JPH048463B2 - - Google Patents

Info

Publication number
JPH048463B2
JPH048463B2 JP58049385A JP4938583A JPH048463B2 JP H048463 B2 JPH048463 B2 JP H048463B2 JP 58049385 A JP58049385 A JP 58049385A JP 4938583 A JP4938583 A JP 4938583A JP H048463 B2 JPH048463 B2 JP H048463B2
Authority
JP
Japan
Prior art keywords
properties
conductive
iron
molded
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58049385A
Other languages
Japanese (ja)
Other versions
JPS59174637A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4938583A priority Critical patent/JPS59174637A/en
Publication of JPS59174637A publication Critical patent/JPS59174637A/en
Publication of JPH048463B2 publication Critical patent/JPH048463B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性熱可塑性樹脂組成物に関するも
のであり、更に詳しくは粉末状リン鉄導電剤とし
て配合した導電性熱可塑性樹脂組成物に関する。 近年、エレクトロニクス化が急速に進歩するな
かで、電磁波による電子機器の誤動作が社会問題
としてクローズアツプされてきている。これは電
子機器を収納しているハウジング(ケース)が金
属材料から絶縁性のプラスチツク材料に急速に転
換しているためである。このようなことから、パ
ソコン、電子ゲーム等の電磁波障害を抑制するた
め、電子機器に対して電磁波をシールド(遮へ
い)することが、昭和56年アメリカ(FCC規
制)、西ドイツ(FTZ規制)等により相次いで法
律により義務づけられている。電磁波をシールド
するためには従来の金属材料製ハウジングと同様
にプラスチツクを少くとも導電性にすることが必
要と考えられる。 プラスチツクを導電化する方法としては、成形
品を導電性塗料でコーテイングするか、亜鉛溶射
するなどの後加工法、金属箔を積層したシートで
成形品を製造する方法、プラスチツク中に金属
粉、金属フレーク、金属繊維、カーボンブラツ
ク、黒鉛、炭素繊維などの導電性材料をブレンド
し、成形する方法等がある。しかしながらこれら
のいずれの方法も問題点を有している。すなわ
ち、導電性塗料をコーテイングする方法は金属粉
(銀、銅、ニツケル)を塗料用樹脂と混練してス
プレー等で塗布する方法であるが、塗装設備が必
要なほか、コーテイング層の金属が酸化腐蝕され
易いこと、コーテイング層が使用中剥離し易い等
の欠点を有している。また亜鉛溶射法は金属をア
ーク熱で溶かし、高圧空気で吹付ける方法である
が、高価な設備を必要とすること、密着性、亜鉛
の毒性等に問題があること等の欠点を有してい
る。金属箔積層シートを用いて成形品を製造する
方法は複雑な形状の成形品を一体成形することが
不可能であり、汎用性に乏しい欠点を有してい
る。一方、導電性材料をブレンドした樹脂組成物
から一体成形する方法は特殊な設備を必要としな
いし、また導電層が剥離する心配がないことから
有望であるが、現在知られている導電性充填剤に
は種々の問題がある。たとえば、カーボンブラツ
ク、黒鉛等は導電性が不充分で、しかもプラスチ
ツクの機械的物性を著しく低下させる欠点を有し
ている。また、銅粉、鉄粉、アルミニウム粉のよ
うな金属粉は酸化し易いうえに、取扱い上粉体爆
発の危険を有しているほか、均一分散性が困難な
欠点を有している。 一方、銅、鉄、ステンレスのような金属繊維は
プラスチツクの機械的および熱的性質は若干向上
させるが、繊維が絡み合つて均一な分散が困難な
こと等のほか、金属繊維の価格が高い等の欠点を
有している。炭素繊維、アルミ蒸着ガラス繊維等
の導電性繊維はプラスチツクの機械的強度を向上
させる利点はあるが、導電性に方向性を生じるこ
と、成形品の収縮率に異方性が生じ、成形品のソ
リ、変形が発生し易いこと、繊維価格が極めて高
価なこと等の欠点を有している。 本発明者等は導電性効果が大きく、かつ熱可塑
性樹脂の機械的、熱的特性を向上させ、しかも熱
可塑性樹脂に分散させ易く、成形品の収縮異方性
が少く、安価で取扱い上安全な導電性充填剤およ
びそれを配合した熱可塑性樹脂組成物を開発する
べく鋭意研究の結果、本発明の組成物に到達し
た。すなわち、本発明はポリエステルおよび/ま
たはポリアミドに粉末状リン鉄を含有させてなる
ことを特徴とする電磁波シールド用導電性熱可塑
性樹脂組成物である。 ここでいうリン鉄はFe2Pで表わされるリンと
鉄の合金で別名フエロホスホルとも呼ばれ、通常
リン鉱石からリンを製造する場合の副生物として
得られ、通常不純物として若干の珪素やマンガン
等を含有する場合がある。従来、リン鉄は鋳物の
流動性を増すための添加剤、薄鉄板用鋼塊製造物
添加物として利用されているが、熱可塑性樹脂に
配合した利用法およびその効果に言及した利用例
は知られていない。 本発明による組成物は、混練における各組成の
取扱い性および混合分散性が良好で操業性にすぐ
れること、組成物から得られた成形品はすぐれた
導電性効果および極めて良好な電磁波シールド性
を与えること、しかも熱可塑性樹脂の成形性を阻
害しないこと、成形品にソリや変形が発生し難い
こと、成形品の機械的性質を向上させること、リ
ン鉄が化学的安定性にすぐれることから、長期の
使用においても得られる性能が安定していること
等の多くの特長を有している。 本発明におけるポリアミドとしてはナイロン
6、ナイロン6,6、ナイロン12、ポリエーテル
アミド、ポリエステルエーテルアミド等が例示さ
れ、ポリエステルとしてはポリエチレンテレフタ
レート、ポリブチレンテレフタレート、ポリエス
テルポリエーテルブロツク共重合体、ポリエステ
ルポリラクトンブロツク共重合体等が例示され
る。 リン鉄は通常不定形の粒子で、熱可塑性樹脂へ
の分散性および機械的性質、導電性等の点から平
均粒径が30μ以下のものが好ましく、5μ以下のも
のが特に好ましい。また、その配合量は電磁波シ
ールド性の点から熱可塑性樹脂との合計量に対し
20重量%以上、機械的性質の点から熱可塑性樹脂
との合計量に対し90重量%以下であることが好ま
しく、更には30〜85重量%程度が特に好ましい。
しかしながら他の導電剤たとえば金属粉、カーボ
ンブラツク、炭素繊維、電荷移動錯体、ポリアセ
チレン等や、制電剤を併用するときは更に少量の
リン鉄で制電効果、導電効果等を得ることができ
る。 リン鉄と熱可塑性樹脂との混練は通常の充填剤
と熱可塑性樹脂との混練方法に準じて行うことが
できる。また、リン鉄と樹脂とのぬれを改善する
ために、通常の充填剤で行われているのと同様の
表面処理剤による処理を施すことができる。ま
た、ポリアルキレングリコール類またはポリオキ
シアルキレン鎖を有するポリマーやアニオン系界
面活性剤またはアニオン性基含有ポリマーを併用
もしくは予め該助剤と混練した後熱可塑性樹脂と
混練することにより導電剤の分布を変化させ、よ
り少ない配合量で制電性、導電性を付与すること
もできる。特に熱可塑性樹脂がポリエステル、ポ
リアミド等においては該手段による効果も大き
い。上記ポリアルキレングリコール類やオキシア
ルキレン鎖をもつポリマーは分子量が比較的高く
熱可塑性樹脂と相容し難いものが好ましい。 本発明による組成物には所望により更に他の強
化剤、たとえばガラス繊維、炭化硼素繊維、炭化
珪素繊維、ウイスカー、アラミド繊維等および/
または他の充填剤たとえばタルク、マイカ、ワラ
ストナイト、クレー、シリカ、ガラス粉、炭酸カ
ルシウム等を併用することもできる。また、カー
ボンブラツク、黒鉛、炭素繊維、アルミニウム
粉、アルミニウム繊維、黄銅繊維、銅繊維、鉄
粉、銅粉、真ちゆう粉等の導電性充填剤を併用す
ることもできる。更に、成形用熱可塑性樹脂に配
合される酸化防止剤、紫外線吸収剤、加水分解安
定剤、染顔料、難燃剤、難燃助剤、滑剤、可塑
剤、離型剤、摺動性改良剤、耐衝撃性改良剤、発
泡剤、結晶核剤、多官能性架橋剤、その他配合剤
を適宜配合することができる。 特に熱可塑性樹脂がポリエステルの場合高級脂
肪酸類、高級脂肪酸エステル類、高分子量脂肪族
ポリカルボン酸類、カルボン酸基含有エチレン系
ポリマー類、相容性を有するポリアルキレンエー
テル類、多価アルコールエステル類、ポリカルボ
ン酸エステル類、ポリエポキサイドのような有機
結晶化促進剤を併用することにより成形性、表面
特性を改良することができる。 本発明の組成物による成形品はすぐれた制電
性、導電性、電磁波シールド性等を有するほか、
改善された機械的性質に加えて摺動性、熱伝導性
等も改良される。 本発明による組成物は繊維状物、テープ状物、
フイルム状物等の押出し成形品、各種成形部品の
ような射出成形品、ブロー成形品等の成形材料の
ほか、シート状に成形してから圧空または真空成
形する成形材料として、被覆材料等として用いる
こともできる。また、他の材料との複合材料、た
とえば布帛等の含浸材料、フイルム、金属板等と
の積層材料カーペツト裏張り剤等として用いるこ
ともできる。特に射出成形材料、ブロー成形材料
として好適である。 以下、実施例により本発明を説明する。 なお、実施例における組成物の製造および射出
成形試片の成形、得られた成形品の物性は下記方
法によつた。 (1) 組成物の製造 熱可塑性樹脂とリン鉄粉末の所定量を池貝鉄工
社製PCM−302軸押出機により各種樹脂で採用さ
れている通常の混練条件を用いて溶融混練し、ペ
レツトを製造した。 (2) 成形品の製造 ペレツトを減圧乾燥機により乾燥した後、射出
成形機(日精樹脂工業社製FS−75型)を用い、
各種樹脂で採用されている通常の射出条件下、タ
テ、ヨコ各200mm、厚み3mmの平板およびASTM
試験片を成形した。 (3) 試験片の特性評価 Γ 電磁波シールド性 平板試験片を用い、最適システム研究会
(東京大学生産技術研究所)法により磁界
を測定。 Γ 熱変形温度 ASTM試験片を用い、ASTM D−648
に準じ、荷重18.6Kg/cmで測定した。 Γ 曲げ強度 ASTM D−648 実施例 1 平均粒径3ミクロンの粉末状リン鉄とナイロン
6(東洋紡績社 ナイロンT102)を溶融混練して
ペレツトを得た後、試験片を成形し、その特性を
評価した。その結果を表1に示した。
The present invention relates to a conductive thermoplastic resin composition, and more particularly to a conductive thermoplastic resin composition formulated as a powdered phosphorus conductive agent. In recent years, with the rapid advancement of electronics, the malfunction of electronic devices due to electromagnetic waves has come to the fore as a social problem. This is due to the rapid transition from metal materials to insulating plastic materials for the housings (cases) that house electronic devices. For this reason, in order to suppress electromagnetic wave interference from computers, electronic games, etc., shielding electronic devices from electromagnetic waves was introduced in 1988 by the United States (FCC regulations), West Germany (FTZ regulations), etc. One after another, it is required by law. In order to shield electromagnetic waves, it is considered necessary to make the plastic at least electrically conductive, similar to conventional housings made of metal materials. Methods for making plastic conductive include coating the molded product with conductive paint or post-processing methods such as zinc spraying, manufacturing the molded product using sheets laminated with metal foil, and adding metal powder or metal to the plastic. There are methods of blending and molding conductive materials such as flakes, metal fibers, carbon black, graphite, and carbon fibers. However, both of these methods have problems. In other words, the method of coating with conductive paint is to mix metal powder (silver, copper, nickel) with paint resin and apply it by spraying, but in addition to requiring painting equipment, the metal in the coating layer may oxidize. It has drawbacks such as being easily corroded and the coating layer easily peeling off during use. In addition, zinc spraying is a method in which metal is melted with arc heat and sprayed with high-pressure air, but it has drawbacks such as requiring expensive equipment and problems with adhesion and zinc toxicity. There is. The method of manufacturing a molded article using a metal foil laminated sheet has the drawback that it is impossible to integrally mold a molded article with a complicated shape, and is lacking in versatility. On the other hand, the method of integrally molding a resin composition blended with conductive materials is promising because it does not require special equipment and there is no risk of the conductive layer peeling off. There are various problems with these agents. For example, carbon black, graphite, etc. have the disadvantage that they have insufficient electrical conductivity and also significantly reduce the mechanical properties of plastics. Furthermore, metal powders such as copper powder, iron powder, and aluminum powder are easily oxidized, pose a risk of powder explosion during handling, and have the disadvantage that uniform dispersibility is difficult. On the other hand, metal fibers such as copper, iron, and stainless steel slightly improve the mechanical and thermal properties of plastics, but the fibers become entangled and are difficult to disperse uniformly, and metal fibers are expensive. It has the following disadvantages. Conductive fibers such as carbon fibers and aluminum-deposited glass fibers have the advantage of improving the mechanical strength of plastics, but they also cause directional conductivity and anisotropy in the shrinkage rate of molded products. It has disadvantages such as warpage and deformation easily occurring and fiber cost being extremely high. The inventors of the present invention have found that they have a large electrical conductivity effect, improve the mechanical and thermal properties of thermoplastic resins, are easy to disperse in thermoplastic resins, have little shrinkage anisotropy in molded products, are inexpensive, and are safe to handle. As a result of intensive research to develop a conductive filler and a thermoplastic resin composition containing the conductive filler, the composition of the present invention was arrived at. That is, the present invention is a conductive thermoplastic resin composition for electromagnetic shielding, which is characterized by containing powdered iron phosphorus in polyester and/or polyamide. The iron phosphorus referred to here is an alloy of phosphorus and iron represented by Fe 2 P, also known as ferrophosphorus, and is usually obtained as a by-product when manufacturing phosphorus from phosphate rock, and usually contains some silicon, manganese, etc. as impurities. May contain. Conventionally, iron phosphorus has been used as an additive to increase the fluidity of castings and as an additive in the manufacture of steel ingots for thin iron plates, but there are no known examples of its use in which it is blended into thermoplastic resins and its effects. It has not been done. The composition according to the present invention has good handling properties and mixing and dispersing properties of each composition during kneading, and has excellent operability, and molded products obtained from the composition have excellent conductivity and extremely good electromagnetic shielding properties. Furthermore, it does not inhibit the moldability of thermoplastic resins, it does not cause warping or deformation in molded products, it improves the mechanical properties of molded products, and phosphorous iron has excellent chemical stability. It has many features such as stable performance even after long-term use. Examples of the polyamide in the present invention include nylon 6, nylon 6,6, nylon 12, polyether amide, polyester ether amide, etc., and examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyester polyether block copolymer, and polyester polylactone. Examples include block copolymers. Phosphate iron is usually amorphous particles, and from the viewpoint of dispersibility in thermoplastic resins, mechanical properties, electrical conductivity, etc., those with an average particle size of 30 μm or less are preferable, and those with an average particle size of 5 μm or less are particularly preferable. In addition, from the viewpoint of electromagnetic shielding properties, the blending amount is relative to the total amount of thermoplastic resin.
From the viewpoint of mechanical properties, it is preferably 20% by weight or more, and 90% by weight or less based on the total amount with the thermoplastic resin, and more preferably about 30 to 85% by weight.
However, when other conductive agents such as metal powder, carbon black, carbon fiber, charge transfer complex, polyacetylene, etc. or an antistatic agent are used in combination, antistatic effects, conductive effects, etc. can be obtained with a smaller amount of iron phosphorus. The kneading of the iron phosphorus and the thermoplastic resin can be carried out according to the usual method of kneading a filler and a thermoplastic resin. Further, in order to improve the wetting of the iron phosphorus and the resin, a treatment using a surface treatment agent similar to that used for ordinary fillers can be performed. In addition, the distribution of the conductive agent can be controlled by using polyalkylene glycols, polymers having polyoxyalkylene chains, anionic surfactants, or polymers containing anionic groups, or by kneading with the auxiliary agent in advance and then kneading with the thermoplastic resin. It is also possible to impart antistatic properties and conductivity with a smaller amount by changing the amount. Particularly when the thermoplastic resin is polyester, polyamide, etc., the effect of this method is great. Preferably, the polyalkylene glycols and polymers having oxyalkylene chains have relatively high molecular weights and are incompatible with thermoplastic resins. The composition according to the invention may optionally contain further reinforcing agents, such as glass fibers, boron carbide fibers, silicon carbide fibers, whiskers, aramid fibers, etc.
Alternatively, other fillers such as talc, mica, wollastonite, clay, silica, glass powder, calcium carbonate, etc. can also be used in combination. Further, conductive fillers such as carbon black, graphite, carbon fiber, aluminum powder, aluminum fiber, brass fiber, copper fiber, iron powder, copper powder, brass powder, etc. can also be used in combination. Furthermore, antioxidants, ultraviolet absorbers, hydrolysis stabilizers, dyes and pigments, flame retardants, flame retardant aids, lubricants, plasticizers, mold release agents, sliding properties improvers, which are blended into thermoplastic resins for molding. Impact modifiers, foaming agents, crystal nucleating agents, polyfunctional crosslinking agents, and other compounding agents can be blended as appropriate. In particular, when the thermoplastic resin is polyester, higher fatty acids, higher fatty acid esters, high molecular weight aliphatic polycarboxylic acids, carboxylic acid group-containing ethylene polymers, compatible polyalkylene ethers, polyhydric alcohol esters, Moldability and surface properties can be improved by using an organic crystallization accelerator such as polycarboxylic acid esters or polyepoxide. Molded articles made from the composition of the present invention have excellent antistatic properties, conductivity, electromagnetic shielding properties, etc.
In addition to improved mechanical properties, sliding properties, thermal conductivity, etc. are also improved. The composition according to the present invention can be applied to fibrous materials, tape-like materials,
Used as a molding material for extrusion molded products such as film-like products, injection molded products such as various molded parts, blow molded products, etc., as a molding material that is formed into a sheet shape and then air pressure or vacuum molded, and as a coating material. You can also do that. It can also be used as a composite material with other materials, such as an impregnated material such as cloth, a laminated material with a film, a metal plate, etc., as a carpet lining agent. It is particularly suitable as an injection molding material or a blow molding material. The present invention will be explained below with reference to Examples. In addition, the production of the composition in the Examples, the molding of injection molded specimens, and the physical properties of the obtained molded products were conducted according to the following methods. (1) Production of composition A predetermined amount of thermoplastic resin and phosphorous iron powder is melt-kneaded using a PCM-30 twin-screw extruder manufactured by Ikegai Tekko Co., Ltd. using the usual kneading conditions used for various resins to produce pellets. did. (2) Manufacture of molded products After drying the pellets using a vacuum dryer, using an injection molding machine (model FS-75 manufactured by Nissei Jushi Kogyo Co., Ltd.),
Under normal injection conditions used for various resins, a flat plate with a length and width of 200 mm and a thickness of 3 mm and ASTM
A test piece was molded. (3) Characteristic evaluation of test piece Γ Electromagnetic shielding property Magnetic field was measured using a flat test piece using the Optimal System Study Group (Institute of Industrial Science, University of Tokyo) method. Γ Heat distortion temperature ASTM D-648 using ASTM test piece
Measured at a load of 18.6 kg/cm. Γ Bending strength ASTM D-648 Example 1 After obtaining pellets by melt-kneading powdered iron phosphorus with an average particle size of 3 microns and nylon 6 (Toyobo Co., Ltd. nylon T102), a test piece was formed and its properties were evaluated. evaluated. The results are shown in Table 1.

【表】 表1から明らかなように、リン鉄15重量%の配
合では電磁波シールド性は不十分であり、又多過
ぎる配合量は曲げ強度のような物性値が低下する
欠点を有する。好ましい配合量は20〜90重量%程
度である。もちろん、他の導電剤、たとえばカー
ボンブラツク等と併用するときは15重量%以下の
りん鉄含有量ですぐれた電磁波シールド性を得る
ことができる。 実施例 2 熱可塑性樹脂としてナイロン6(東洋紡績社ナ
イロンT102)と各種平均粒径をもつリン鉄を使
用して同様にペレツト化した後、成形し、その特
性を評価した。その結果を表2に示した。
[Table] As is clear from Table 1, a blend of 15% by weight of iron phosphorus does not provide sufficient electromagnetic shielding properties, and an excessively large blend has the disadvantage that physical properties such as bending strength decrease. The preferred amount is about 20 to 90% by weight. Of course, when used in combination with other conductive agents such as carbon black, excellent electromagnetic shielding properties can be obtained with a phosphorous iron content of 15% by weight or less. Example 2 Nylon 6 (Nylon T102, Toyobo Co., Ltd.) and iron phosphorus having various average particle sizes were used as thermoplastic resins and pelletized in the same manner, then molded and their properties were evaluated. The results are shown in Table 2.

【表】 表2から明らかなように、配合するリン鉄の平
均粒径が大き過ぎると曲げ強度のような物性が低
下することから平均粒径は30ミクロン程度以下で
あることが好ましい。 実施例 3 平均粒径3ミクロンのリン鉄と各種熱可塑性樹
脂とを溶融混練によりペレツト化した後、試験片
を成形し、その特性を評価した。その結果を表3
および表4に示した。
[Table] As is clear from Table 2, if the average particle size of the iron phosphorus to be blended is too large, physical properties such as bending strength will deteriorate, so the average particle size is preferably about 30 microns or less. Example 3 Iron phosphorus having an average particle size of 3 microns and various thermoplastic resins were melted and kneaded into pellets, and then test pieces were molded and their properties were evaluated. Table 3 shows the results.
and shown in Table 4.

【表】 その結果、リン鉄の配合によりいずれもすぐれ
た電磁波シールド性が得られた。特に熱可塑性樹
脂がポリアミド、ポリエステルでは曲げ強度、熱
変形温度等が著しく改善できる特長も有してい
る。
[Table] As a result, excellent electromagnetic shielding properties were obtained with the addition of iron phosphorus. In particular, thermoplastic resins such as polyamide and polyester have the advantage that bending strength, heat distortion temperature, etc. can be significantly improved.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエステルおよび/またはポリアミドに粉
末状リン鉄を含有させてなることを特徴とする電
磁波シールド用導電性樹脂組成物。
1. A conductive resin composition for electromagnetic shielding, characterized by containing powdered iron phosphorus in polyester and/or polyamide.
JP4938583A 1983-03-23 1983-03-23 Electroconductive resin composition Granted JPS59174637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4938583A JPS59174637A (en) 1983-03-23 1983-03-23 Electroconductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4938583A JPS59174637A (en) 1983-03-23 1983-03-23 Electroconductive resin composition

Publications (2)

Publication Number Publication Date
JPS59174637A JPS59174637A (en) 1984-10-03
JPH048463B2 true JPH048463B2 (en) 1992-02-17

Family

ID=12829547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4938583A Granted JPS59174637A (en) 1983-03-23 1983-03-23 Electroconductive resin composition

Country Status (1)

Country Link
JP (1) JPS59174637A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103589145A (en) * 2013-10-29 2014-02-19 安徽安缆模具有限公司 High-temperature resistant nylon PA12 composite material for automobile connectors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662852A (en) * 1979-10-26 1981-05-29 Dainichi Nippon Cables Ltd Sound insulating composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662852A (en) * 1979-10-26 1981-05-29 Dainichi Nippon Cables Ltd Sound insulating composition

Also Published As

Publication number Publication date
JPS59174637A (en) 1984-10-03

Similar Documents

Publication Publication Date Title
EP3378886B1 (en) Polyester powder compositions, methods and articles
EP0112197B1 (en) Synergistic effect of metal flake and metal or metal coated fiber on emi shielding effectiveness of thermoplastics
EP2087031B1 (en) Powder compositions and methods of manufacturing articles therefrom
TWI591121B (en) Wholly aromatic liquid crystalline polyester resin compound with anti-static property and article including the same
US20040039096A1 (en) Methods of forming conductive thermoplastic polyetherimide polyester compositions and articles formed thereby
CN102775755A (en) Polyaryl ether nitrile (PEN) and carbonyl iron powder (Fe(CO)5) composite magnetic material and preparation method thereof
US11993695B2 (en) Thermoplastic resin composition having excellent heat resistance and electromagnetic wave shielding capacity, method of preparing thermoplastic resin composition, and injection-molded article manufactured using thermoplastic resin composition
EP0185783A1 (en) Improved EMI shielding effecttiveness of thermoplastics
US20080128661A1 (en) Mica-based electrically-conductive reinforcing material
JP4296452B2 (en) Metallic polyamide resin composition
JPS59155459A (en) Polyester resin composition
JPH048463B2 (en)
JPH0764982B2 (en) High specific gravity composite resin composition
KR100872739B1 (en) Electromagnetic InterferenceEMI Shielding/Flame Retardant Hybrid Functional Composites Using Recycled Materials and Manufacturing Process thereof
CN117320871A (en) Glass reinforced resin molded article
JPWO2020235344A1 (en) Composite laminate and its manufacturing method
JPS60179243A (en) Electromagnetic-wave shielding molded shape and molding method thereof
JP5066310B2 (en) Conductive resin composition
JPH0987417A (en) Electroconductive thin resin molding
JPS62138537A (en) Electrically-conductive thermoplastic resin composition
JPH07309999A (en) Fiber-reinforced polybutylene terephthalate resin composition
JP2009108221A (en) Polyamide resin composition for casing of electrical/electronic equipment and casing of electrical/electronic equipment
JP2009197052A (en) Resin composition
JPH07133371A (en) Conductive resin composition
JPS61238852A (en) Metallic powder-containing polymer composition