JPH0483996A - Repairing method for embedded conduit - Google Patents

Repairing method for embedded conduit

Info

Publication number
JPH0483996A
JPH0483996A JP2199371A JP19937190A JPH0483996A JP H0483996 A JPH0483996 A JP H0483996A JP 2199371 A JP2199371 A JP 2199371A JP 19937190 A JP19937190 A JP 19937190A JP H0483996 A JPH0483996 A JP H0483996A
Authority
JP
Japan
Prior art keywords
injection
sealant
repair
buried conduit
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2199371A
Other languages
Japanese (ja)
Other versions
JP2802351B2 (en
Inventor
Masushi Nishino
西野 益司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2199371A priority Critical patent/JP2802351B2/en
Publication of JPH0483996A publication Critical patent/JPH0483996A/en
Application granted granted Critical
Publication of JP2802351B2 publication Critical patent/JP2802351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sewage (AREA)
  • Pipe Accessories (AREA)

Abstract

PURPOSE:To perform a work to repair the covering layer of an embedded conduit and stop leakage of fluid by pulsation-injecting a high molecular material 4, being a sealant, in earth around the embedded conduit in relation to the embedded conduit embedded in a ground. CONSTITUTION:A high molecular material 4 being a sealant is injected in earth around an embedded conduit 1, needing repair, through a delivery port 7 of an injection rod 6 mounted on an injecting device 5. A hardened substance 8 having a seal effect is formed around the embedded conduit 1 together with earth to effect repair. Urethane resin and epoxy resin consisting mainly of bisphenole A type and containing diethylenetriamin serving as a curing agent are used as the sealant. An injection pressure is preferably 0.2-2kg/cm<2>G, an injection period 0.2-2Hz, and an injection speed 120-700ml/min. As a result, repair having excellent sealing ability and strength can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、土壌中に埋設されている埋設導管に対してそ
の流体漏洩部、導管被覆欠陥部等を補修する埋設導管の
補修方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a buried conduit repair method for repairing fluid leaks, conduit coating defects, etc. in a buried conduit buried in soil.

〔従来の技術〕[Conventional technology]

従来、この種の埋設導管の補修作業にあたっては、埋設
導管における補修対象部の周りの土壌をコンポ等を使用
して掘り出し、露出状態の埋設導管に対して被覆等の補
修を直接おこない、この作業の完了後、再度環り出し部
に土壌を入れて補修作業を完了するものとしていた。
Conventionally, when repairing this type of buried conduit, the soil around the part of the buried conduit to be repaired was excavated using a compound, etc., and repairs such as covering the exposed buried conduit were directly performed. After this was completed, soil was to be poured into the ringed area again to complete the repair work.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら、このような方法を採用すると、掘削工事
、埋戻し工事、掘削土砂や埋戻し土砂の処置などに多大
の経費と労力と工期を要するとともに、作業に伴う道路
占有スペースが大きくなり、交通等の障害となっていた
。このような事情から、地下トンネル等の掘削時に、ト
ンネル周辺の土壌改良を目的として採用されている薬剤
注入方式と同様な方法で、薬剤を埋設導管の周りに注入
し、埋設導管の周辺の土壌も含めてこれを埋設導管に対
する補修部として形成することが考えられる。
However, if such a method is adopted, a large amount of cost, labor, and construction time is required for excavation work, backfilling work, and treatment of excavated soil and backfilling soil, etc., and the work occupies a large amount of road space, causing problems such as traffic, etc. This had become an obstacle. Due to these circumstances, when excavating underground tunnels, etc., chemicals are injected around the buried conduit using a method similar to the chemical injection method that is used to improve the soil around the tunnel, and the soil around the buried conduit is improved. It is conceivable to form this as a repair part for the buried conduit.

しかしながら、従来おこなわれてきた薬剤注入方式では
、その目的か主に地盤の強度確保にあり、薬剤として水
ガラスか使用されるためこれを埋設導管に直接適応する
と、強度は確保されるものの、土壌が脆く、充分なシー
ル性を確保することは不可能であった。さらに、水ガラ
スのPHが低いため、これを補修部とすると埋設導管に
錆を生じる等の問題があった。
However, in the conventional chemical injection method, the main purpose is to ensure the strength of the ground, and water glass is used as the chemical, so if this is applied directly to the buried conduit, the strength is ensured, but the soil was brittle and it was impossible to ensure sufficient sealing performance. Furthermore, since the pH of water glass is low, if it is used as a repair part, there are problems such as rusting of the buried conduit.

そこで、本発明の目的は地中に埋設されている埋設導管
の被覆層の修繕や流体の漏洩の停止などの作業を行うこ
とが可能な注入方式の埋設導管の補修方法を得ることで
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an injection method for repairing a buried conduit which is capable of repairing the coating layer of the buried conduit buried underground and stopping fluid leakage.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するため、本発明による埋設導管の補修
方法の特徴手段は、 地中に埋設された埋設導管に対して、シール剤としての
高分子材料を埋設導管の周囲の土壌中に、脈動注入する
ことにあり、その作用・効果は次の通りである。
In order to achieve this objective, the characteristic means of the buried conduit repair method according to the present invention is to apply a polymeric material as a sealant to the buried conduit buried underground in the soil around the buried conduit in a pulsating manner. The action and effects are as follows.

〔作 用〕[For production]

つまり本願の方法においては、埋設導管の周囲の土壌中
にシール剤としての高分子材料か脈動注入される。この
注入にあたっては、脈動注入方式が採用されるため、粘
弾性流体のシール剤であっても、チクソトロピックな挙
動により、土壌粒子間に浸透する際に粘度が低下して、
抵抗か小さくなり、比較的高圧の状態で、割裂浸透を起
こさずに対象土壌内に充分にシール剤が浸透する。そし
て、埋設導管の周囲にはシール剤と土壌が混在した状態
の固結物が形成され、これが埋設導管をシール保護する
のである。この場合、本願においては脈動注入かおこな
われるため、固結物の充填率も背圧注入よりも良化し、
強固で保形性がよく、シール性の良い固結物を得られる
In other words, in the method of the present application, a polymeric material is injected into the soil surrounding the buried conduit in pulses as a sealant. For this injection, a pulsating injection method is adopted, so even if the sealant is a viscoelastic fluid, its viscosity decreases as it penetrates between soil particles due to its thixotropic behavior.
The resistance is small, and the sealant can sufficiently penetrate into the target soil without cracking and seepage under relatively high pressure conditions. Then, a solidified substance containing a mixture of sealant and soil is formed around the buried conduit, and this seals and protects the buried conduit. In this case, since pulsating injection is performed in this application, the filling rate of solids is also better than back pressure injection,
A solid product that is strong, has good shape retention, and has good sealing properties can be obtained.

〔発明の効果〕〔Effect of the invention〕

したがって、前述の固結物を埋設導管に対する補修部と
して形成することができ、シール性、強度等の良好な補
修をおこなうことかできる。
Therefore, the above-mentioned solidified material can be formed as a repair part for the buried conduit, and repair with good sealing performance, strength, etc. can be performed.

また、シール剤として高分子材料を採用するために埋設
導管に錆が生じることを防止できる。
Furthermore, since a polymeric material is used as the sealant, it is possible to prevent rust from forming in the buried conduit.

さらに注入操作にあたっては、埋設導管の周囲の土壌を
おおはばに掘り返すことなく作業を進めることができる
ため、掘削工事、埋戻し工事、掘削土砂や埋戻し土砂の
処置に多大の経費と労力と工期を要する必要がなくなる
。また作業に伴う道路占有スペースを小さくすることが
可能となる。
Furthermore, the injection operation can be carried out without having to extensively dig up the soil surrounding the buried conduit, which saves a lot of money and effort in excavation work, backfilling work, and treatment of excavated earth and backfill earth. There is no need to take a long construction period. Furthermore, it becomes possible to reduce the road space occupied by the work.

一方、従来おこなわれてきている薬液注入方式と比較し
て、薬液(水ガラス)を比較的高圧(地下トンネルの場
合は、数10メートルの地中で注入圧力3kg/cm’
G以上)の背圧方式(一定圧力下)で注入する必要がな
いため、地盤の隆起、割裂浸透の発生、薬液の地上噴出
等の問題を起こすことがない。
On the other hand, compared to the conventional chemical injection method, the chemical liquid (water glass) is injected under relatively high pressure (in the case of underground tunnels, the injection pressure is 3 kg/cm' at several tens of meters underground).
Since it is not necessary to inject using a back pressure method (under a constant pressure) of G or more, problems such as ground heaving, cracking seepage, and spouting of chemical liquid on the ground do not occur.

〔実施例〕〔Example〕

本願の実施例を図面に基づいて説明する。第1図には本
願の補修方法を埋設導管(1)に対して適応している状
態の図か示されている。このような埋設導管(1)は一
般には0.6〜1.5m程度の比較的浅い地中(2)に
埋設されているものであり、管径(d)が100〜30
0mm程度であるとともに、この埋設導管内にはガス圧
200mmH2O程度でガス(g)か流されている。ま
た同図にも示されているようにガス漏れを起こす箇所は
往々にして埋設導管(1)の継手部(3)である。さて
、本願においては、補修を必要とする埋設導管(1)の
周囲の土壌にシール剤としての高分子材料(4)が、注
入装置(5)に備えられた注入ロッド(6)先端の吐出
口(7)から注入され、埋設導管(1)の周りに土壌と
ともにシール効果を有する固結物(8)が形成され、補
修を完了することとなるのである。 先ず本願の埋設導
管(1)の補修方法を適応する補修手順を箇条書きする
Embodiments of the present application will be described based on the drawings. FIG. 1 shows a state in which the repair method of the present invention is applied to a buried conduit (1). Such buried conduits (1) are generally buried underground (2) at a relatively shallow depth of about 0.6 to 1.5 m, and have a pipe diameter (d) of 100 to 30 m.
Gas (g) is flowing into this buried conduit at a gas pressure of about 200 mmH2O. Further, as shown in the figure, the location where gas leaks often occurs is the joint portion (3) of the buried conduit (1). Now, in the present application, a polymeric material (4) as a sealant is applied to the soil around a buried conduit (1) that requires repair. It is injected from the outlet (7) and forms a compact (8) with a sealing effect around the buried conduit (1) together with the soil, completing the repair. First, repair procedures to which the buried conduit (1) repair method of the present application is applied will be itemized.

第一段階;埋設導管(1)の補修対象部(la)をガス
センサー等で地上側から確認する。
First step: Confirm the area to be repaired (la) of the buried conduit (1) from the ground side using a gas sensor, etc.

第二段階;補修を要する埋設導管(1)近傍までウォー
タージェットにより注入穴(9)を削孔する。
Second stage: An injection hole (9) is drilled using a water jet to the vicinity of the buried conduit (1) that requires repair.

第三段階;前記注入穴(9)に注入装置(5)の注入ロ
ッド(6)を挿入する。
Third step: inserting the injection rod (6) of the injection device (5) into the injection hole (9).

第四段階;前述の注入ロッド(6)を挿入した状態で注
入ロッド先端部にある吐出口(7)より吐出するシール
剤が注入穴上端部より噴出しないように、注入穴(9)
を封止状態とする。
Fourth stage: With the above-mentioned injection rod (6) inserted, the injection hole (9) is adjusted so that the sealant discharged from the discharge port (7) at the tip of the injection rod does not spout from the upper end of the injection hole.
is in a sealed state.

第五段階;シール剤を埋設管(1)の周囲の土壌中に注
入装置(5)により脈動注入する。
Fifth step: The sealant is injected into the soil around the buried pipe (1) in pulses by the injection device (5).

第六段階;注入ロッド(6)を注入穴(9)から抜き、
この注入穴(9)を密閉する。
Sixth step; pull out the injection rod (6) from the injection hole (9),
This injection hole (9) is sealed.

このようにして、補修作業を完了するのである。以下に
、第1.2図に基づいて本願の補修方法に使用される注
入装置(5)について説明する。ここで、第2図には、
注入装置(5)に採用されている脈動ポンプ(10)の
構造が示されている。
In this way, the repair work is completed. The injection device (5) used in the repair method of the present application will be explained below based on FIG. 1.2. Here, in Figure 2,
The structure of the pulsating pump (10) employed in the infusion device (5) is shown.

この注入装置(5)は、液状の高分子材料(4)である
シール剤を収納する貯液タンク(11)と、これに連結
された脈動ポンプ(10)、およびこの脈動ポンプ(1
0)下流側に接続された注入ロッド(径15mm)(6
)を有して構成されており、この注入ロッド(6)の先
端部にはシール剤が吐出される吐出口(7)が設けられ
ている。第2図に示すように、前述の脈動ポンプ(10
)はいわゆるダイヤフラムポンプであり、ポンプ上、下
流側に設けられる一対の逆止弁(12)(12)の間に
設けられたポンプ室(13)の一端にダイヤフラム(1
4)を備えて構成されており、このダイヤフラム(14
)を同図左右方向に往復運動させることにより、脈動ポ
ンプ下流側(図面上部方向)にシール剤を吐出できるよ
うに構成されているのである。この脈動ポンプ(lO)
においては、その吐出圧力(土壌に対して注入圧力とな
る)、吐出周波数(同様に、注入周波数)及び吐出流量
(同様に、注入速度)か調節可能なように構成されてい
る(ここで、ダイヤフラム(14)の1ストローク当り
の吐出量で吐出流量を表すことも可能である。)。上記
のような構成を採用することによりこの注入装置(5)
においては、貯液タンク(11)から供給されるシール
剤を脈動ポンプ(10)により注入ロッド先端にある吐
出口(7)から所定注入圧力、注入速度、脈動周期で埋
設導管(1)の周囲の地中に注入することができるので
ある。
This injection device (5) includes a liquid storage tank (11) that stores a sealant that is a liquid polymer material (4), a pulsating pump (10) connected to this, and this pulsating pump (10).
0) Injection rod (diameter 15 mm) connected to the downstream side (6
), and a discharge port (7) through which the sealant is discharged is provided at the tip of the injection rod (6). As shown in FIG. 2, the pulsating pump (10
) is a so-called diaphragm pump, and a diaphragm (1
4), and this diaphragm (14
) is configured to be able to discharge the sealant toward the downstream side of the pulsating pump (towards the top of the drawing) by reciprocating the pump in the left-right direction in the drawing. This pulsating pump (lO)
is configured so that its discharge pressure (which becomes the injection pressure to the soil), discharge frequency (also called the injection frequency), and discharge flow rate (also called the injection rate) can be adjusted (here, It is also possible to express the discharge flow rate in terms of the discharge amount per stroke of the diaphragm (14).) By adopting the above configuration, this injection device (5)
, the sealing agent supplied from the liquid storage tank (11) is pumped around the buried conduit (1) from the discharge port (7) at the tip of the injection rod using a pulsating pump (10) at a predetermined injection pressure, injection rate, and pulsation period. It can be injected underground.

〔実験結果〕〔Experimental result〕

以下に上述の注入装置(5)を使用して本願の埋設導管
の補修方法を埋設導管(1)に対し適応した結果を説明
する。実験においては、注入条件を様々に変化させて固
結物(8)の良否を判定した。
The results of applying the buried conduit repair method of the present application to the buried conduit (1) using the above-mentioned injection device (5) will be explained below. In the experiment, the quality of the solidified material (8) was determined by varying the injection conditions.

この実験においては、従来の方法である背圧注入に対す
る脈動注入の有意性を確認するとともに、脈動注入にお
ける注入圧力(kg/cm”G)、注入速度(ml/m
1n)、注入周期(Hz)の適応可能限界を求めた。こ
こで、注入結果の良否の判断は、形成された固結物(8
)の形状、大きさ、シール性、充填率α(Q/Vn;Q
:注入量(cm3) 、V :固結物体(cmす、間隙
率(%))等で判定した。また、背圧注入では第3図に
示すような静圧タンク式の構成で注入をおこなった。
In this experiment, we confirmed the significance of pulsatile injection over the conventional method of backpressure injection, and also investigated the injection pressure (kg/cm"G) and injection rate (ml/m"G) in pulsatile injection.
1n), the adaptable limit of the injection period (Hz) was determined. Here, the quality of the injection result is determined by the formed solids (8
) shape, size, sealing performance, filling rate α(Q/Vn;Q
: Injection amount (cm3), V: Consolidated object (cm, porosity (%)), etc. were determined. In addition, back pressure injection was performed using a static pressure tank type configuration as shown in FIG.

さて、第4図には脈動注入の結果を、第5図には背圧注
入の結果を示した。実験では、ウレタン樹脂(タケネー
トXN89(タケダ薬品社製)、サンストッパー(タケ
ダ薬品社製))及びビスフェノールA型を主剤とし、ジ
エチレントリアミンを硬化剤とするエポキシ樹脂(ED
503(旭電化社製)/LXIN(油化シェルエポキシ
社製)/LP3(東しチオコール社製))を使用した。
Now, FIG. 4 shows the results of pulsating injection, and FIG. 5 shows the results of back pressure injection. In the experiment, urethane resins (Takenate
503 (manufactured by Asahi Denka Co., Ltd.)/LXIN (manufactured by Yuka Shell Epoxy Co., Ltd.)/LP3 (manufactured by Toshi Thiokol Co., Ltd.) were used.

実験結果の要約を以下に箇条書きする。A summary of the experimental results is listed below.

l)第5図に示す背圧注入の結果より、背圧注人におけ
る注入圧力の使用限界は0.1〜0.2kg/cm2G
であり、これ以上では割裂浸透となり地盤に亀裂が発生
する。時には、シール剤が地表面に噴出することもある
l) From the results of back pressure injection shown in Figure 5, the usable limit of injection pressure for back pressure injectors is 0.1 to 0.2 kg/cm2G.
If it exceeds this level, cracking will occur and cracks will occur in the ground. Occasionally, sealant may be sprayed onto the ground.

この注入圧力範囲(0,1〜0.2kg/cm”G)で
使用すると固結物が所定の大きさになる前に、シール剤
の固化が始まり充分な大きさの固結物か得られない。
When used within this injection pressure range (0.1 to 0.2 kg/cm"G), the sealant will begin to solidify before the solids reach the specified size, making it possible to obtain solids of sufficient size. do not have.

2)第4図に示す脈動注入の結果より、脈動注入を採用
すると注入圧力としては、0,2〜2kg/cm”Gが
許容される。このような注入圧力で注入しても割裂注入
とはならず、全て強固な固結物が得られる。この限界点
以下では、背圧注入と同じになり、一方限界値以上では
割裂浸透がおこる。
2) From the results of pulsating injection shown in Figure 4, if pulsating injection is adopted, an injection pressure of 0.2 to 2 kg/cm''G is permissible.Even if injection is performed at such an injection pressure, split injection will occur. Below this limit, it is the same as back pressure injection, while above this limit, splitting penetration occurs.

また脈動注入と背圧注入を比較すると、固結物の充填率
はそれぞれ平均93%、66%であり脈動注入のほうか
良好である。
Furthermore, when pulsating injection and back pressure injection are compared, the filling rate of solidified substances is 93% and 66% on average, respectively, and pulsating injection is better.

3)注入周期は、0.2〜2Hzが適当である。3) An appropriate injection cycle is 0.2 to 2 Hz.

これ以外の範囲においては有効な脈動が起こらず、背圧
注入と結果か類似してくる。
In other ranges, no effective pulsation occurs and the results are similar to back pressure injection.

4)注入速度は、120〜700m1/minか適当で
ある。この範囲を越えると下限以下では、充分な注入が
得られず固化が始まり、上限以上では割裂か発生する。
4) The injection rate is 120 to 700 m1/min or appropriate. Beyond this range, below the lower limit, sufficient injection cannot be obtained and solidification begins, and above the upper limit, splitting occurs.

尚、特許請求の範囲の項に図面との対照を便利にするた
めに符号を記すが、該記入により本発明は添付図面の構
造に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings by the reference numerals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明に係る埋設導管の補修方法の
実施例を示し、第1図は補修作業中の注入装置の斜視図
、第2図は本願の方法に使用される脈動ポンプを示す概
略断面図、第3図は背圧注入の実験装置の概略図、第4
図は脈動注入の実験結果を示す図表、第5図は背圧注入
の実験結果を示す図表である。 (1)・・・・・・埋設導管、(2)・・・・・・地中
、(4)・・・・・・高分子材料、(5)・・・・・・
注入装置。
1 to 5 show an embodiment of the buried conduit repair method according to the present invention, FIG. 1 is a perspective view of an injection device during repair work, and FIG. 2 is a pulsating pump used in the method of the present invention. Figure 3 is a schematic cross-sectional view of the experimental apparatus for back pressure injection, Figure 4 is a schematic cross-sectional view showing the
The figure is a chart showing the experimental results of pulsatile injection, and FIG. 5 is a chart showing the experimental results of back pressure injection. (1)... Buried conduit, (2)... Underground, (4)... Polymer material, (5)...
Injection device.

Claims (1)

【特許請求の範囲】 1、地中(2)に埋設された埋設導管(1)に対して、
シール剤としての高分子材料(4)を前記埋設導管の周
囲の土壌中に脈動注入する埋設導管の補修方法。 2、前記脈動注入における注入圧力が0.2〜2kg/
cm^2Gの範囲内であるとともに、前記脈動注入の脈
動周期が0.2〜2Hzであり、その注入速度が120
〜700ml/minである請求項1記載の埋設導管の
補修方法。 3、前記シール剤としての高分子材料(4)が、ウレタ
ン樹脂である請求項1記載の埋設導管の補修方法。 4、前記シール剤としての高分子材料(4)が、ビスフ
ェノールA型の主剤とジエチレントリアミンの硬化剤を
重合させるエポキシ樹脂である請求項1記載の埋設導管
の補修方法。
[Claims] 1. For a buried conduit (1) buried underground (2),
A method for repairing a buried conduit, which comprises injecting a polymeric material (4) as a sealant into the soil around the buried conduit in a pulsating manner. 2. The injection pressure in the pulsating injection is 0.2 to 2 kg/
cm^2G, the pulsation period of the pulsatile injection is 0.2 to 2Hz, and the injection rate is 120
The method for repairing a buried conduit according to claim 1, wherein the rate is 700 ml/min. 3. The method for repairing a buried conduit according to claim 1, wherein the polymeric material (4) as the sealant is a urethane resin. 4. The method for repairing a buried conduit according to claim 1, wherein the polymeric material (4) as the sealant is an epoxy resin in which a bisphenol A type main ingredient and a diethylenetriamine hardening agent are polymerized.
JP2199371A 1990-07-26 1990-07-26 How to repair buried conduit Expired - Fee Related JP2802351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199371A JP2802351B2 (en) 1990-07-26 1990-07-26 How to repair buried conduit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199371A JP2802351B2 (en) 1990-07-26 1990-07-26 How to repair buried conduit

Publications (2)

Publication Number Publication Date
JPH0483996A true JPH0483996A (en) 1992-03-17
JP2802351B2 JP2802351B2 (en) 1998-09-24

Family

ID=16406646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199371A Expired - Fee Related JP2802351B2 (en) 1990-07-26 1990-07-26 How to repair buried conduit

Country Status (1)

Country Link
JP (1) JP2802351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694796A (en) * 2016-03-09 2016-06-22 宁波职业技术学院 Polyurethane-modified daub for leaking stoppage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057061A (en) * 2005-08-26 2007-03-08 Tokyo Gas Co Ltd Jet gas shutoff method and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694796A (en) * 2016-03-09 2016-06-22 宁波职业技术学院 Polyurethane-modified daub for leaking stoppage

Also Published As

Publication number Publication date
JP2802351B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
CN109024641A (en) Triple tube double-liquid rotary spray is used for the construction method of deep basal pit leak stopping
JPS59195920A (en) Method and apparatus for grout injection work
JP2019070318A (en) Liquefaction countermeasure method for ground
CN110804931A (en) Treatment method for lifting road surface
JPH0483996A (en) Repairing method for embedded conduit
JP2948881B2 (en) Injection device
CN112879041A (en) Construction method for treating diseases of main structure of subway
JP2838390B2 (en) Strainer tube and its installation method, and chemical solution injection method using strainer tube
CN113356248A (en) Steel cofferdam joint plugging processing method in sea-crossing bridge construction process
JP2736994B2 (en) Chemical solution injection method and equipment
JP2001073369A (en) Press-in erection method for piles
JPS62276129A (en) Water-stop work for underground concrete structure
JPH07300851A (en) Countermeasure of liquefaction of buried pipe in the ground
JPS6153912A (en) Method of improving ground by building columnar curing wall
JPH0813984A (en) Mortar impregnation check valve in tunnel segment
JP3313351B2 (en) Chemical injection method
JP3856795B2 (en) Surface ground improvement method
JP3640198B2 (en) Underground impermeable wall and its construction method
CN216405402U (en) Plugging structure applied to leakage stoppage of anchor cable
JP2777249B2 (en) Water stopping method for concrete underground structures
JP3356083B2 (en) How to lay a conduit that penetrates the embankment without excavation
JP3215731B2 (en) Non-drilling cutoff method for unused supply pipes
JPH0261600B2 (en)
JP2662577B2 (en) Ground stabilization method and injection pipe for tunnel excavation
JP2817612B2 (en) Water blocking method for cracked rock and groundwater control method in cracked rock

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees