ
ノジフェニルエーテル1009(0,5モル)と4.4
′−ジアミノジフェニルメタン999(0,5モル)を
加え、ただちに110℃に昇温し、同温度で20分間保
ち完全に溶解して均一な溶液とした。ついで、約2時間
で200℃に昇温し、同温度で3時間反応させた。
(2) Preparation of fine particles of heat-resistant resin Pyromellitic dianhydride 2189 (1 mol) and N- The mixture was placed in 1672 g' of methylpyrrolidone (moisture 0.03%), heated to 50° C. with stirring, and kept at the same temperature for 0.5 hours to completely dissolve and form a homogeneous solution. To this, 4.4'-diaminodiphenyl ether 1009 (0.5 mol) and 4.4
'-Diaminodiphenylmethane 999 (0.5 mol) was added, the temperature was immediately raised to 110°C, and the mixture was kept at the same temperature for 20 minutes to completely dissolve and form a homogeneous solution. Then, the temperature was raised to 200°C over about 2 hours, and the reaction was continued at the same temperature for 3 hours.

途中、約140℃でポリイミド樹脂の微粒子の析出が観
察された。また9反応中、留出する水はすみやかに系外
に除去した。
During the process, precipitation of polyimide resin particles was observed at about 140°C. Further, during the 9 reactions, distilled water was promptly removed from the system.

N−メチルピロリドン中に分散し之黄褐色のポリイミド
樹脂の微粒子を得たので、これをf過によって回収し、
更にアセトン煮沸を2回繰り返した後、減圧下、200
℃で5時間乾燥させた。このポリイミド樹脂の微粒子の
形状はほぼ球形、多孔性でろって、平均粒子径(コール
タ−エレクトロニジ2社製、TA−It型による。以下
同じ)#′i8μm、最大粒子径Fi40μm以下でめ
った。このポリイミド樹脂の微粒子はN−メチルピロリ
ドンに不溶で1次式のくり返し単位を有するものである
Fine particles of yellow-brown polyimide resin dispersed in N-methylpyrrolidone were obtained, which were recovered by filtration.
After repeating the acetone boiling twice, it was heated to 200 ml under reduced pressure.
It was dried at ℃ for 5 hours. The shape of the fine particles of this polyimide resin was approximately spherical, porous and loose, and the average particle diameter (by Coulter Electronics 2 Co., Ltd., model TA-It; hereinafter the same) was less than #'i 8 .mu.m and maximum particle diameter Fi 40 .mu.m. The fine particles of this polyimide resin are insoluble in N-methylpyrrolidone and have linear repeating units.

(3)ペーストの調製 上記(1)で調製したポリイミド樹脂129をN−メチ
ルピロリドン689に溶解した溶液に、上記(2)で調
製したポリイミド樹脂の微粒子30gを加え、まず、乳
鉢で粗混練し、ついで高速三本ロールを用いて6回通し
て混練し、微粒子が分散したペーストを得た。
(3) Preparation of paste 30 g of the polyimide resin particles prepared in (2) above were added to a solution of polyimide resin 129 prepared in (1) above dissolved in N-methylpyrrolidone 689, and first roughly kneaded in a mortar. Then, the mixture was kneaded six times using a high-speed triple roll to obtain a paste in which fine particles were dispersed.

実施例1 (1)耐熱性樹脂の調製 温度計、かきまぜ機、窒素導入管をつけた四つロフラス
コに窒素ガスを通しながら、ビス〔4−(3−アミノフ
ェノキシ)フェニル〕スルホン43Z499(1モル)
、4.4′−オキシシフタル酸無水物294.719(
0,95モル)、[1,3−ビス(3,4−ジカルボキ
シフェニル) −1,1,3,3−テトラメチルジシロ
キサン〕二無水物21.339(0,05モル)とN−
メチルピロリドン29909を仕込んだ。かく押下、室
温で12時間反応を進めた。次いで、無水酢酸1430
9とピリジン714gを添加し、室温で12時間放置し
た。この溶液を水中に投下し、沈殿した微粒子状の固形
樹脂をメタノールで十分に煮沸洗浄した後、80℃で1
0時間減圧乾燥して、γ−ブチロラクトンに可溶で還元
粘度0.69(dl/g)の次式のくり返し単位を有す
るポリイミド樹脂を得た。
Example 1 (1) Preparation of heat-resistant resin Bis[4-(3-aminophenoxy)phenyl]sulfone 43Z499 (1 mol) was added while passing nitrogen gas through a four-bottle flask equipped with a thermometer, stirrer, and nitrogen inlet tube. )
, 4.4'-oxycyphthalic anhydride 294.719 (
0.95 mol), [1,3-bis(3,4-dicarboxyphenyl)-1,1,3,3-tetramethyldisiloxane] dianhydride 21.339 (0.05 mol) and N-
Methylpyrrolidone 29909 was charged. Under this pressure, the reaction proceeded at room temperature for 12 hours. Then, acetic anhydride 1430
9 and 714 g of pyridine were added, and the mixture was left to stand at room temperature for 12 hours. This solution was dropped into water, the precipitated solid resin in the form of fine particles was thoroughly boiled and washed with methanol, and then heated to 80°C for 1 hour.
By drying under reduced pressure for 0 hours, a polyimide resin having repeating units of the following formula, which was soluble in γ-butyrolactone and had a reduced viscosity of 0.69 (dl/g), was obtained.

(2)耐熱性樹脂の微粒子の調製 温度計、かきまぜ機、窒素導入管をつけた四つロフラス
コに窒素ガスを通しながら、ス2−ビスC4−C4−ア
ミノフェノキシ)フェニル〕プロパン410.529(
1モル)、4.4’−オキシシフタル酸無水物294.
719(0,95モル)、[1゜3−ビス(λ4−ジカ
ルボキシフェニル) −1,1゜3.3−テトラメチル
ジシロキサン〕二無水物21.339(0,05モル)
とN−メチルピロリドン2900st仕込んだ。かく押
下、室温で10時間反応を進めた。反応系の粘度は高分
子量のポリアミド酸の生成によりかく拌が困難な状態K
まで高くなった。分子量を調製するために少量の水を添
加して60℃に加熱した。次いで無水酢酸1430Gと
ピリジン714gを添加し、室温で12時間放置した。
(2) Preparation of fine particles of heat-resistant resin While passing nitrogen gas through a four-bottle flask equipped with a thermometer, stirrer, and nitrogen inlet tube, 2-bisC4-C4-aminophenoxy)phenyl]propane 410.529 (
1 mol), 4,4'-oxycyphthalic anhydride 294.
719 (0.95 mol), [1゜3-bis(λ4-dicarboxyphenyl)-1,1゜3.3-tetramethyldisiloxane] dianhydride 21.339 (0.05 mol)
and N-methylpyrrolidone 2900st. Under this pressure, the reaction proceeded at room temperature for 10 hours. The viscosity of the reaction system is such that it is difficult to stir due to the formation of high molecular weight polyamic acid.
It went up to . A small amount of water was added and heated to 60°C to adjust the molecular weight. Next, 1430 g of acetic anhydride and 714 g of pyridine were added, and the mixture was left at room temperature for 12 hours.

得られた溶液をメタノール中に投入し、沈殿した微粒子
状の固形樹脂を回収した。この固形樹脂をメタノールで
十分に煮沸洗浄した後、80℃で10時間減圧乾燥して
粉末のポリイミド樹脂(還元粘度: 0.68de/ 
9 )を得た。
The obtained solution was poured into methanol, and the precipitated solid resin in the form of fine particles was recovered. After thoroughly boiling and washing this solid resin with methanol, it was dried under reduced pressure at 80°C for 10 hours to obtain a powdered polyimide resin (reduced viscosity: 0.68 de/
9) was obtained.

このポリイミド樹脂を粉砕機で粉末化し、平均粒子径4
.5μm、最大粒径40μm以下のγ−フチロラクトン
に室温では溶解せず、加熱硬化時には溶解する次式のく
シ返し単位を有するポリイミド樹脂の微粒子を得た。
This polyimide resin is pulverized using a pulverizer, and the average particle size is 4.
.. Fine particles of a polyimide resin having a repeating unit of the following formula, which does not dissolve in γ-phthyrolactone at room temperature but dissolves upon heat curing, with a maximum particle diameter of 40 μm or less were obtained.

(3)耐熱性樹脂ペーストの調製 上記(1)のポリイミド樹脂15g’kr−ブチロラク
トン629に溶解した溶液に上記(2)のポリイミド樹
脂の微粒子239を加え、まず、乳鉢で粗混練し、つい
で高速の三本ロールを用いて6回通して混練し、ポリイ
ミド樹脂の微粒子が分散した耐熱性樹脂ペーストを得た
(3) Preparation of heat-resistant resin paste Add fine particles 239 of the polyimide resin of the above (2) to a solution of 15 g of the polyimide resin of the above (1) dissolved in kr-butyrolactone 629, first coarsely kneading in a mortar, then high speed The mixture was kneaded six times using a three-roll roll to obtain a heat-resistant resin paste in which fine particles of polyimide resin were dispersed.

実施例2 (1)耐熱性樹脂の調製 温度計、かきまぜ機、窒素導入管をつけた四つロフラス
コに窒素ガスを通しながら、2.4’−ジアミノジフェ
ニルエーテル200.249(1モル)。
Example 2 (1) Preparation of heat-resistant resin 200.249 (1 mol) of 2,4'-diaminodiphenyl ether was added while passing nitrogen gas through a four-bottle flask equipped with a thermometer, a stirrer, and a nitrogen inlet tube.

1.1,1.a3,3 ”キサフルオロ=2+2−ビス
(3+4−ジカルボキシフェニル)プロパンニ無水物4
44.24g(1モル)とN−メチルピロリドン258
09i仕込んだ。かく押下、室混で12時間反応を進め
た。
1.1,1. a3,3”xafluoro=2+2-bis(3+4-dicarboxyphenyl)propanihydride 4
44.24g (1 mol) and 258g of N-methylpyrrolidone
I prepared 09i. The reaction was allowed to proceed for 12 hours under the conditions of pressing and mixing in the room.

次いで、無水酢酸14309とピリジン7149を添加
し、室温で12時間放置した。この溶液を水中に投下し
、沈殿した微粒子状の固形樹脂をメタノールで十分に煮
沸洗浄した後、80℃で10時間減圧乾燥して、γ−ノ
(レロラクトンに可溶で、還元粘度0.65(c1g/
9)の次式のくり返し単位を有するポリイミド樹脂を得
た。
Next, acetic anhydride 14309 and pyridine 7149 were added, and the mixture was left at room temperature for 12 hours. This solution was dropped into water, and the precipitated solid resin in the form of fine particles was sufficiently boiled and washed with methanol, and then dried under reduced pressure at 80°C for 10 hours. (c1g/
A polyimide resin having repeating units of the following formula (9) was obtained.

(2)耐熱性樹脂の微粒子の調製 モノマーでるるジアミン成分及びテトラカルボン酸二無
水物成分として、4.4’−ジアミノジフェニルエーテ
ル200.249(1モル)とビス(3゜4−ジカルボ
キシフェニル)ジメチルシランニ無水物352379(
1モル)を用い、溶媒としてN−メチルピロリドン25
809を用いる以外は実施例1(2)と全く同様にして
行い、平均粒子径3μm、最大粒子径40μm以下であ
り、γ−ノ;レロラクトンに室温では溶解せず、加熱硬
化時には溶解する9次式のくり返し単位を有するポリイ
ミド樹脂(還元粘度:0.63de/g)の微粒子を得
た。
(2) Preparation of fine particles of heat-resistant resin As the monomer diamine component and tetracarboxylic dianhydride component, 200.249 (1 mol) of 4,4'-diaminodiphenyl ether and bis(3°4-dicarboxyphenyl) were used. Dimethylsilan dianhydride 352379 (
1 mol) and N-methylpyrrolidone 25 as the solvent.
The process was carried out in exactly the same manner as in Example 1 (2) except that 809 was used, and the average particle size was 3 μm and the maximum particle size was 40 μm or less. Fine particles of polyimide resin (reduced viscosity: 0.63 de/g) having repeating units of the formula were obtained.

H3 (3)耐熱性樹脂ペーストの調′− 上記(1)で調製したポリイミド樹脂15 G’にγ=
バレロラクトン659に溶解した溶液に、上記(2)で
調製したポリイミド樹脂の微粒子209を加え。
H3 (3) Preparation of heat-resistant resin paste - Polyimide resin 15 prepared in (1) above, γ =
The polyimide resin fine particles 209 prepared in (2) above were added to the solution dissolved in valerolactone 659.

まず、乳鉢で粗混練し、ついで高速三本ロールを用いて
6回通して混練しポリイミド樹脂の微粒子が分散した耐
熱性樹脂ペーストを得た。
First, the mixture was roughly kneaded in a mortar and then kneaded six times using a high-speed triple roll to obtain a heat-resistant resin paste in which fine particles of polyimide resin were dispersed.

実施例3 (1)耐熱性樹脂の微粒子の調製 七ツマ−であるジアミン成分及びテトラカルボン酸成分
として、2.2−ジアミノジフェニルエーテル200.
249(1モル)、4人’4.4’−ベンゾフェノンテ
トラカルボン酸二無水物290.019(0,9モル)
と〔1,3−ビス(3,4−ジカルボキシフェニル) 
−1,1,3,3−テトラメチルジシロキサン〕二無水
物42.659(0,1モル)を用い。
Example 3 (1) Preparation of fine particles of heat-resistant resin 2,2-diaminodiphenyl ether 200.
249 (1 mol), 4'4.4'-benzophenonetetracarboxylic dianhydride 290.019 (0.9 mol)
and [1,3-bis(3,4-dicarboxyphenyl)
-1,1,3,3-tetramethyldisiloxane dianhydride 42.659 (0.1 mol) was used.

溶媒としてN−メチルピロリドン21309を用いる以
外は実施flJ 1 (2+と全く同様にして行い、平
均粒子径3.5μm、最大粒子径40μm以下でめシ、
炭酸プロピレンに室温では溶解せず、加熱硬化時には溶
解する1次式のくり返し単位を有するポリイミド樹脂(
還元粘i:0.58de/9)の微粒子を得た。
The procedure was carried out in exactly the same manner as flJ 1 (2+) except that N-methylpyrrolidone 21309 was used as the solvent.
A polyimide resin with linear repeating units that does not dissolve in propylene carbonate at room temperature but dissolves during heat curing (
Fine particles with reduced viscosity i: 0.58 de/9) were obtained.

(2)耐熱性樹脂ペーストの調製 比較例1(1)で調製したポリイミド樹脂159を炭酸
プロピレン709に溶解した溶液に上記(1)のポリイ
ミド樹脂の微粒子189を加え、まず、乳鉢で粗混練し
、ついで高速の三本ロールを用いて6回通して混練し、
ポリイミド樹脂の微粒子が分散した耐熱性樹脂ペースト
を得た。
(2) Preparation of heat-resistant resin paste The polyimide resin particles 189 from (1) above were added to a solution of the polyimide resin 159 prepared in Comparative Example 1 (1) dissolved in propylene carbonate 709, and first roughly kneaded in a mortar. , then kneaded 6 times using three high-speed rolls,
A heat-resistant resin paste in which fine particles of polyimide resin were dispersed was obtained.

実施例4 (11#4熱性樹脂のvI4製 渥度計、かきまぜ機、窒素導入管をつけた四つロフラス
コに、無水酢酸から再結晶して精製した3、3.’4.
4’−ベンゾフェノンテトラカルボン酸二無水物11.
6029(0,0360モル)、トルエンとジエチルエ
ーテルとの重合比で1:1の混合液で再結晶した〔1.
3〜ビス(3,4−ジカルボキシフェニル) −1,1
,3,3−テトラメチルジシロキサン〕二無水物0.8
089(0,0019モル)と減圧蒸留によって精製し
たγ−カプロラクトン639とエタノール289を窒素
ガスを通しながら仕込んだ。かく拌しながら100℃で
2時間反応させて、テトラカルボン酸二無水物とそのハ
ーフエステルの混合物を得た。室温に冷却した後、メタ
ノールと水との重合比で8=2(メタノール:水)の混
合液で再結晶した2、4′−ジアミノジフェニルエーテ
ル7.5899(0,0379モル)を仕込み。
Example 4 (3,3.'4.
4'-benzophenone tetracarboxylic dianhydride 11.
6029 (0,0360 mol) was recrystallized from a mixture of toluene and diethyl ether at a polymerization ratio of 1:1 [1.
3-bis(3,4-dicarboxyphenyl) -1,1
,3,3-tetramethyldisiloxane] dianhydride 0.8
089 (0,0019 mol), γ-caprolactone 639 purified by vacuum distillation, and ethanol 289 were charged while passing nitrogen gas. The mixture was reacted at 100° C. for 2 hours with stirring to obtain a mixture of tetracarboxylic dianhydride and its half ester. After cooling to room temperature, 7.5899 (0,0379 mol) of 2,4'-diaminodiphenyl ether recrystallized from a mixture of methanol and water at a polymerization ratio of 8=2 (methanol:water) was charged.

室處で10時間反応させて、ポリアミド酸エステルオリ
ゴマーの溶液を得た。
The reaction was carried out in a room for 10 hours to obtain a solution of polyamic acid ester oligomer.

(2)耐熱性樹脂の微粒子の調製 m度計、かきまぜ機、9素導入管、水分定量器をつけた
四つ目フラスコに、無水酢酸から再結晶して精製した3
、a、’4.4’−ベンゾフェノンテトラカルポン酸二
無水物6.1069(0,0190モル)及び3,3.
’4.4’−ビフェニルテトラカルボン酸二無水物5.
5789(0,0190モル)、トルエンとジエチルエ
ーテルとの重量比で1=1の混合液を用いて再結晶した
〔1,3−ビス(3,4−ジカルボキシフェニル) −
1,1,3,3−テトラメチルジシロキサン〕二無水物
0.8519(0,0020モル)。
(2) Preparation of fine particles of heat-resistant resin In a fourth flask equipped with a temperature meter, a stirrer, a 9 element inlet tube, and a moisture meter, 3 was purified by recrystallization from acetic anhydride.
, a, '4.4'-benzophenonetetracarboxylic dianhydride 6.1069 (0,0190 mol) and 3,3.
'4.4'-Biphenyltetracarboxylic dianhydride5.
5789 (0,0190 mol), recrystallized using a mixture of toluene and diethyl ether in a weight ratio of 1=1 [1,3-bis(3,4-dicarboxyphenyl) -
1,1,3,3-tetramethyldisiloxane dianhydride 0.8519 (0,0020 mol).

メタノールと水との重量比で8=2(メタノール:水)
の混合液を用いて再結晶した2、4′−ジアミノジフェ
ニルエーテル7.9939(0,0400モル)と減圧
蒸留によって精製したN−メチルピロリドン846t−
窒素ガスを通しながら仕込んだ。かく押下、室温で10
時間反応を進めた後、185℃に昇温し、同温度で10
時間反応を進めた。途中。
The weight ratio of methanol and water is 8=2 (methanol:water)
7.9939 (0,0400 mol) of 2,4'-diaminodiphenyl ether recrystallized using a mixed solution of and 846 t- of N-methylpyrrolidone purified by vacuum distillation.
It was prepared while passing nitrogen gas through it. Press down, 10 at room temperature
After proceeding with the reaction for an hour, the temperature was raised to 185°C, and at the same temperature 10
The time reaction proceeded. in the middle.

留出する水を反応系外にすみやかに除去した。得られた
溶液を減圧蒸留によって精製したN−メチルピロリドン
735gで希釈して樹脂分濃度25重量%の溶液とした
。これをアシザヮニロアトマイザー社製モービルマイナ
ー型スプレードライヤーで噴霧乾燥して微粒子化した後
1分級して平均粒子径3μm、最大粒子径40μm以下
のγ−カプロラクトンに室温で溶解せず、加熱硬化時に
溶解する次式のくり返し単位を有するポリイミド樹脂の
微粒子を得た。このポリイミド樹脂の還元粘度FiO1
62dJ/9でめり之。
The distilled water was promptly removed from the reaction system. The resulting solution was diluted with 735 g of N-methylpyrrolidone purified by vacuum distillation to obtain a solution having a resin concentration of 25% by weight. This was spray-dried using a Mobil Minor type spray dryer manufactured by Ashizawa Niro Atomizer Co., Ltd. to form fine particles, and then classified into γ-caprolactone with an average particle size of 3 μm and a maximum particle size of 40 μm or less. Fine particles of a polyimide resin having a repeating unit of the following formula which dissolves when dissolved were obtained. Reduced viscosity FiO1 of this polyimide resin
Meriyuki at 62dJ/9.

(3)耐熱性樹脂ペーストの調製 上記(1)のポリアミド酸エステルオリゴマー溶液(樹
脂分濃度:26.6]itチ)75gに上記(2)のポ
リイミド樹脂の微粒子259を加え、まず、乳鉢で粗混
練し、ついで高速の三本ロールを用いて6回通して混練
し、ポリイミド樹脂の微粒子が分散した耐熱性樹脂ペー
ストを得た。このペーストから溶剤を除去し、ウランお
よびトリウムの含量を放射化分析によって調べたところ
、各々検出限界の0.02ppb以下、及びo、osp
pb以下であった。また、ナトリウム、カリウム、銅、
鉄のイオン性不純物の含量はそれぞれ2 ppm以下で
あった。
(3) Preparation of heat-resistant resin paste Add 259 particles of the polyimide resin from (2) above to 75 g of the polyamic acid ester oligomer solution (resin concentration: 26.6] it) from (1) above, and first, place in a mortar. The mixture was roughly kneaded and then kneaded six times using three high-speed rolls to obtain a heat-resistant resin paste in which fine particles of polyimide resin were dispersed. When the solvent was removed from this paste and the contents of uranium and thorium were examined by activation analysis, they were each below the detection limit of 0.02 ppb, and o, osp.
It was less than pb. Also, sodium, potassium, copper,
The content of iron ionic impurities was less than 2 ppm, respectively.

次にこのペーストを集積度16にピントのMO8A・」 型RAMの表面忙、スクリーン印#によって塗布し、1
00℃、150℃、200℃、250’C及び350℃
でそれぞれ0.5時間熱処理を行ない。
Next, apply this paste to the density of 16 on the surface of the MO8A type RAM with the screen mark #1.
00℃, 150℃, 200℃, 250'C and 350℃
Heat treatment was performed for 0.5 hours each.

約20μmの厚みを有するポリイミド保膿膜を形成した
。ついで得られた半導体素子を低融点ガラスを封止接着
剤とするセラミックパッケージを用い約450℃で封止
した。この半導体装置のソフトエラー率u30フィツト
であった。
A polyimide purulent membrane having a thickness of about 20 μm was formed. The obtained semiconductor element was then sealed at about 450° C. using a ceramic package using low melting point glass as a sealing adhesive. The soft error rate of this semiconductor device was u30fit.

比較例1及び実施例1〜4で得たペーストを下記に示す
各種の基材上に転写したペーストの膜厚がほぼ一定にな
るようにスクリーン印刷し、100℃で1時間、200
℃で0.5時間、250℃で0.5時間、更に350℃
で0.5時間焼付けて得た皮膜について以下の特性を評
価し、結果を表2に示した。
The pastes obtained in Comparative Example 1 and Examples 1 to 4 were transferred onto the various substrates shown below. Screen printing was performed so that the film thickness of the paste was almost constant, and the pastes were screen printed at 100° C. for 1 hour at 200° C.
℃ for 0.5 hours, 250℃ for 0.5 hours, then 350℃
The following properties of the film obtained by baking for 0.5 hours were evaluated, and the results are shown in Table 2.

ピンホール密度は基材としてアルミニウム板を用い、そ
の皮膜表面にフェノールフタレインの適量を加えた0、
2%食塩水を張り、この液を正極。
The pinhole density was determined by using an aluminum plate as the base material and adding an appropriate amount of phenolphthalein to the surface of the film.
Fill with 2% saline solution and use this solution as the positive electrode.

アルミニウム板を負極とし、20Vの直流電圧を1分間
加えて1発生するピンホール数を測定した。
Using an aluminum plate as a negative electrode, a DC voltage of 20 V was applied for 1 minute, and the number of pinholes generated was measured.

引張シ強度は基材としてガラス板を用い、ガラス板から
はく離したフィルムについて、引張り試験機(オリエン
チック社製テンシロン万能試験機UCT−sT型)を用
いて測定した。ガラス転移温度は上記のガラス板からは
く離したフィルムについて、示差走査熱量計(デュポン
社製910型)を用いて、昇温速度5℃/分で測定した
The tensile strength was measured using a tensile tester (Tensilon Universal Tester Model UCT-sT manufactured by Orientic Co., Ltd.) using a glass plate as a base material and the film peeled from the glass plate. The glass transition temperature was measured for the film peeled off from the glass plate using a differential scanning calorimeter (Model 910 manufactured by DuPont) at a heating rate of 5° C./min.

膜厚は電磁式膜厚計で測定した。The film thickness was measured using an electromagnetic film thickness meter.

比較例1及び実施例40ペーストから得た皮膜の断面の
走査型電子顕微鏡写真を第1図、第2図に示した。
Scanning electron micrographs of cross sections of films obtained from Comparative Example 1 and Example 40 pastes are shown in FIGS. 1 and 2.

第2表から、特定の耐熱性樹脂、耐熱性樹脂の微粒子及
び溶剤を組合せた実施例1〜4の耐熱性樹脂ペーストは
、皮膜中に配合し友フイラがそのまま残存する比較例1
0ペーストに比べて膜の均一性の目安となるピンホール
密度及び引張シ強度に著しく優れることが示される。
From Table 2, it can be seen that the heat-resistant resin pastes of Examples 1 to 4, which combined a specific heat-resistant resin, heat-resistant resin fine particles, and solvent, were mixed into the film and Comparative Example 1 in which the filler remained intact.
It is shown that the pinhole density and tensile strength, which are indicators of film uniformity, are significantly superior to that of the zero paste.

さらに、実施例1〜4の耐熱性樹脂ペーストは十分なペ
ーストのチキソトロピー性と皮膜の耐熱性(ガラス転移
温度)を有するものでおる。
Furthermore, the heat-resistant resin pastes of Examples 1 to 4 have sufficient thixotropic properties and film heat resistance (glass transition temperature).

比較例1で得られた皮膜はその断面の走査型電子顕微鏡
写真(第1図)から、皮膜中に配合したフィシがそのま
ま残存し、平均一で空隙が多く観察されるのに対して、
実施例4で得られた皮膜は同様の断面写真(第2図)か
ら、配合したフィシの残存や空隙が観察されず、極めて
均一な皮膜であることが示される。
A scanning electron micrograph of the cross section of the film obtained in Comparative Example 1 (Fig. 1) shows that the fissures contained in the film remained as they were, and many voids were observed on average.
A similar cross-sectional photograph (FIG. 2) shows that the film obtained in Example 4 is an extremely uniform film, with no residual fisi or voids observed.

用嚢稍 −9ぐ −・ (発明の効果) 本発明になる耐熱性樹脂ペーストはスクリーン印刷によ
る塗工が可能であり1%にピンホール。
(Effects of the Invention) The heat-resistant resin paste of the present invention can be applied by screen printing and has 1% pinholes.

空隙の少ない均一な皮膜を形成でき、高度な耐熱性2機
械特性、耐湿性および耐食性が得られる。
A uniform film with few voids can be formed, and a high degree of heat resistance, mechanical properties, moisture resistance, and corrosion resistance can be obtained.

また、適度なチキソトロピー性を付与することが可能で
あシ、印刷によって優れたパターン精度が得られる。
Furthermore, it is possible to impart appropriate thixotropy, and excellent pattern accuracy can be obtained by printing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、比較例1のぺ、=ストから得られた皮膜の粒
子構造を示す走査型電子顕微鏡写真、第2図は、実施例
4の耐熱性樹脂ペーストから得られた皮膜の粒子構造を
示す走査型電子顕微鏡写真。 第3図は1本発明の耐熱性樹脂ペーストを用いたモノリ
シックICの断面図、第4図は1本発明の耐熱性樹脂ペ
ーストを用いたハイブリッドICの断面図および第5図
は本発明の耐熱性樹脂ペーストを用いたマルチチップ高
密度実装基板の断面図である。 符号の説明 1・・・耐熱性樹脂皮膜 3・・・ボンディングワイヤ 4・・・樹脂パッケージ 6・・・支持体 8・・・はんだ 10・・・耐熱性樹脂皮膜 12・・・抵抗層 14・・・耐熱性樹脂皮膜 16・・・配線層 18・・・はんだ 19・・・銅/耐熱性樹脂多層配線層 20・・・セラミック多層配線板 2・・・LI8チップ 5・・・リード 7・・・ダイオードチップ 9・・・第2層配線 11・・・第1層配線 13・・・アルミナ基板 15・・・配線層 17・・・LSIチップ 第 第 図 図 9・第2層配線 11・・・第4層配線 13  アルミナ基板 第  5 同
Figure 1 is a scanning electron micrograph showing the particle structure of the film obtained from the paste of Comparative Example 1, and Figure 2 is the particle structure of the film obtained from the heat-resistant resin paste of Example 4. Scanning electron micrograph showing. Fig. 3 is a cross-sectional view of a monolithic IC using the heat-resistant resin paste of the present invention, Fig. 4 is a cross-sectional view of a hybrid IC using the heat-resistant resin paste of the present invention, and Fig. 5 is a cross-sectional view of a hybrid IC using the heat-resistant resin paste of the present invention. 1 is a cross-sectional view of a multi-chip high-density mounting board using a synthetic resin paste. Explanation of symbols 1 Heat-resistant resin film 3 Bonding wire 4 Resin package 6 Support 8 Solder 10 Heat-resistant resin film 12 Resistance layer 14・・Heat resistant resin film 16 ・Wiring layer 18 ・Solder 19 ・Copper/heat resistant resin multilayer wiring layer 20 ・Ceramic multilayer wiring board 2 ・LI8 chip 5 ・Lead 7 ・...Diode chip 9...Second layer wiring 11...First layer wiring 13...Alumina substrate 15...Wiring layer 17...LSI chip FIG. 9・Second layer wiring 11・...Fourth layer wiring 13 Alumina substrate No. 5

Claims (1)

【特許請求の範囲】 1、耐熱性樹脂、耐熱性樹脂の微粒子および溶剤を含み
、加熱硬化前には微粒子は耐熱性樹脂と溶剤からなる均
一相に対して平均一相として存在し、加熱硬化後には耐
熱性樹脂、微粒子および溶剤が均一相として存在するよ
うにした耐熱性樹脂ペースト。 2、耐熱性樹脂がポリアミド樹脂、ポリアミドイミド樹
脂またはポリイミド樹脂である請求項1記載の耐熱性樹
脂ペースト。 3、微粒子が平均粒子径40μm以下のポリアミド樹脂
、ポリアミドイミド樹脂またはポリイミド樹脂である請
求項1又は2記載の耐熱性樹脂ペースト。 4、溶剤がラクトン類またはカーボネート類である請求
項1、2又は3記載の耐熱性樹脂ペースト。 5、ペーストのチキソトロピー係数が1.5以上である
請求項1〜4記載の耐熱性樹脂ペースト。 6、請求項1〜5のいずれかに記載の耐熱性樹脂ペース
トより得られる層間絶縁膜及び/又は表面保護膜を有す
るIC。
[Scope of Claims] 1. Contains a heat-resistant resin, fine particles of the heat-resistant resin, and a solvent; before heat curing, the fine particles exist as an average of one phase in a homogeneous phase consisting of the heat-resistant resin and the solvent; The final product is a heat-resistant resin paste in which the heat-resistant resin, fine particles, and solvent exist as a homogeneous phase. 2. The heat-resistant resin paste according to claim 1, wherein the heat-resistant resin is a polyamide resin, a polyamide-imide resin, or a polyimide resin. 3. The heat-resistant resin paste according to claim 1 or 2, wherein the fine particles are polyamide resin, polyamideimide resin, or polyimide resin with an average particle diameter of 40 μm or less. 4. The heat-resistant resin paste according to claim 1, 2 or 3, wherein the solvent is a lactone or a carbonate. 5. The heat-resistant resin paste according to claims 1 to 4, wherein the paste has a thixotropy coefficient of 1.5 or more. 6. An IC having an interlayer insulating film and/or a surface protection film obtained from the heat-resistant resin paste according to any one of claims 1 to 5.
JP02198167A 1990-07-26 1990-07-26 Heat resistant resin paste and IC using the same Expired - Lifetime JP3087290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02198167A JP3087290B2 (en) 1990-07-26 1990-07-26 Heat resistant resin paste and IC using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02198167A JP3087290B2 (en) 1990-07-26 1990-07-26 Heat resistant resin paste and IC using the same

Publications (2)

Publication Number Publication Date
JPH0485379A true JPH0485379A (en) 1992-03-18
JP3087290B2 JP3087290B2 (en) 2000-09-11

Family

ID=16386582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02198167A Expired - Lifetime JP3087290B2 (en) 1990-07-26 1990-07-26 Heat resistant resin paste and IC using the same

Country Status (1)

Country Link
JP (1) JP3087290B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984051A4 (en) * 1997-05-30 2001-12-05 Hitachi Chemical Co Ltd Heat-resistant adhesives and semiconductor devices produced therewith
WO2008015839A1 (en) * 2006-07-31 2008-02-07 Hitachi Chemical Co., Ltd. Heat-resistant resin paste
JP2011225647A (en) * 2010-04-15 2011-11-10 Kaneka Corp Method for imparting flame retardancy, imide flame retardant, resin solution, film, and method for producing the same
JP2016141794A (en) * 2015-02-05 2016-08-08 三菱電機株式会社 Insulating coating composition, resin molded product for high voltage equipment, metal tank and gas-insulated switchgear

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100528966C (en) * 2004-09-28 2009-08-19 日立化成工业株式会社 Heat-resistant resin paste and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984051A4 (en) * 1997-05-30 2001-12-05 Hitachi Chemical Co Ltd Heat-resistant adhesives and semiconductor devices produced therewith
US6372859B1 (en) 1997-05-30 2002-04-16 Hitachi Chemical Company, Ltd. Thermoresistance adhesive and semiconductor device using the same
WO2008015839A1 (en) * 2006-07-31 2008-02-07 Hitachi Chemical Co., Ltd. Heat-resistant resin paste
JP5343562B2 (en) * 2006-07-31 2013-11-13 日立化成株式会社 Heat resistant resin paste
US8759440B2 (en) 2006-07-31 2014-06-24 Hitachi Chemical Company, Ltd. Heat-resistant resin paste
JP2011225647A (en) * 2010-04-15 2011-11-10 Kaneka Corp Method for imparting flame retardancy, imide flame retardant, resin solution, film, and method for producing the same
JP2016141794A (en) * 2015-02-05 2016-08-08 三菱電機株式会社 Insulating coating composition, resin molded product for high voltage equipment, metal tank and gas-insulated switchgear

Also Published As

Publication number Publication date
JP3087290B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
EP0984051A1 (en) Heat-resistant adhesives and semiconductor devices produced therewith
JP3216849B2 (en) Polyimide precursor composition, polyimide composition and method for producing the same
JP2697215B2 (en) Heat resistant resin paste and IC using the same
KR930002237B1 (en) Heat-resistant resin paste and ic using same paste
JP2007246897A (en) Heat-resistant resin paste, method for producing heat-resistant resin paste and semiconductor device having insulation film or protection film derived from heat-resistant resin paste
JP2987950B2 (en) Polyimide resin paste and IC using the same
US5164816A (en) Integrated circuit device produced with a resin layer produced from a heat-resistant resin paste
JPH0485379A (en) Heat-resistant resin paste and ic using the same
JP2624723B2 (en) Polyimide composition for printing
JP2007099849A (en) Resin composition, method for producing heat-resistant resin, and electronic component using the same
JPH04285662A (en) Heat-resistant resin paste and ic using the same paste
JPH04285660A (en) Heat-resistant resin paste and ic using the same
JPH04153261A (en) Heat-resistant resin paste and ic prepared by using same
JP2001329096A (en) Low dielectric constant polymer
GB2096628A (en) Screenable polyimide
JPH10298285A (en) Polyamic acid and polyimide
JPH11116672A (en) Electric insulating material containing fluorine containing polyimide resin and electronic parts using the same
JPH06172737A (en) Film adhesive and its production
JP2915301B2 (en) Polyimide precursor composition, polyimide composition and method for producing the same
JP2001323100A (en) Polymer of low dielectric constant
JPH0827430A (en) Film adhesive improved in physical property at high temperature and its production
JPH06172714A (en) Filmy adhesive and its production
JPH02222473A (en) Coating composition and resin-sealed semiconductor device
JPH1036507A (en) Polyimide resin and resin varnish for adhesion
JPH04345682A (en) Adhesive for hermetic sealing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070714

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11