JPH0484087A - Condensor - Google Patents

Condensor

Info

Publication number
JPH0484087A
JPH0484087A JP20071090A JP20071090A JPH0484087A JP H0484087 A JPH0484087 A JP H0484087A JP 20071090 A JP20071090 A JP 20071090A JP 20071090 A JP20071090 A JP 20071090A JP H0484087 A JPH0484087 A JP H0484087A
Authority
JP
Japan
Prior art keywords
pipe
liquid
condensing
condensing pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20071090A
Other languages
Japanese (ja)
Other versions
JP2699623B2 (en
Inventor
Tetsuro Ogushi
哲朗 大串
Masaaki Murakami
政明 村上
Akira Yao
矢尾 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20071090A priority Critical patent/JP2699623B2/en
Publication of JPH0484087A publication Critical patent/JPH0484087A/en
Application granted granted Critical
Publication of JP2699623B2 publication Critical patent/JP2699623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a condensor in which a liquid film within an entire condensing pipe can be made thin and a heat exchanging performance is high by a method wherein a liquid pipe communicating with a condensing pipe and having a smaller inner diameter than that of the condensing pipe is provided and then refrigerant liquid is flowed in the liquid pipe. CONSTITUTION:A liquid pipe 21 is disposed to communicate with a condensing pipe 9 and has a smaller inner diameter than that of the condensing pipe 9. A plurality of communication pipes 22 communicate with liquid pipe 21 and the condensing pipe 9. Refrigerant liquid generated in the condensing pipe 9 through its condensation passes through the communication pipes 22 in preference to the liquid pipe 21 having a smaller inner diameter than that of the condensing pipe 9 and immerses. The refrigerant liquid in the condensing pipe 9 is discharging into the liquid pipe 21, the liquid film 11 in the condensing pipe 9 is made thin and a heat exchanging performance in the condensing pipe 9 is increased. In addition, even under a heavy weight, if the liquid pipe 21 is positioned lower, the refrigerant liquid is discharged into the liquid pipe 21 through its gravity and the liquid film 11 in the condensing pipe 9 is made thin and a heat exchanging performance is increased.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、相変化を伴う作動液体(冷媒)の循環により
、熱を加熱部から冷却部へ輸送する、宇宙で使用する熱
輸送装置の蒸発器に関するものであス [従来の技術] 第4図は例えば、Heat  P ipe  T ec
hnolo3y(Proceedings  of  
the  Vl[th  International
Heat  P i pe  Conference 
 1981)に示された従来の熱輸送装置を示す構成図
であり、図において、(1)は蒸発器、(2)は凝縮器
、(3)は液体リザーバ、(4)はポンプ、(5)はこ
れらの機器を連結している配管である。配管(5)の内
部には例えばアンモニア、フロンなとの冷媒(6)が封
入されている。(7)は電子機器などの加熱源、(8)
はラジェータなどの冷却源である。凝縮器(2)は凝縮
管(9)からなり、凝縮管(9)内部を凝縮した冷媒(
6)の液体が流れるようになっている。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a heat transport device used in space that transports heat from a heating section to a cooling section by circulating a working liquid (refrigerant) accompanied by a phase change. This relates to an evaporator [Prior art] Fig. 4 shows, for example, a Heat Pipe Technique.
hnolo3y(Proceedings of
the International
Heat Pipe Conference
1981), in which (1) is an evaporator, (2) is a condenser, (3) is a liquid reservoir, (4) is a pump, and (5) is a condenser. ) is the piping that connects these devices. A refrigerant (6) such as ammonia or fluorocarbon is sealed inside the pipe (5). (7) is a heating source such as electronic equipment, (8)
is a cooling source such as a radiator. The condenser (2) consists of a condensing tube (9), and the condensed refrigerant (
6) The liquid is allowed to flow.

ポンプ(4)により駆動され液体リザーバ(3)から排
出された低温の冷媒(6)の液体は図中実線矢印で示す
ように、配管(5)を通って蒸発器(1)内に流入し、
加熱源(7)により加熱されて高温となり蒸発する。蒸
発した冷媒蒸気は図中点線矢印で示すように、配管(5
)を通って凝縮器(2)へ流れ凝縮管(9)内で冷却さ
れて凝縮し、更に冷却されて低温の冷媒液体となる。凝
縮した低温の冷媒液体は液体リザーバ(3)へ流入する
。以上のような冷媒の循環により、熱が蒸発器(1)か
ら凝縮器(2)へ小さな温度差で輸送される。
The low temperature refrigerant (6) liquid driven by the pump (4) and discharged from the liquid reservoir (3) flows into the evaporator (1) through the pipe (5) as shown by the solid arrow in the figure. ,
It is heated by the heat source (7) to a high temperature and evaporates. The evaporated refrigerant vapor flows through the pipe (5) as shown by the dotted arrow in the figure.
) to the condenser (2), where it is cooled and condensed in the condensing tube (9), and further cooled to become a low-temperature refrigerant liquid. The condensed cold refrigerant liquid flows into the liquid reservoir (3). By circulating the refrigerant as described above, heat is transported from the evaporator (1) to the condenser (2) with a small temperature difference.

[発明が解決しようとする課題] 従来の凝縮器は以上のように構成されているので、冷媒
(6)の蒸気が凝縮管(9)の壁面と熱交換して液化し
、無重力下においては第5図の冷却管軸方向断面構成図
に示すように気泡プラグ(10)を含むスラグ流となり
、壁面と蒸気との間に厚い液膜(II)が形成されるた
め、熱交換性能が悪くなるという問題があった。
[Problems to be Solved by the Invention] Since the conventional condenser is configured as described above, the vapor of the refrigerant (6) exchanges heat with the wall surface of the condensing tube (9) and liquefies, and under zero gravity. As shown in the axial cross-sectional diagram of the cooling pipe in Figure 5, the flow becomes a slag flow containing bubble plugs (10), and a thick liquid film (II) is formed between the wall surface and the steam, resulting in poor heat exchange performance. There was a problem.

本発明は上記のような問題点を解消するためになされた
もので、主に無重力環境で使用される凝縮管に厚い液膜
が形成されるのを防止し、凝縮管全体について管内の液
膜を薄くてきる熱交換性能の大きな凝縮器を得ることを
目的としている。
The present invention has been made to solve the above-mentioned problems, and is intended to prevent the formation of a thick liquid film on a condensing tube mainly used in a zero-gravity environment, and to reduce the liquid film inside the condensing tube as a whole. The aim is to obtain a thin condenser with high heat exchange performance.

[課題を解決するための手段] 本発明の凝縮管は、凝縮管に達通し、上記凝縮管内径よ
りも小さい内径を有する液管を設け、冷媒液体がこの液
管を流れるようにしたものである。
[Means for Solving the Problems] The condensing pipe of the present invention is provided with a liquid pipe that extends through the condensing pipe and has an inner diameter smaller than the inner diameter of the condensing pipe, so that the refrigerant liquid flows through this liquid pipe. be.

また、凝縮管内部を不均等に仕切って互いに連通ずる大
流路と小流路に分割し、冷媒液体が上記小流路を流れる
ようにしたものである。
Further, the inside of the condensing tube is partitioned unevenly into a large channel and a small channel that communicate with each other, so that the refrigerant liquid flows through the small channel.

[作用コ 本発明における液管は、凝縮管よりも内径を小さくしで
あるため、凝縮管内部に液体があれば、宇宙の無重力環
境では、液体の表面張力の作用により毛管現象により液
管内部に優先して冷媒液体が流入してくる。その結果凝
縮管内の冷媒液体が液管に排出され、凝縮管全体につい
て管内の液膜が薄くなり、熱交換性能が大きくなる。
[Operation] The liquid tube in the present invention has an inner diameter smaller than that of the condensing tube, so if there is liquid inside the condensing tube, in the weightless environment of space, the surface tension of the liquid causes capillarity inside the liquid tube. Refrigerant liquid flows in with priority. As a result, the refrigerant liquid in the condensing tube is discharged into the liquid tube, and the liquid film inside the condensing tube becomes thinner as a whole, increasing heat exchange performance.

また、同様に凝縮管内の冷媒液体は優先して小流路に流
入し、凝縮管大流路内の液膜が薄くなり、熱交換性能が
大きくなる。
Similarly, the refrigerant liquid in the condensing tube preferentially flows into the small channel, the liquid film in the large channel of the condensing tube becomes thinner, and the heat exchange performance increases.

[実施例] 以下、本発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の凝縮器の凝縮管部分を示す
軸方向断面構成図で、図において、(21)は凝縮管(
9)に連通して設けられた凝縮管(9)の内径より小さ
い内径を有する液管、(22)は液管(21)と凝縮管
(9)を連通している複数個の連通管である。なお、凝
縮管(9)矢印側に冷却源(8)が在る。
FIG. 1 is an axial cross-sectional configuration diagram showing the condensing pipe portion of a condenser according to an embodiment of the present invention. In the figure, (21) is a condensing pipe (
(22) is a plurality of communicating pipes communicating the liquid pipe (21) and the condensing pipe (9); be. Note that there is a cooling source (8) on the arrow side of the condensing pipe (9).

凝縮管(9)内で凝縮により生じた冷媒液体は無重力下
においては表面張力の作用による毛管現象により、蒸発
管(9)よりもより内径の小さな液管(21)に優先し
て連通管(22)を通って浸透していく。
Under zero gravity, the refrigerant liquid generated by condensation in the condensing tube (9) is preferentially transferred to the liquid tube (21), which has a smaller inner diameter than the evaporation tube (9), due to the capillarity effect caused by surface tension. 22).

その結果凝縮管(9)内の冷媒液体は液管(21)に排
出され、その結果凝縮管(9)内の液膜(11)は薄く
なり、凝縮管(9)内の熱交換性能が大きくなることに
なる。
As a result, the refrigerant liquid in the condenser tube (9) is discharged into the liquid tube (21), and as a result, the liquid film (11) in the condenser tube (9) becomes thinner, and the heat exchange performance in the condenser tube (9) decreases. It's going to get bigger.

なお、重力下においても、液管(21)の方が下に位置
するようにすれば、冷媒液体は重力の働きにより液管(
21)に排出されるので、凝縮管(9)内の液膜(11
)は薄くなり、熱交換性能が大きくなる。
Note that even under gravity, if the liquid pipe (21) is positioned at the bottom, the refrigerant liquid will flow through the liquid pipe (21) due to the action of gravity.
21), the liquid film (11) inside the condensing pipe (9)
) becomes thinner and its heat exchange performance increases.

また、上記実施例では液管(21)と凝縮管(9)が複
数個の連通管(22)で連通されている場合を示したが
、第2図の他の実施例の凝縮管径方向断面構成図に示し
たように、液管(21)と凝縮管(9)の間をスリット
(31)で連通させても同様の効果が得られる。
Further, in the above embodiment, the liquid pipe (21) and the condensing pipe (9) are connected through a plurality of communicating pipes (22), but in the radial direction of the condensing pipe in the other embodiment shown in FIG. As shown in the cross-sectional configuration diagram, the same effect can be obtained even if the liquid pipe (21) and the condensing pipe (9) are communicated with each other through a slit (31).

さらに、第3図のざらに他の実施例の凝縮管径方向断面
構成図にに示したように、凝縮管(9)内を仕切り板(
4■)で不均等に分割し、その結果できた小流路(42
)、  大流路(43)の間に連通部(44)を設けて
も、小流路(42)が液管(21)と、大流#1(43
)が凝縮管(9)と、連通部(44)が連通管(22)
と同じ作用を持つことになり、同様な効果が得られる。
Furthermore, as shown in the radial cross-sectional configuration diagram of the condensing tube of another embodiment in FIG.
4■), and the resulting small channels (42
), Even if the communication part (44) is provided between the large flow path (43), the small flow path (42) is connected to the liquid pipe (21) and the large flow #1 (43).
) is the condensing pipe (9), and the communication part (44) is the communication pipe (22).
It has the same effect as , and the same effect can be obtained.

[発明の効果] 以上のように、本発明によれは凝縮管に連通し、上記凝
縮管内径よりも小さい内径を有する液管を設け、上記凝
縮管内の冷媒液体を上記液管に優先して流入させ、ここ
を流れるようにしたので、凝縮管内の液膜を薄くでき、
その結果熱交換性能が大きな凝縮器が得られる効果があ
る。
[Effects of the Invention] As described above, according to the present invention, a liquid pipe is provided that communicates with the condensing pipe and has an inner diameter smaller than the inner diameter of the condensing pipe, and the refrigerant liquid in the condensing pipe is given priority over the liquid pipe. By allowing the liquid to flow in and flowing through this area, the liquid film inside the condensing tube can be made thinner.
As a result, a condenser with high heat exchange performance can be obtained.

また、凝縮管内部を不均等に仕切って互いに連通する大
流路と小流路に分割し、冷媒液体が上記小流路を流れる
ようにしたので、凝縮管内、大流路の液膜を薄くでき、
全体として熱交換性能が大きな凝縮器が得られる効果が
ある。
In addition, the inside of the condensing tube is partitioned unevenly into large channels and small channels that communicate with each other, and the refrigerant liquid flows through the small channels, making the liquid film inside the condensing tube and large channel thinner. I can,
This has the effect of providing a condenser with high heat exchange performance as a whole.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる凝縮管部分の軸方向
断面構成図、第2図は本発明の他の実施例に係わる凝縮
管部分の径方向断面構成図、第3図は本発明のさらに他
の実施例に係わる凝縮管の径方向断面構成図、第4図は
従来の凝縮器とそれが用いられている熱輸送装置を示す
構成図、第5図は従来の凝縮器内の無重力下での液体の
流れの状況を示す断面構成図である。 図において、(2)は凝縮器、(9)は凝縮管、(21
)は液管、(22)は連通管、(31)はスリット、(
41)は仕切り板、  (42)は小流路、(43)は
大流路、(44)は連通部である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is an axial cross-sectional configuration diagram of a condensing pipe portion according to one embodiment of the present invention, FIG. 2 is a radial cross-sectional configuration diagram of a condensing pipe portion according to another embodiment of the present invention, and FIG. A radial cross-sectional configuration diagram of a condensing pipe according to still another embodiment of the invention, FIG. 4 is a configuration diagram showing a conventional condenser and a heat transport device in which it is used, and FIG. 5 is a diagram showing the inside of a conventional condenser. FIG. 2 is a cross-sectional configuration diagram showing the state of liquid flow under zero gravity. In the figure, (2) is the condenser, (9) is the condensing pipe, (21
) is a liquid pipe, (22) is a communication pipe, (31) is a slit, (
41) is a partition plate, (42) is a small channel, (43) is a large channel, and (44) is a communication portion. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)凝縮管内を流れる冷媒蒸気をその壁面を介して熱
交換させて液化させる凝縮器において、上記凝縮管に連
通し、上記凝縮管内径よりも小さい内径を有する液管を
設け、冷媒液体がこの液管を流れるようにしたことを特
徴とする凝縮器。
(1) In a condenser that liquefies refrigerant vapor flowing in a condensing pipe by exchanging heat through its wall surface, a liquid pipe is provided that communicates with the condensing pipe and has an inner diameter smaller than the inner diameter of the condensing pipe, so that the refrigerant liquid is A condenser characterized in that the liquid flows through this pipe.
(2)凝縮管内を流れる冷媒蒸気をその壁面を介して熱
交換させて液化させる凝縮器において、上記凝縮管内部
を不均等に仕切って互いに連通する大流路と小流路に分
割し、冷媒液体が上記小流路を流れるようにしたことを
特徴とする凝縮器。
(2) In a condenser that liquefies refrigerant vapor flowing through the condensing pipe by exchanging heat through its wall surface, the inside of the condensing pipe is partitioned unevenly into large channels and small channels that communicate with each other, and the refrigerant vapor A condenser characterized in that liquid flows through the small flow path.
JP20071090A 1990-07-25 1990-07-25 Condenser Expired - Fee Related JP2699623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20071090A JP2699623B2 (en) 1990-07-25 1990-07-25 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20071090A JP2699623B2 (en) 1990-07-25 1990-07-25 Condenser

Publications (2)

Publication Number Publication Date
JPH0484087A true JPH0484087A (en) 1992-03-17
JP2699623B2 JP2699623B2 (en) 1998-01-19

Family

ID=16428936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20071090A Expired - Fee Related JP2699623B2 (en) 1990-07-25 1990-07-25 Condenser

Country Status (1)

Country Link
JP (1) JP2699623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024031A (en) * 2006-07-18 2008-02-07 Mazda Motor Corp Automobile under cover structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024031A (en) * 2006-07-18 2008-02-07 Mazda Motor Corp Automobile under cover structure

Also Published As

Publication number Publication date
JP2699623B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US11035621B2 (en) Electronics cooling with multi-phase heat exchange and heat spreader
US4467861A (en) Heat-transporting device
US6990816B1 (en) Hybrid capillary cooling apparatus
US20190154353A1 (en) Heat pipe having a wick with a hybrid profile
US4785875A (en) Heat pipe working liquid distribution system
US4951740A (en) Bellows heat pipe for thermal control of electronic components
US20070227703A1 (en) Evaporatively cooled thermosiphon
US4688399A (en) Heat pipe array heat exchanger
US20100300656A1 (en) heat transfer device combined a flatten loop heat pipe and a vapor chamber
US9777967B2 (en) Temperature glide thermosyphon and heat pipe
JPH05118780A (en) Heat pipe
JPS58205084A (en) Thin film evaporating type heat exchanger
US4422501A (en) External artery heat pipe
EP0057694B1 (en) Open cycle thermal boosting system
US4007777A (en) Switchable heat pipe assembly
US7843693B2 (en) Method and system for removing heat
JPH02229455A (en) Apparatus of heat pipe system
WO2023035574A1 (en) Loop heat pipe-based heat dissipation device
JPH0484087A (en) Condensor
US4884627A (en) Omni-directional heat pipe
JPH0552491A (en) Heat exchanging device
JPS61228292A (en) Heat transfer tube with heat pipe built-in fins
JPS5953472B2 (en) Liquid refrigerant vaporization method
KR100363825B1 (en) Absorption Chiller
JPS5919899Y2 (en) heat pipe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees