JPH048490A - Articular angle measuring method for multiarticulated type manipulator - Google Patents

Articular angle measuring method for multiarticulated type manipulator

Info

Publication number
JPH048490A
JPH048490A JP11091490A JP11091490A JPH048490A JP H048490 A JPH048490 A JP H048490A JP 11091490 A JP11091490 A JP 11091490A JP 11091490 A JP11091490 A JP 11091490A JP H048490 A JPH048490 A JP H048490A
Authority
JP
Japan
Prior art keywords
joint
solution
variables
calculation
repetitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11091490A
Other languages
Japanese (ja)
Other versions
JP2972278B2 (en
Inventor
Shinobu Sasaki
忍 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2110914A priority Critical patent/JP2972278B2/en
Publication of JPH048490A publication Critical patent/JPH048490A/en
Application granted granted Critical
Publication of JP2972278B2 publication Critical patent/JP2972278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To simplify a linear optimization technique and an induction procedure for a coupling solution by regulating an equation of motion, inclusive of multiple variables among plural pieces of articulations, into a system consisting of only multiple independent variables, while performing such a repetitive calculation as bringing a distance between a target point and an existing point into minimum or zero, compensating this repetitive range each time, and determining the degree of articulation. CONSTITUTION:After a six-variable system is replaced with an evaluation function being composed of a three-variable of deviation sum-squares, each displacement of articulations 21-26 is determined as a solution of simultaneous equations by such optimum operation that has this function linearly approximated. In calculation of this level, however, since linearization is partially applied so far, a search range of the solution from the initial estimate is limited to a very minute range. Accordingly, with a repetitive calculation each time, this repetitive range (displacement of an articular angle) is directly compensated and ameliorated, thus it is stably solvable even against the large displacement from the initial estimate, unattainable in calculation based on an ordinary linear theory.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、6関節形マニピュレータの指先を作業空間内
の指定された軌道に沿って移動させた場合に必要な各関
節の回転量を精確かつ迅速に測定することができる複数
関節形マニピュレータの関節角測定方法の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention accurately determines the amount of rotation of each joint required when the fingertip of a six-joint manipulator is moved along a specified trajectory in a workspace. The present invention also relates to an improvement in a method for measuring joint angles of a multi-joint manipulator that can be quickly measured.

(従来の技術) 3次元空間内での任意の位置で任意の方向にマニピュレ
ータの先端を向けるために、マニピュレータは最低6自
由度をもつ必要がある。即ち、位置に対して3つ、方向
に対して3つの独立変数を指定することになる。6つの
関節で構成された6関節形マニピュレータは最も頻繁に
使用されていて、各関節の独立な動きによって、指先を
希望する位置・姿勢に到達させることができる。この各
関節の独立な動きと指先の位置・姿勢との間には、運動
学方程弐で既定された非線形の関数関係が存在する。各
関節角を与えると、マニピュレータの指先位置・姿勢は
座標変換行列の概念を用いて簡単に導きだすことができ
る。(これを順問題と言う。)一方、マニピュレータの
与えられた位置・姿勢を実現させる関節角の決定は、(
これを逆問題と言う。)連立非線形方程式の根を求める
ことに対応し、概して解析表示に顧ることは不可能なこ
とが多い。解法の主流は現在のところ、運動学方程式を
各関節角の近傍で線形化してそのヤコビ逆行列、から逐
次反復法で関節角を導き出している。
(Prior Art) In order to direct the tip of the manipulator in any direction at any position in three-dimensional space, the manipulator must have at least six degrees of freedom. That is, three independent variables are specified for position and three independent variables are specified for direction. The six-jointed manipulator, which is composed of six joints, is the most frequently used, and the independent movement of each joint allows the fingertip to reach a desired position and posture. There exists a nonlinear functional relationship defined by the kinematic equation 2 between the independent movements of each joint and the position and posture of the fingertips. Once each joint angle is given, the position and posture of the manipulator's fingertips can be easily derived using the concept of a coordinate transformation matrix. (This is called a forward problem.) On the other hand, determining the joint angles that realize a given position and posture of the manipulator is (
This is called an inverse problem. ) Corresponds to finding the roots of a system of nonlinear equations, and is often impossible to use for analytical display. Currently, the mainstream solution method is to linearize the kinematic equations near each joint angle and derive the joint angles from the Jacobian inverse matrix using a successive iterative method.

(発明が解決しようとする課題) しかし、上述の如き従来の方法では、まずヤコビ行列(
通常6×6)の計算が36個の行列要素をもつため、相
当複雑な計算となり、またその行列式が零となるいわゆ
る特異点発生の場合に解を求めることができない。さら
に、線形化の基本的性質から、厳密解に対する初期推定
値をある程度正しく与えておかないと繰り返しの回数が
増えるとともに、解そのものの信憑性が疑わしくなると
言う問題点がある。加えて、逆行列を相当効率よく計算
しても、6次以上の行列計算ではその演算時間が大きな
I¥iff題となる。
(Problem to be solved by the invention) However, in the conventional method as described above, first the Jacobian matrix (
Since the calculation (normally 6×6) has 36 matrix elements, the calculation becomes quite complicated, and a solution cannot be obtained in the case of so-called singularity occurrence where the determinant becomes zero. Furthermore, due to the basic nature of linearization, there is a problem in that unless the initial estimate for the exact solution is given with some accuracy, the number of iterations will increase and the credibility of the solution itself will become doubtful. In addition, even if the inverse matrix is calculated fairly efficiently, the calculation time becomes a large I\iff problem when calculating a matrix of order 6 or higher.

本発明の目的は上述の如き従来技術の欠点を改善した複
数関節形マニピュレータの関節角測定方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for measuring joint angles of a multi-joint manipulator that overcomes the drawbacks of the prior art as described above.

(課題を解決するための手段) 本発明では、駆動部に回転ジヨイントが使用されたあら
ゆるタイプの6関節形マニピュレータについて、そ逆問
題の計算方法を提起する。6自由度のマニピュレータの
なかには、6個の関節変数θ、〜θ6について、最初の
3つの変数がマニピュレータの指先(手首)位置を決定
し、残りの3つの関節変数が指先の方向を定める目的で
設計されたものがある。これは、手首の位置とその姿勢
が独立に決定できる機構を意味する。6つの関節変数が
複雑に関係しあいながら指先位置と姿勢を決定する機構
に比べれば、構造もさることながら、特に、関節群を導
く操作は極めて単純なものとなる。しかしながら、実際
にはこの種の機構少なく、このことがマニピュレータ逆
問題の計算方法上の困難さにもつながっている。
(Means for Solving the Problems) The present invention proposes a method of calculating an inverse problem for all types of six-jointed manipulators in which a rotation joint is used in the drive section. Some manipulators with six degrees of freedom have six joint variables θ, ~θ6, the first three variables determine the fingertip (wrist) position of the manipulator, and the remaining three joint variables determine the direction of the fingertip. There is something designed. This means a mechanism that allows the position and posture of the wrist to be determined independently. Compared to a mechanism that determines the fingertip position and posture using six joint variables that interact in a complex manner, not only the structure but also the operation for guiding the joint group is extremely simple. However, in reality, this type of mechanism is rare, and this leads to difficulties in calculating the manipulator inverse problem.

本発明では、こうした6つの関節が単純に位置決定機構
と姿勢決定機構とに分離できない一般的構造に対して、
数値解決上便宜的に6つの関節変数のうち3つの独立変
数にのみ着目して、3つの関係式に整理しなおす。ヤコ
ブ法が6つの変数を同時に扱ったことに比べれば、3つ
の関節変数で記述されるこの関係式は1かに取扱いが容
易である。この関係式に対して、その計算値と実際に取
るべき値との偏差を最小化し、零にもっていくことによ
り関節群を導き出す。つまり、6変数体系を3変数の偏
差二乗和で構成される評価関数に置き換えた後は、この
関数を線形近(以した最適操作により、関節変位を連立
方程式の解として決定する。ただ、このレベルの計算で
は、線形化を一部適用しているために、初期推定値から
の解の探索範囲は極めて微小な範囲に限られる。そのた
めに、本発明では、毎回の繰返し計算でこの繰返し巾(
関節角の変位)を直接補正・改善することで通常の線形
理論に基づ(計算では望めない初期推定値からの大きな
変位に対しても安定に解を得る効果的方法を与えた。以
前に公表した最小化手法(文献2参照)は根元の構造に
着目して4変数系として定式化を行ったが、本手法はよ
り少ない変数系で処理できるモデルとして一般的な6関
節形マニピュレータに適用可能な特徴を備えている。
In the present invention, in contrast to the general structure in which these six joints cannot be simply separated into a position determining mechanism and a posture determining mechanism,
For convenience in numerical solution, we focus on only three independent variables among the six joint variables and rearrange them into three relational expressions. Compared to the Jacob method, which handles six variables at the same time, this relational expression described by three joint variables is much easier to handle. For this relational expression, the joint group is derived by minimizing the deviation between the calculated value and the actual value and bringing it to zero. In other words, after replacing the six-variable system with an evaluation function composed of the sum of squared deviations of three variables, this function is approximated by a linear approximation (optimal operation) to determine the joint displacement as a solution to the simultaneous equations. In the level calculation, since linearization is applied in part, the search range for the solution from the initial estimate is limited to an extremely small range.Therefore, in the present invention, this iterative width is (
By directly correcting and improving the displacement of joint angles, we have provided an effective method to obtain stable solutions based on ordinary linear theory (even for large displacements from the initial estimate that cannot be obtained by calculation. The published minimization method (see Reference 2) focuses on the root structure and is formulated as a four-variable system, but this method can be applied to a general six-joint manipulator as a model that can be processed with fewer variables. It has possible features.

(実施例) 本発明の測定方法を6関節形マニピュレータに適用した
場合の実施例について詳細に説明する。
(Example) An example in which the measurement method of the present invention is applied to a six-joint manipulator will be described in detail.

先ず、第1図を参照すると、本発明を適用した6関節形
マニピュレータ】0が示されている。このマニピュレー
タはヘース10に連結され、6つのリンク】】、12、
】3、]4、】5.16と6つの関節21.22.23
.24.25.26とを備えている。これら関節は回転
又は旋回可能である。
First, referring to FIG. 1, a six-jointed manipulator [0] to which the present invention is applied is shown. This manipulator is connected to the heath 10 and has six links]], 12,
]3, ]4, ]5.16 and six joints 21.22.23
.. 24, 25, and 26. These joints are rotatable or pivotable.

次に、以下で使用する記号について下記の約束をする。Next, we make the following conventions regarding the symbols used below.

二重添字で表記した記号の内、偏導関数については(a
FJ/aθk)−p、、(aθ、/aθ、)−θ、ア、
 (θP、/θθ4)・PX。等と略記する。その他、
5H=sinθi、C1=CO5θi+sij”5ln
(θ、+θ、)ICi j=cO5(θ−θJ): n
?(n+++ny、nz)’、O・(0,I□Oy+0
2)”a・(ax+ay、az)” ;マニピュレータ
の指先姿勢を決定する3方同単位ベクトル(Tは転置記
号)である。:Pえ、py、p、、基準座標系における
指先の位置座標を表す。
Of the symbols written with double subscripts, for partial derivatives (a
FJ/aθk)-p, (aθ,/aθ,)-θ, a,
(θP, /θθ4)・PX. Abbreviated as, etc. others,
5H=sinθi, C1=CO5θi+sij"5ln
(θ, +θ,)ICi j=cO5(θ−θJ): n
? (n+++ny, nz)', O・(0,I□Oy+0
2) “a・(ax+ay, az)”; is a three-way identical unit vector (T is a transposition symbol) that determines the fingertip posture of the manipulator. :P, py, p, represents the position coordinates of the fingertip in the reference coordinate system.

さて、6自由度を前提とする一般的なマニピュレータの
運動学はつぎの方程式系で表される。
Now, the kinematics of a general manipulator assuming six degrees of freedom is expressed by the following system of equations.

F8・Fi(θ、θ2.−1θ6)(1・L−、6) 
 (1)この内、6個の独立変数θ、〜θ6に対して3
つの方程式F+、Fx、Fsが指先の姿勢を、また残り
3つが指先の位置を定める。いま、(1)の3式に含ま
れた独立変数のなかから、3つの変数を取りだし残りを
従属間係とみなしたうえで、これを(1)の残り3式と
関連づけて評価関数の最小値から関節間を決定する。計
夏過程では、第1.第2.第3関節変数01.θ2.θ
、(以下基準変数と呼ぶ、)を固定して残りの関節変数
をこの3つで表現することにする。すなわち、(1)の
左辺を既知として姿勢についての3弐F、、F、、F3
を整理して陰関数04.θ。
F8・Fi (θ, θ2.-1θ6) (1・L-, 6)
(1) Among these, 3 for 6 independent variables θ, ~θ6
Three equations F+, Fx, and Fs determine the posture of the fingertip, and the remaining three equations determine the position of the fingertip. Now, extract three variables from among the independent variables included in the three equations in (1), consider the remaining variables as dependent variables, and then relate these to the remaining three equations in (1) to calculate the minimum of the evaluation function. Determine the distance between joints from the value. In the summer planning process, the first. Second. Third joint variable 01. θ2. θ
, (hereinafter referred to as reference variables) are fixed, and the remaining joint variables are expressed by these three. That is, assuming that the left side of (1) is known, 32F, ,F,,F3 for the posture
Organize the implicit function 04. θ.

θ、を θa=H1(θ1.θ2.θ、) θ5−Flz(θ1.θ2.θ3 )        
(2)θh=Hscθ8.θ2.θ3) なる陽的な表示を行う。(陰関数の存在を仮定する。)
これを(1)のFA、FS、FAと関係づけると、指先
位置が基準変数のみで表せる。この3変数から構成され
る装置方程式の解を、現在位置と目標値との偏差に着目
した下記の評価関数の極値探索がら誘導する。
θ, θa=H1(θ1.θ2.θ,) θ5−Flz(θ1.θ2.θ3)
(2) θh=Hscθ8. θ2. θ3) An explicit display is performed. (Assume the existence of an implicit function.)
If this is related to FA, FS, and FA in (1), the fingertip position can be expressed using only the reference variables. The solution to the device equation composed of these three variables is derived by searching for the extreme value of the evaluation function described below, focusing on the deviation between the current position and the target value.

j7芥、(FJ(θ1.θ2.θ8.θ4.θ4.θ、
)−ム)2=Σ (Φパθ1.θ7.θ5)−FJ) 
”(ただし、L は指先での目標値とする。)まず、(
3)の偏差2乗和を最小すなわち零にする関節間は、各
因子ΦJ(θ5.θ2.θ、)を与えられた指先位置に
十分近いと推定される関節変数の初期値θ、°2θ2°
、θ、°の近傍でつぎのように線形近イ以して引出す。
j7, (FJ(θ1.θ2.θ8.θ4.θ4.θ,
)-M)2=Σ (ΦP θ1.θ7.θ5)-FJ)
” (However, L is the target value at your fingertips.) First, (
3) The joints that minimize the sum of squared deviations, that is, zero, are the initial values θ, °2θ2 of the joint variables that are estimated to be sufficiently close to the fingertip position given each factor ΦJ (θ5.θ2.θ,). °
, θ, and ° are derived using linear approximation as follows.

FJ(θ1°+八〇l + ’−”−θ、゛+Δθh)
−FJ”=F j IΔθl”Fj2Δθz+FJff
Δθ、+F、n  (θ、1Δθ、十θ4□Δθ2+θ
4.Δθ、)十FjS (θ9.Δθ1+θ、2Δθ2
+θ2.Δθ3)+p=h (θ6.Δθ、+θ62Δ
θ2+θ6.Δθ、)−(F、++FJnθ414Fj
SθSl+F’j6θ、1)Δθ、+(’jz+FJ4
 θ 42+FjS θ52+FJ6 θ 、2) Δ
 θ 、+(Fiff+FJ4 θa3+F;5 θS
ff+Fj6 θ8.)  Δ θ3= ΦJ(θ 1
°十Δ θ 1.θ 2°+Δ θ 2.θ 、°+Δ
 θ 、)−ΦJ′″=Φ4.Δθ1+ΦJ2Δθ2+
Φ4.Δθ3  (j・4,5.6)    (4)但
し、F、°・FJ(θ1°、−1θ6−−ΦJ(θ1°
、θ2°、θ、−2ΦJ(θ。)8Φ1°(j=4.5
.6)したがって、(4)と目標値との偏差2乗和を最
小にするΔθr (i=L2.3)が連立方程式の解と
して反復操作により決りその結果関節間が求まる。
FJ (θ1°+80l + '-"-θ, ゛+Δθh)
−FJ”=F j IΔθl”Fj2Δθz+FJff
Δθ, +F, n (θ, 1Δθ, 1θ4□Δθ2+θ
4. Δθ, ) 10FjS (θ9.Δθ1+θ, 2Δθ2
+θ2. Δθ3)+p=h (θ6.Δθ, +θ62Δ
θ2+θ6. Δθ, )−(F, ++FJnθ414Fj
SθSl+F'j6θ, 1) Δθ, +('jz+FJ4
θ 42+FjS θ52+FJ6 θ, 2) Δ
θ, +(Fiff+FJ4 θa3+F; 5 θS
ff+Fj6 θ8. ) Δ θ3= ΦJ(θ 1
°10Δ θ 1. θ 2° + Δ θ 2. θ, °+Δ
θ , )−ΦJ′″=Φ4.Δθ1+ΦJ2Δθ2+
Φ4. Δθ3 (j・4,5.6) (4) However, F, °・FJ(θ1°, −1θ6−−ΦJ(θ1°
, θ2°, θ, -2ΦJ (θ.)8Φ1° (j=4.5
.. 6) Therefore, Δθr (i=L2.3) that minimizes the sum of squared deviations between (4) and the target value is determined by repeated operations as a solution to the simultaneous equations, and as a result, the distance between the joints is determined.

以下、第1図に示したマニピュレータについて解法を説
明する。この運動学方程弐を(5)〜o[i)に記載す
る。
The solution method for the manipulator shown in FIG. 1 will be explained below. This kinematic equation step 2 is described in (5) to o[i).

nx=−(s+5tyc5+5asscl+5Issc
tsca>cb+5b(c+ca−s+5acz−1)
    (5)ny;(SZ:1clc&−3l54S
S+5SCI Cz3Ca)Ch+Sb (CrCa−
SaC+ C2:l)   (6)nt−(Cz3Cs
−3z:+5sC4)eh−Szコ54S6     
                      (7)
Qx= (C1c4−sl S 4C23) Cb+s
b (s 1s23c5+54sscl +s l55
C23C4)   (8)oy=(s+ca−sac+
cz3)cb−s*(sz3c+cs−s+54ss+
ssc+czzca)      (9)OtH−(s
z3s4)C6+s6 (Sz3SsCm−Cz*C5
)            0o)als 1SzaS
s−5+CzsCnCs−3aC+Cs       
                        (
II)ay=c+cz3c4cs−5z3SsC+−3
ISaCs               02)az
=−(SziC4C5+5sCz3)        
          Q3)Px=−aa(S+Sz+
Cs÷54S5C1+51SsCz3Ca)C6+ah
Sa(CrC4−5+5aCz3)as(S+5z3C
s+54Ss(++S+5sCzsC4)−(a:++
a4)S+Sz+−azs+sz     (lルPy
にa−(Sz:+C+Cs−5ls4ss+S5C+C
z3Ca)C6+ahSa(S ICa+SaC+Cz
i) +as (SzzC+Cs−3IS4SS+5S
CI C23C4)+ (a3+am)St3CI+a
tStCPz=86 (Cz xC5−32355C4
)C6−a6s6 (Sz 3541as (C2cc
 5− Sz 355C4)+(as+aa)czx+
azcz子a106)まず、(If)、 02)から5
1+CI について整理した共通項を基準変数を使って
っぎのように記述する。
nx=-(s+5tyc5+5asscl+5Issc
tsca>cb+5b(c+ca-s+5acz-1)
(5)ny;(SZ:1clc&-3l54S
S+5SCI Cz3Ca) Ch+Sb (CrCa-
SaC+ C2:l) (6)nt-(Cz3Cs
-3z:+5sC4)eh-Szko54S6
(7)
Qx= (C1c4-sl S 4C23) Cb+s
b (s 1s23c5+54sscl +s l55
C23C4) (8)oy=(s+ca-sac+
cz3)cb-s*(sz3c+cs-s+54ss+
ssc+czzca) (9)OtH-(s
z3s4)C6+s6 (Sz3SsCm-Cz*C5
) 0o) als 1SzaS
s-5+CzsCnCs-3aC+Cs
(
II) ay=c+cz3c4cs-5z3SsC+-3
ISaCs 02) az
=-(SziC4C5+5sCz3)
Q3) Px=-aa(S+Sz+
Cs÷54S5C1+51SsCz3Ca)C6+ah
Sa(CrC4-5+5aCz3)as(S+5z3C
s+54Ss(++S+5sCzsC4)-(a:++
a4) S+Sz+-azs+sz (l Py
ni a-(Sz:+C+Cs-5ls4ss+S5C+C
z3Ca)C6+ahSa(S ICa+SaC+Cz
i) +as (SzzC+Cs-3IS4SS+5S
CI C23C4)+ (a3+am)St3CI+a
tStCPz=86 (Cz xC5-32355C4
) C6-a6s6 (Sz 3541as (C2cc
5- Sz 355C4)+(as+aa)czx+
azcz child a106) First, (If), 02) to 5
The common terms organized for 1+CI are described using reference variables as shown below.

C2ffC4C5−3Z3SS”ayCl−aXs l
”Wl (θ 11 o zl θ コ)   0力5
aCs□−(ays++axc+)□wz(θ1.θ2
.θ、)(・χ、)  (18)また、03)、07)
から CaC5=H1Cts−azszz   (”χz) 
      09)Sz・−軸χC2コ+圓IS2ユ)
    (・χ3)            C!tD
が得られ、関節角θ1.θ、と基準変数との関係が導き
出せる。すなわち、側、09)、12Gから但し、×2
”WlC23−axs!3≠O(22)stL/L イ旦し、 X1ニー (ays+ +a、c+)≠0が
直ちに求まる。残るはθ6で、これを含む式として 例えば(5)の06+56の係数 ^=S1S23C5+5aS5C1+S+5sCz3C
4(25)ToC+Ca−5+54Cz3(26)に着
目する。この^、Bは上で求めた関節角の値から計算で
きるが、また(8)と関連づけるとA=−nxca+o
xsa            (27)B= nxs
b+owcb            (2B)とも表
現できることから、 イ旦し、χ5−Box−八n、l ≠O(30)と表さ
れる。
C2ffC4C5-3Z3SS"ayCl-aXs l
”Wl (θ 11 o zl θ Ko) 0 force 5
aCs□-(ays++axc+)□wz(θ1.θ2
.. θ, )(・χ,) (18) Also, 03), 07)
From CaC5=H1Cts−azszz (”χz)
09) Sz・-axis χC2co+en IS2yu)
(・χ3) C! tD
is obtained, and the joint angle θ1. The relationship between θ and the reference variable can be derived. That is, side, 09), from 12G, however, ×2
"WlC23-axs!3≠O(22)stL/L Once established, X1 knee (ays+ +a, c+)≠0 can be found immediately. What remains is θ6, and as an expression including this, for example, the coefficient of 06+56 in (5) ^=S1S23C5+5aS5C1+S+5sCz3C
4(25)ToC+Ca-5+54Cz3(26). This ^, B can be calculated from the value of the joint angle found above, but when related to (8), A = -nxca + o
xsa (27)B=nxs
Since it can also be expressed as b+owcb (2B), it can be expressed as χ5-Box-8n, l≠O(30).

このように、姿勢の関係式からθ4.θ6.θ6が基準
変数で表されたので、つぎに(4)に従ってマニピュレ
ータの指先位置P、、P、、P、を初期値θ。の近傍で
線形近似する。すなわち、 PX(θ。+Δ θ)=P、(θ。)十L1Δ θ1+
L2Δ θ2+L3Δ θ3P、(θ。+Δ θ)−P
y(θ。)十−4Δ θ1+N2Δ θ2+トΔ θ。
In this way, from the attitude relational expression, θ4. θ6. Since θ6 is expressed as a reference variable, next, according to (4), the fingertip positions P, , P, , P of the manipulator are set to the initial value θ. Linear approximation is performed in the vicinity of . That is, PX(θ.+Δ θ)=P, (θ.) 10L1Δ θ1+
L2Δ θ2+L3Δ θ3P, (θ.+Δ θ)−P
y(θ.) 10−4Δ θ1+N2Δ θ2+tΔ θ.

P、(θ。+Δθ)・P、(θ。)4N1Δθ112Δ
θ、+N:lΔθ3(但し、θ。−(θ1°、θ7°、
θ、°)とする。)ここに、微小変位の各係数り、、 
M、、 N、は、つぎのように定まり、また(P、/θ
1)などは(35)を用いる。
P, (θ.+Δθ)・P, (θ.)4N1Δθ112Δ
θ, +N: lΔθ3 (however, θ.-(θ1°, θ7°,
θ, °). ) Here, each coefficient of minute displacement is,
M,, N, is determined as follows, and (P, /θ
1) etc. use (35).

L、 、−Pつ、+ Σ Pxkθ3□  (i・1.
2.3)     (32)阿、=P、、  + Σ 
Pykθ2、(l・1,2.3> N、=Pst  + Σ Pffikθ□(i・1,2
.3) Pxl  ・ PX3  ・ PX4  ” X5 − pH&  ・ py+  ・ Pyl  ・ Py3  ” Pya  ・ yS  − Py G(d3+kz、−R6−3i、5z3Sa、dz+1
)SpH2+  azs+cz G(d+、ksss+ass6+に7,0+0)G(d
:+、に9.0,0,0.0) G(R6,ox、0,0,0.0) Pゆ p、zc+/s+                (
35)Pyt  −azc+c+ G (di、 kbsb+ a6si+ S l54−
’1c23clO+ 0)G(+1+、ay、0,0,
0.O) J・ Pyh :G(R5,oy、O,0,0,0)Pl ・
 0 Ptt  =  −G(d*+ka+aish+54c
z:++d++1)Pzff  −Pzz  +  a
zsgPta  =  G(d3+54ss+−ais
th+cn+0+0)SziPts  −−G(da、
ks、0,0.0.0)P−a  −G(a*+oz、
O+O+0,0)但し、関数Gはつぎのように定める。
L, , -P, + Σ Pxkθ3□ (i・1.
2.3) (32) A, = P,, + Σ
Pykθ2, (l・1,2.3> N, = Pst + Σ Pffikθ□(i・1,2
.. 3) Pxl ・ PX3 ・ PX4 ”
)SpH2+ azs+cz G(d+, 7,0+0 to ksss+ass6+)G(d
:+, 9.0,0,0.0) G(R6,ox,0,0,0.0) Pyup,zc+/s+ (
35) Pyt -azc+c+ G (di, kbsb+ a6si+ S l54-
'1c23clO+ 0)G(+1+, ay, 0,0,
0. O) J・Pyh:G(R5,oy,O,0,0,0)Pl・
0 Ptt = -G(d*+ka+aish+54c
z:++d++1)Pzff -Pzz + a
zsgPta = G(d3+54ss+-ais
th+cn+0+0)SziPts --G(da,
ks, 0,0.0.0)P-a-G(a*+oz,
O+O+0,0) However, the function G is defined as follows.

G(a+b+c+d+e+f)□ab + cd + 
ef    (36)以上でマニピュレータの指先位置
の基準変数に関する線形化を行った。そこで、(31)
の各計算値と与えられた指先目標値との偏差を2乗ノル
ムで表し、この値を1つの収束判定基準が満たされるま
で更新を続は所要の関節解を導く。目的の評価関数は (P、(θ 。+ Δ θ)−P−]2+f P、(θ
 。+ Δ θ)−Pア12+f P、(θ 。+ Δ
 θ)となり、これを展開してつぎのようになる。
G(a+b+c+d+e+f)□ab + cd +
ef (36) Above, linearization regarding the reference variable of the fingertip position of the manipulator was performed. Therefore, (31)
The deviation between each calculated value and the given fingertip target value is expressed as a square norm, and this value is updated until one convergence criterion is satisfied.Then the required joint solution is derived. The objective evaluation function is (P, (θ.+Δ θ)−P−]2+f P, (θ
. + Δ θ)-Pa12+f P, (θ .+ Δ
θ), which can be expanded as follows.

R2)2 msJw (θo)−Pg +  M =ml”+2g
2+m33(39)ム ム 五は指先の目積位置。
R2) 2 msJw (θo) - Pg + M = ml" + 2g
2 + m33 (39) M M M 5 is the estimated position of the fingertip.

したがって、関数Jを極小にする各関節変数の微小変位
は、(38)の導関数を零におくこと(J/Δθ、)。
Therefore, the minute displacement of each joint variable that minimizes the function J is to set the derivative of (38) to zero (J/Δθ,).

・O(i・1,2.3)でつぎ03元連立方程式の解と
して求まる。
・O(i・1,2.3) is found as the solution of the following 03-dimensional simultaneous equations.

但し−2 R,、=  G(L、、Ll、Ml、Ml、N、、N1
)Lx  ・ G(Ll、Lz、M、Mz、N3.ti
z)  = R21R+s  =   G(Ll、R3
,Ml、門3.N1.Nz)  ・ R11hz = 
 G(Lz、LzlMz、門2 + N 2 +〜z)
        (41)Rzs  =   G(Lz
、Ll、Mz、門t、Nz、Ni)  ・ R32R3
3・ G(R3,R3,M3.M3.N3.N5)b+
   =  −G(01zL1+mz+門++m3+N
+)b2=  −G(+m、、l、2+mZ+門21 
m z + N Z )bz  =  −G(m++1
3+顯2.門3+1l13+Nl+)方程式の解はガウ
ス・ザイデル法や掃きだし法などで簡単に求めることが
できる。算出された各増分値Δθ1.Δθ2.Δθ、に
より関節角の初期推定値θ8°が θ、=θ、e+Δθr  (i・1.2.3)    
(42)と更新されるとともに、(21) 、 (23
) 、 (29)から残りの関節角が決定する。この時
点で、関節前を線形化しない原式(3)に代入してノル
ムの大きさを再計算する。その大きさが指定された収束
半径内にあれば解として採択され、そうでない場合は、
(42)の01を初期値として一連の操作を最初に戻っ
て繰返す。以上が計算手順の概要である。いくつかの数
値実験によりこのアルゴリズムの性能を評価すると、指
先の位置と目標値との隔たりが]、 Ocm以内にあれ
ばたかだか4回以内で収束を達成することを示した。勿
論これは安定な挙動を与えた例であって、マニピュレー
タの任意姿勢に対して与える初期値や評価関数の非線形
特性に依存して収束状況は変り得る。線形理論に基づい
た解探索法ではこのように適用範囲が自ずと規定されて
しまうので、それを拡大させて利用できれば重宝である
However, −2 R,,=G(L,,Ll,Ml,Ml,N,,N1
)Lx・G(Ll, Lz, M, Mz, N3.ti
z) = R21R+s = G(Ll, R3
, Ml, phylum 3. N1. Nz) ・R11hz =
G (Lz, LzlMz, gate 2 + N 2 +~z)
(41) Rzs = G(Lz
, Ll, Mz, gate, Nz, Ni) ・R32R3
3.G(R3,R3,M3.M3.N3.N5)b+
= -G(01zL1+mz+gate++m3+N
+)b2=-G(+m,,l,2+mZ+gate 21
m z + N Z )bz = −G(m++1
3 + face 2. The solution to the 3+1l13+Nl+) equation can be easily found using the Gauss-Seidel method or the sweep method. Each calculated increment value Δθ1. Δθ2. Due to Δθ, the initial estimated value θ8° of the joint angle is θ, = θ, e+Δθr (i・1.2.3)
(42), (21), (23
), the remaining joint angles are determined from (29). At this point, the magnitude of the norm is recalculated by substituting the pre-joint into the original equation (3) without linearization. If the size is within the specified convergence radius, it is accepted as the solution; otherwise,
Return to the beginning and repeat the series of operations using 01 in (42) as the initial value. The above is an overview of the calculation procedure. When the performance of this algorithm was evaluated through several numerical experiments, it was shown that if the distance between the fingertip position and the target value was within 0cm, convergence could be achieved within four iterations at most. Of course, this is an example of stable behavior, and the convergence situation may change depending on the initial value given to the arbitrary posture of the manipulator and the nonlinear characteristics of the evaluation function. Since the solution search method based on linear theory naturally has a defined range of application, it would be useful if it could be expanded and used.

現在のアルゴリズムでも初期変位を大きくとれば当然数
値的不安定性を招き発散してしまう。そこで、線形領域
から逸脱する関節変位についても解を安定に得るための
検討を行った。繰返し計算では、最初のステップにおけ
るΔθの大小が以後の解挙動への鍵を握っているので、
この初期段階における相対的大きさをある程度抑え、適
切に改善・補正することが有力と考えた。結果が示すよ
うに、この操作後はΔθの値が多少大きくても最小化手
法が有効に働いて目標値との隔たりをさして障害とせず
に目標値へむけて象、速に収束する傾向が示された。つ
まり、こうした数値的発散傾向ムこブレーキをかける操
作は、従来の線形近似による解の探索能力を向上させる
突破口として意義がある。具体的には、関節変位をつぎ
のように補正して計算を行った。
Even with the current algorithm, if the initial displacement is large, it naturally leads to numerical instability and divergence. Therefore, we conducted an investigation to obtain stable solutions even for joint displacements that deviate from the linear region. In iterative calculations, the magnitude of Δθ in the first step holds the key to the subsequent behavior of the solution, so
We believed that it would be effective to suppress the relative size to some extent at this initial stage and make appropriate improvements and corrections. As the results show, after this operation, even if the value of Δθ is somewhat large, the minimization method works effectively and there is a tendency to quickly converge toward the target value without using the gap from the target value as an obstacle. Shown. In other words, the operation of applying a numerical brake on the tendency to diverge is significant as a breakthrough in improving the ability to search for solutions using conventional linear approximation. Specifically, calculations were performed by correcting joint displacement as follows.

1)初期変位が300(w)以内の場合(i=1.2.
3)Δθi”Δθi /1.5 (Δθ、  >(de
n))11)それを越える場合 Δθ、2 Δθ;/1.5(10(deg)>  Δθ
(>1(deg))Δθ、= Δθ*/2.0(30(
deg)>  Δθr  >10(deg))Δθ8−
 Δθi/3.0(Δθr  >30(deg))その
結果を第2図にまとめる。初期推定値として閏の^、B
、Cは、1つの関節値を変動させ他を基準値に固定した
3つの計算カテゴリーで、X ・口の印で表す。その上
の数値は収束回数を示す。
1) When the initial displacement is within 300 (w) (i=1.2.
3) Δθi”Δθi /1.5 (Δθ, >(de
n)) 11) If it exceeds Δθ, 2 Δθ; /1.5 (10 (deg) > Δθ
(>1(deg)) Δθ, = Δθ*/2.0(30(
deg)>Δθr>10(deg))Δθ8−
Δθi/3.0 (Δθr >30 (deg)) The results are summarized in FIG. The leap ^,B is used as the initial estimate.
, C are three calculation categories in which one joint value is varied and the others are fixed at standard values, and are represented by X and mouth marks. The number above it indicates the number of convergence times.

例えば、点Pは基準値からθ1を30 (deg) 、
点Qはθ2を−20(deg) 、点Rはθ3を−50
(deg)変動させたサンプルで、縦軸に示した指先目
標値との隔たりDに対して収束解がそれぞれ4,4.6
回で得られたことを表している。補正前に成立した斜線
領域に比べどのケースも線形化モデルの制限枠を大きく
改善している。計算開始時に目標値との隔たりが約35
0肛以内にあれば、この補正により評価関数の各項を構
成する偏差が単調に零に漸近することを示した。つぎに
、各関節を同時に変化させた場合のテスト計算(表1参
照)では10回以内に安定な解が得られた。本モデルは
相当ムこ大きな角度変位に対しても十分耐えて、指先で
の隔たりが400(am)以内で正常解が引出された。
For example, at point P, θ1 is 30 (deg) from the reference value,
Point Q sets θ2 to -20 (deg), and point R sets θ3 to -50
(deg) For the sample fluctuated, the convergence solution is 4 and 4.6, respectively, for the distance D from the fingertip target value shown on the vertical axis.
It represents what was obtained during the course. In all cases, the constraint frame of the linearized model is greatly improved compared to the shaded area established before correction. At the start of calculation, the gap from the target value is about 35
It was shown that if it is within 0, the deviations constituting each term of the evaluation function monotonically approach zero by this correction. Next, in a test calculation (see Table 1) in which each joint was changed simultaneously, a stable solution was obtained within 10 times. This model sufficiently withstood a considerably large angular displacement, and a normal solution was obtained when the distance between the fingertips was within 400 (am).

尚、収束した解の精度は厳密解と対比して小数点以下3
位まで一致していた。
Note that the accuracy of the converged solution is 3 decimal places compared to the exact solution.
They matched up to the point.

以上、最小化手法、線形近似、補正操作など一連の取扱
いを通して首尾よく解が求められた。発散要因となる初
期変位の大きさについて直接制御しさえすれば正常解に
到達できる見通しが示唆された。例示したように、指先
目標値と30〜50cmの隔たりに対して精度0.1m
、反復回数10回内で達成できれば十分実用に供すると
考えられる。
As described above, a solution was successfully obtained through a series of treatments including minimization techniques, linear approximation, and correction operations. It was suggested that a normal solution could be reached as long as the magnitude of the initial displacement, which is a divergence factor, was directly controlled. As shown in the example, the accuracy is 0.1 m for a distance of 30 to 50 cm from the fingertip target value.
, it is considered that if it can be achieved within 10 iterations, it will be sufficiently useful for practical use.

(効 果) 本発明の効果は以下の通りである。(effect) The effects of the present invention are as follows.

(1)6変数を一挙に取扱う煩雑さを回避するため、独
立変数を形式的に3つにへらし偏差2乗からなる評価関
数と関連づけ、線形最適化手法とカップリングさせた解
の誘導手順は、極めて単純である。
(1) In order to avoid the complexity of handling six variables at once, the independent variables are formally reduced to three, associated with an evaluation function consisting of the squared deviation, and the solution derivation procedure is coupled with a linear optimization method. , is extremely simple.

(2)初期の推定値が線形化の常識を超えた場合でも、
Δθの補正を行うことで極値探索による手法が効果的に
寄与して(反復回数を増加することなく)高精度な解が
期待できる。
(2) Even if the initial estimate exceeds the common sense of linearization,
By correcting Δθ, the extreme value search method can effectively contribute (without increasing the number of iterations) and a highly accurate solution can be expected.

(3)本概念は原理的にあらゆるタイプの6リンク・マ
ニピュレータに適用可能である。
(3) The concept is applicable in principle to all types of six-link manipulators.

(4)ヤコビアン計算に比べ処理が容易であるが、陰関
数が成立しない条件は念頭におく必要がある。
(4) Processing is easier than Jacobian calculation, but it is necessary to keep in mind the conditions under which the implicit function does not hold.

線形化の宿命である初期値依存性や微小領域での取扱い
などヤコビ手法で経験する類偵の問題点を最適化と変位
補正により高精度な解に到達できたことは利点であろう
It is an advantage that we were able to reach highly accurate solutions through optimization and displacement correction to solve similar problems experienced with the Jacobi method, such as initial value dependence, which is the fate of linearization, and handling in minute regions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した6関節形マニピュレータの斜
視図、第2図は本発明の方法を用いて計算した結果、線
形モデルに繰返し巾を改善することで大きな変動に対し
ても解が引出せることを示すグラフである。 10−ヘース、11〜16− リンク 21〜26−関節。
Figure 1 is a perspective view of a six-joint manipulator to which the present invention is applied, and Figure 2 is a calculation result using the method of the present invention, which shows that it is possible to solve large fluctuations by improving the repetition width of the linear model. This is a graph showing that it can be drawn out. 10- Heath, 11-16- Links 21-26- Joints.

Claims (1)

【特許請求の範囲】 1、回転又は旋回可能な複数の関節を有する複数関節形
マニピュレータの関節角を測定する方法であって、前記
複数の関節間の複数変数を含む運動方程式をある複数の
独立変数のみの体系に整理し、目標点と現在点との距離
を最小かつ零にする繰返し計算を行い、該繰返し計算の
繰返し幅を毎回補正して前記関節角を決定する複数関節
形マニピュレータの関節角測定方法。 2、複数の関節が6つであり、独立変数が3つである請
求項1の測定方法。
[Scope of Claims] 1. A method for measuring joint angles of a multi-joint manipulator having a plurality of rotatable or pivotable joints, wherein equations of motion including a plurality of variables between the plurality of joints are determined by a plurality of independent A joint of a multi-joint manipulator that organizes it into a system of only variables, performs repeated calculations to minimize the distance between the target point and the current point, and corrects the repetition width of the repeated calculations each time to determine the joint angle. Angle measurement method. 2. The measuring method according to claim 1, wherein there are six joints and three independent variables.
JP2110914A 1990-04-26 1990-04-26 Joint Angle Control Method for Articulated Manipulator Expired - Fee Related JP2972278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2110914A JP2972278B2 (en) 1990-04-26 1990-04-26 Joint Angle Control Method for Articulated Manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2110914A JP2972278B2 (en) 1990-04-26 1990-04-26 Joint Angle Control Method for Articulated Manipulator

Publications (2)

Publication Number Publication Date
JPH048490A true JPH048490A (en) 1992-01-13
JP2972278B2 JP2972278B2 (en) 1999-11-08

Family

ID=14547837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2110914A Expired - Fee Related JP2972278B2 (en) 1990-04-26 1990-04-26 Joint Angle Control Method for Articulated Manipulator

Country Status (1)

Country Link
JP (1) JP2972278B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871071A (en) * 1994-09-01 1996-03-19 Olympus Optical Co Ltd Operating manipulator apparatus
JP2015089584A (en) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 Robot control method and robot control system
JP2016177310A (en) * 2008-09-25 2016-10-06 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection exposure device with optimized adjustment function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871071A (en) * 1994-09-01 1996-03-19 Olympus Optical Co Ltd Operating manipulator apparatus
JP2016177310A (en) * 2008-09-25 2016-10-06 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection exposure device with optimized adjustment function
US10054860B2 (en) 2008-09-25 2018-08-21 Carl Zeiss Smt Gmbh Projection exposure apparatus with optimized adjustment possibility
JP2015089584A (en) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 Robot control method and robot control system

Also Published As

Publication number Publication date
JP2972278B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
US20210001483A1 (en) Path-Modifying Control System Managing Robot Singularities
CN104965517B (en) A kind of planing method of robot cartesian space track
Stilman Task constrained motion planning in robot joint space
US9321175B2 (en) Robotic manipulator articulation techniques
Milenkovic Continuous path control for optimal wrist singularity avoidance in a serial robot
Likar et al. Adaptation of bimanual assembly tasks using iterative learning framework
Wang et al. Inverse kinematics and dexterous workspace formulation for 2-segment continuum robots with inextensible segments
Sarker et al. On screw linear interpolation for point-to-point path planning
JPH048490A (en) Articular angle measuring method for multiarticulated type manipulator
Heins et al. Mobile manipulation in unknown environments with differential inverse kinematics control
Enferadi et al. A novel spherical parallel manipulator: forward position problem, singularity analysis, and isotropy design
Sorour et al. Motion control for steerable wheeled mobile manipulation
Stanczyk Development and control of an anthropomorphic telerobotic system
Zhang et al. Pose accuracy analysis of robot manipulators based on kinematics
Milenkovic Optimal path crossing the orientation exclusion zone of a robot with offset wrist
Nenchev et al. Singularity-consistent path planning and control of parallel robot motion through instantaneous-self-motion type singularities
Wang et al. Investigation on a new discrete-time synchronous motion planning scheme for dual-arm robot systems
Wu et al. Novel adaptive zeroing neural dynamics schemes for temporally-varying linear equation handling applied to arm path following and target motion positioning
JPH11239988A (en) A singular point avoiding method in direct teaching of articulated robot
Patiño et al. On Mapping Stiffness and Damping in Robotic Impedance Control: a Spatial Validation of Coupling
Cusumano et al. Development of tele-operation control for a free-floating robot during the grasping of a tumbling target
Reyes-Uquillas et al. Online motion adjustment using compliance control for a multi-axis robot manipulator
Selig et al. Interpolated rigid-body motions and robotics
Irmawati et al. Kinematics Simulation of Welding Manipulator Based on V-REPPRO EDU
Tsogias Kinematic Analysis of a KUKA YouBot

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees