JPH048393B2 - - Google Patents

Info

Publication number
JPH048393B2
JPH048393B2 JP61006157A JP615786A JPH048393B2 JP H048393 B2 JPH048393 B2 JP H048393B2 JP 61006157 A JP61006157 A JP 61006157A JP 615786 A JP615786 A JP 615786A JP H048393 B2 JPH048393 B2 JP H048393B2
Authority
JP
Japan
Prior art keywords
kaolin
sulfuric acid
sulfite
clay
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61006157A
Other languages
Japanese (ja)
Other versions
JPS61236647A (en
Inventor
Yun Kyunnsuku
Rii Donnfui
O Jonnki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKOKU KAGAKU GIJUTSU KENKYUSHO
Original Assignee
KANKOKU KAGAKU GIJUTSU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKOKU KAGAKU GIJUTSU KENKYUSHO filed Critical KANKOKU KAGAKU GIJUTSU KENKYUSHO
Publication of JPS61236647A publication Critical patent/JPS61236647A/en
Publication of JPH048393B2 publication Critical patent/JPH048393B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カオリン(〓〓〓:高嶺土)及び粘
土中の鉄分を亜硫酸溶液で電解浸出して除去す
る、カオリン及び粘土の電解精製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrolytic refining method for kaolin and clay, in which iron content in kaolin and clay is removed by electrolytic leaching with a sulfite solution. .

即ち、本発明方法では、陰極室には亜硫酸及び
硫酸溶液とカオリン又は粘土を入れ、陽極室には
亜硫酸及び硫酸溶液を入れて電解する。この際、
陰極室では亜硫酸の電気化学的還元に依つてジチ
オニツト(dithionite)が生成され、生成された
ジチオニツトがカオリン又は粘土の中の鉄分を浸
出させる。一方、陽極室では亜硫酸の電気化学的
酸化によつて硫酸が生成されて電圧が降下する。
That is, in the method of the present invention, sulfurous acid and sulfuric acid solution and kaolin or clay are placed in the cathode chamber, and sulfurous acid and sulfuric acid solution are placed in the anode chamber for electrolysis. On this occasion,
In the cathode chamber, dithionite is produced by electrochemical reduction of sulfite, and the produced dithionite leaches the iron in the kaolin or clay. On the other hand, in the anode chamber, sulfuric acid is produced by electrochemical oxidation of sulfurous acid, and the voltage drops.

〔従来技術及び発明が解決しようとする問題点〕[Prior art and problems to be solved by the invention]

今まで、主に使用されて来たカオリン及び粘土
の精製方法は、物理的分離方法と化学的処理方法
との2種類に分類することが出来る。物理的分離
方法には、浮選、選択凝集、高勾配磁力選別法が
ある。浮選においては、鉱液のPHをNaOH,
Na2CO3,NH4OH等によつてアルカリ性(PH8
〜10)に調節した後、Na2SiO3の分散剤を添加
し、高速で撹拌して鉱粒を分散させた後、オレイ
ン酸のような炭化水素化合物又は石油スルホネー
ト等を捕収剤として使用して不純物を浮遊物によ
つて回収除去する(E.K.Cundy,米国特許第
3450257号)(1969))。選択凝集においては、鉱液
のPHをアルカリ性にしてから分散液で鉱粒を分散
させた後、Ca+2と同じ量のイオンを添加して石
英、酸化鉄及びチタン鉱等のような不純物鉱粒に
吸着させ陰イオン性ポリアクリルアミドのような
高分子凝集剤を添加し、これらの不純物鉱粒を選
択的に凝集させて、水洗して除去する(E.W.
Sawger,米国特許第3737333号(1973))。高勾配
磁力選別法では、数万ガウスの磁場下で、弱磁性
鉱粒を分離する方法として内部にスチールウール
のような強磁性媒体をはめ、弱磁性鉱粒の選別効
果を増大させている(A.L.Nott,米国特許第
3974067号(1976);R.R.Order,米国特許第
3985646号(1976))。
The methods for refining kaolin and clay that have been mainly used up to now can be classified into two types: physical separation methods and chemical treatment methods. Physical separation methods include flotation, selective flocculation, and high gradient magnetic separation. In flotation, the pH of the mineral solution is adjusted by NaOH,
Alkalinity ( PH8
~10), add a dispersant of Na 2 SiO 3 and stir at high speed to disperse the ore grains, then use hydrocarbon compounds such as oleic acid or petroleum sulfonate etc. as a collector. impurities are collected and removed by floating matter (EKCundy, US Patent No.
3450257) (1969)). In selective flocculation, the pH of the mineral solution is made alkaline, the ore grains are dispersed in a dispersion liquid, and then ions of the same amount as Ca +2 are added to remove impurity minerals such as quartz, iron oxide, and titanite. A polymer flocculant such as anionic polyacrylamide is adsorbed onto the grains, and these impurity mineral grains are selectively flocculated and removed by washing with water (EW).
Sawger, U.S. Pat. No. 3,737,333 (1973)). In the high-gradient magnetic separation method, a ferromagnetic medium such as steel wool is placed inside to separate weakly magnetic ore grains under a magnetic field of tens of thousands of Gauss, increasing the effect of separating weakly magnetic ore grains ( ALNott, U.S. Patent No.
No. 3974067 (1976); RROrder, U.S. Patent No.
No. 3985646 (1976)).

以上のように、物理的方法は、不純物が介入さ
れた鉱物等の単体分離度が大きいときに限つて効
果がある。
As described above, physical methods are effective only when the degree of separation of minerals and other substances containing impurities is high.

化学的処理方法は、普通、カオリン鉱粒の表面
に附着している有色鉱物、又は極微粒に混入して
いる有色鉱物等を浸出除去して白色度を向上する
ことを目的としている。この方法は、脱色をかね
て脱鉄にも利用されるが、この際にはカオリンと
粘土を変化させてはならないし、選別的に不純物
のみを浸出除去することが出来なければならな
い。そのため、強酸による浸出は、カオリンを分
解させる点で困難であるので、ジチオニツトのよ
うな強力な還元性浸出剤を使用するのが適切であ
る(J.Iannicelli及びP.Aboytes,米国特許第
3193344号(1965);C.R.Price及びW.F.
Abercrombie,米国特許第3853984号(1974))。
The purpose of the chemical treatment method is usually to improve whiteness by leaching out colored minerals attached to the surface of kaolinite grains or mixed in extremely fine grains. This method is also used to decolorize and remove iron, but in this case it must not change the kaolin and clay, and it must be possible to selectively leaching out only impurities. Therefore, leaching with strong acids is difficult in terms of decomposing kaolin, so it is appropriate to use a strong reducing leaching agent such as dithionite (J. Iannicelli and P. Aboytes, U.S. Pat.
No. 3193344 (1965); CRPrice and WF
Abercrombie, U.S. Pat. No. 3,853,984 (1974)).

他の浸出剤としては、ハイポクロライト
(Hypochlorite)(J.H.Chauman,米国特許第
3655417号(1972))、ヒドラジン(P.J.Malden,
米国特許第3666513号(1973)、アルキルスルホキ
シド(J.C.Lim,米国特許第3899343号(1975))
等が使用されることもあるが、今のところ実用化
されてはいない。また、脱鉄用の浸出剤として、
塩酸、硫酸、弗酸(〓〓)等を使用することもで
きるが(K.AzumaおよびH.Kametani,AIME
Trans.,230653(1964);R.E.Grim,Cldy,
Mineralogy,McGraw−Hill Book Co.,P435
〜444(1968))、この場合にはカオリン又は粘土が
分解されてアルミニウム成分が溶解されるので、
カオリンの物性が変化するため好ましくない。
Other leaching agents include Hypochlorite (JHCauman, U.S. Pat.
No. 3655417 (1972)), hydrazine (PJ Malden,
U.S. Patent No. 3,666,513 (1973), Alkyl Sulfoxide (JCLim, U.S. Pat. No. 3,899,343 (1975))
etc. are sometimes used, but so far they have not been put into practical use. Also, as a leaching agent for iron removal,
Hydrochloric acid, sulfuric acid, hydrofluoric acid (〓〓), etc. can also be used (K.Azuma and H.Kametani, AIME
Trans., 230653 (1964); REGrim, Clady,
Mineralogy, McGraw-Hill Book Co., P435
~444 (1968)), in this case the kaolin or clay is decomposed and the aluminum component is dissolved.
This is not preferred because the physical properties of kaolin change.

ジチオニツトを使用する脱鉄方法はカオリンの
中の鉄分を還元浸出するもので、現在主に使用さ
れているが、ジチオニツト試薬は比較的高価であ
り、脱鉄効果を増大させるためには溶液のPH及び
鉄の還元電位を維持しなければならないので、ジ
チオニツトの消費量が多く、操業上の困難が惹起
される。
The iron removal method using dithionite reduces and leaches the iron in kaolin, and is currently mainly used. However, the dithionite reagent is relatively expensive, and in order to increase the iron removal effect, it is necessary to adjust the pH of the solution. Since the reduction potential of iron and iron must be maintained, a large amount of dithionite is consumed, causing operational difficulties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、カオリン及び粘土の精製において、
これまでに主に使用されてきたジチオニツト浸出
剤を、陰極室で亜硫酸溶液から電気化学的に直接
生成してカオリン又は粘土の中の鉄分を浸出する
とともに、陽極室では亜硫酸溶液を電気化学的に
酸化させて電圧降下を図るとともにカオリン浸出
に使用される硫酸を製造する方法である。
The present invention provides for the purification of kaolin and clay,
The dithionite leaching agent, which has been mainly used so far, is electrochemically generated directly from a sulfite solution in the cathode chamber to leach the iron in kaolin or clay, and in the anode chamber, the sulfite solution is electrochemically generated. This is a method of oxidizing sulfuric acid to lower the voltage and producing sulfuric acid used for leaching kaolin.

酸性溶液及びアルカリ性溶液において、亜硫酸
溶液の電気化学的還元によるジチオニツト生成反
応と標準電位を見ると次の通りである(C.
Oloman,J.Electrochem.Soe.,117(12),1604,
(1970))。
The dithionite production reaction and standard potential by electrochemical reduction of sulfite solution in acidic and alkaline solutions are as follows (C.
Oloman, J.Electrochem.Soe., 117(12), 1604,
(1970)).

酸性溶液 2H2SO3+H++2e-→HS2O4 -+2H2O (1) E0=0.08V アルカリ性溶液 2SO3 -2+2H2O+2e-→S2O4 -2+4OH- (2) E0=1.12V 亜硫酸溶液の電気化学的還元によつて生成され
たジチオニツトはカオリン又は粘土の中に存在し
ている鉄分を還元浸出させるが、その反応式は次
の通りである(大韓鉱山学会誌、15(4),315
(1978))。
Acidic solution 2H 2 SO 3 +H + +2e - →HS 2 O 4 - +2H 2 O (1) E 0 =0.08V Alkaline solution 2SO 3 -2 +2H 2 O+2e - →S 2 O 4 -2 +4OH - (2) E 0 = 1.12V Dithionite produced by electrochemical reduction of sulfite solution reduces and leaches iron present in kaolin or clay, and the reaction formula is as follows (Journal of the Korean Society of Mines). , 15(4), 315
(1978)).

Fe2O3+S2O4 -2+4H+2Fe+2 +2HSO- 3+H2O (3) 2FeO(OH)+S2O4 -2+4H+2Fe+2 +2HSO- 3+2H2O (4) 陽極室では、小極性媒体である亜硫酸溶液を電
気化学的に酸化させて陽極反応のエネルギー消耗
を減少させ、カオリン又は粘度の浸出に使用され
る硫酸を製造するが、酸性溶液における亜硫酸の
酸化反応と標準電位を見ると次の通りである
(A.J.ApplebyおよびB.Pichon,J.Electronal.
Chem.,95,59(1979))。
Fe 2 O 3 +S 2 O 4 -2 +4H + 2Fe +2 +2HSO - 3 +H 2 O (3) 2FeO(OH) +S 2 O 4 -2 +4H + 2Fe +2 +2HSO - 3 +2H 2 O (4) Anode chamber In order to electrochemically oxidize a sulfite solution, which is a small polar medium, to reduce the energy consumption of the anodic reaction and to produce sulfuric acid used for leaching kaolin or viscosity, the oxidation reaction of sulfite in an acidic solution and the standard Looking at the potential, it is as follows (AJ Appleby and B. Pichon, J.Electronal.
Chem., 95, 59 (1979)).

SO2+2H2O→HSO- 4+3H++2e (5) E0=0.12V 本発明を添付図面によつて説明すると、第1図
は本発明方法で使用する電解槽10の断面図であ
る。電解槽10は、隔膜1によつて陽極室2と陰
極室3とに分離されており、陰極室3には亜硫酸
溶液とカオリン(又は粘土)を、陽極室2には硫
酸及び亜硫酸溶液をおのおの注入する。陽極4に
は、亜硫酸溶液酸化に効果的な多孔性黒鉛電極を
使用し、陰極5には、白金電極、アルミニウム電
極、ステンレススチール電極を使用して行うと、
陰極室3では亜硫酸ガスの電気化学的還元によつ
てジチオニツトが生成され、この生成されたジチ
オニツトによつてカオリン又は粘土の中の鉄分が
除去精製される。陽極室4では亜硫酸ガスの電気
化学的酸化によつて硫酸が生成されて電解電圧が
降下する。この際、陽極室4において、生成され
た硫酸は電解浸出液として再び使用される。陰極
室3には撹拌棒6が設けてある。
SO 2 +2H 2 O→HSO - 4 +3H + +2e (5) E 0 =0.12V To explain the present invention with reference to the accompanying drawings, FIG. 1 is a sectional view of an electrolytic cell 10 used in the method of the present invention. The electrolytic cell 10 is separated by a diaphragm 1 into an anode chamber 2 and a cathode chamber 3. The cathode chamber 3 contains a sulfite solution and kaolin (or clay), and the anode chamber 2 contains sulfuric acid and a sulfite solution. inject. For the anode 4, a porous graphite electrode that is effective in oxidizing sulfite solution is used, and for the cathode 5, a platinum electrode, an aluminum electrode, or a stainless steel electrode is used.
In the cathode chamber 3, dithionite is produced by electrochemical reduction of sulfur dioxide gas, and the iron content in kaolin or clay is removed and purified by the produced dithionite. In the anode chamber 4, sulfuric acid is produced by electrochemical oxidation of sulfur dioxide gas, and the electrolytic voltage drops. At this time, the generated sulfuric acid is used again as an electrolytic leachate in the anode chamber 4. A stirring rod 6 is provided in the cathode chamber 3.

第2図は本発明のカオリン浸出工程図である。
陽極室においては、亜硫酸溶液が酸化されて硫酸
が生成されるが、この生成された硫酸の一部分は
陰極室のカオリン浸出液に利用され、残りは回収
して亜硫酸ガスを溶解させた後、陽極室溶液とし
て再び使用する。分給槽では、カオリン中に不純
物として存在する石英、長石等の脈石を除去す
る。分給槽を経たカオリンは磨鉱を行い、亜硫酸
溶液と混合槽で混合された後、電解槽の陰極室へ
流入される。電解槽ではカオリン中の鉄分を電解
浸出してカオリンを精製する。精製されたカオリ
ン鉱液は過槽で過され、カオリンと過液と
に分離される。過されたカオリンは水洗工程及
び乾燥工程を経て精製カオリンとして回収され
る。過液は混合槽に戻され、陽極室において製
造された高濃度硫酸と混合した後、亜硫酸溶解槽
に流入される。亜硫酸溶解槽では亜硫酸気体を溶
解する。この亜硫酸溶液は、カオリン混合槽にお
いて磨鉱を経たカオリンと混合された後、電解槽
の陰極室に流入される。
FIG. 2 is a diagram of the kaolin leaching process of the present invention.
In the anode chamber, the sulfurous acid solution is oxidized to produce sulfuric acid. A portion of the generated sulfuric acid is used for the kaolin leachate in the cathode chamber, and the rest is recovered and dissolved in the sulfur dioxide gas before being sent to the anode chamber. Use again as a solution. In the distribution tank, gangue such as quartz and feldspar present as impurities in kaolin is removed. The kaolin that has passed through the distribution tank is polished, mixed with a sulfite solution in a mixing tank, and then flows into the cathode chamber of the electrolytic tank. In the electrolytic tank, the iron in kaolin is electrolytically leached to refine kaolin. The purified kaolin mineral liquid is passed through a filter tank and separated into kaolin and peroxide. The filtered kaolin is recovered as purified kaolin through a water washing process and a drying process. The filtrate is returned to the mixing tank, mixed with highly concentrated sulfuric acid produced in the anode chamber, and then flows into the sulfite dissolution tank. Sulfurous acid gas is dissolved in the sulfurous acid dissolving tank. This sulfite solution is mixed with kaolin that has passed through grinding in a kaolin mixing tank, and then flows into the cathode chamber of the electrolytic cell.

本発明の電解方法によつてカオリンを精製する
と、試料によつて若干の差異はあるが、一般にカ
オリン中の鉄分含有量の50〜60%程度を除去する
ことが可能である。これはジチオニツトを使用し
た場合の浸出率40〜55%よりも約10%高いもので
ある。本発明はジチオニツトに浸出する場合に伴
うPH調節及び電位調節が不必要になつて、不必要
な過量のジチオニツトを消耗を防ぐことが出来、
操業も簡単に行うことが出来る。特に、本電解浸
出工程が、他の浸出工程に比べて長点として挙げ
ることのできる点は亜硫酸気体を利用する点であ
り、また、ジチオニツトを生成すると同時に電解
槽内で浸出が行われるので、非常に経済的で、効
果的な浸出工程である。ジチオニツトで浸出する
際には、溶液の酸度を高めるとジチオニツトが破
壊されるので、PH2〜3範囲で作業をするのが有
利であつたが、本発明の電解浸出工程では、
0.1M〜2.0M程度の強酸で電解浸出を行うように
することが出来るので、浸出能率を増加させるこ
とが出来る。
When kaolin is purified by the electrolytic method of the present invention, it is generally possible to remove about 50 to 60% of the iron content in kaolin, although there are slight differences depending on the sample. This is approximately 10% higher than the leaching rate of 40-55% using dithionite. The present invention eliminates the need for pH adjustment and potential adjustment associated with leaching to dithionite, and can prevent unnecessary consumption of excessive amounts of dithionite.
It is also easy to operate. In particular, the advantage of this electrolytic leaching process compared to other leaching processes is that it utilizes sulfite gas, and since leaching is carried out in the electrolytic bath at the same time as dithionite is produced, It is a very economical and effective leaching process. When leaching with dithionite, increasing the acidity of the solution destroys the dithionite, so it was advantageous to work in the pH range of 2 to 3, but in the electrolytic leaching process of the present invention,
Since electrolytic leaching can be performed with a strong acid of about 0.1M to 2.0M, the leaching efficiency can be increased.

本発明はカオリンの精製のみを期するばかりで
なく、小極性媒体である亜硫酸気体を陽極反応に
利用し、亜硫酸気体がないときに生ずる酸素発生
反応による溶解の蒸発及び莫大な電気エネルギー
消耗を防止し、カオリン精製に使用される硫酸を
同時に製造する方法である。電解電圧は硫酸濃度
と電流密度とにより若干の差異はあるが、硫酸濃
度0.1M〜2.0M及び電流密度10mA/cm2〜100m
A/cm2の下で、約1.0V〜2.0V程度である。カオ
リンの電解浸出に適切な作業条件は、硫酸濃度
0.1M〜2.0M、亜硫酸気体濃度0.1M〜1.0M、温
度20℃〜50℃、固体濃度10%〜50%及び電流密度
10mA/cm2〜100mA/cm2である。
The present invention not only aims to purify kaolin, but also utilizes sulfite gas, which is a small polar medium, in the anode reaction to prevent evaporation of the dissolved material and the huge consumption of electrical energy due to the oxygen generation reaction that occurs in the absence of sulfite gas. This is a method for simultaneously producing sulfuric acid used in kaolin purification. The electrolysis voltage varies slightly depending on the sulfuric acid concentration and current density, but when the sulfuric acid concentration is 0.1M to 2.0M and the current density is 10mA/cm 2 to 100m
It is about 1.0V to 2.0V under A/ cm2 . Appropriate working conditions for electrolytic leaching of kaolin are sulfuric acid concentration
0.1M~2.0M, sulfite gas concentration 0.1M~1.0M, temperature 20℃~50℃, solid concentration 10%~50% and current density
It is 10 mA/cm 2 to 100 mA/cm 2 .

陽極及び陰極の電極材料としては、所要電圧の
観点で見ると、白金電極が最も低い電圧で電解浸
出を行うことが出来るが、白金は高価であるの
で、本発明では陽極としては亜硫酸酸化に効果的
な多孔性黒鉛電極を使用し、陰極としては亜硫酸
還元に効果的なアルミニウム或はステンレススチ
ール電極を使用するのが良い。
Regarding the electrode materials for the anode and cathode, from the viewpoint of the required voltage, a platinum electrode can perform electrolytic leaching at the lowest voltage, but since platinum is expensive, in the present invention, platinum electrode is effective for sulfite oxidation as an anode. It is preferable to use a porous graphite electrode, and as a cathode, use an aluminum or stainless steel electrode, which is effective in reducing sulfite.

〔実施例〕〔Example〕

実施例 1 0.5M硫酸+1.0亜硫酸気体+20%カオリン溶液
と0.5M硫酸+1.0M亜硫酸気体溶液とを、それぞ
れ陰極室と陽極室に注入した後、黒鉛陽極と白金
陰極とを両電極にして、大明山0.82%Feカオリン
について全体電流0.45A(電流密度50mA・cm2
の下で1時間に亘つて電解浸出を実施した。
Example 1 After injecting 0.5M sulfuric acid + 1.0M sulfite gas + 20% kaolin solution and 0.5M sulfuric acid + 1.0M sulfite gas solution into the cathode chamber and anode chamber, respectively, a graphite anode and a platinum cathode were used as both electrodes. , total current 0.45A for Damingshan 0.82% Fe kaolin (current density 50mA cm 2 )
Electrolytic leaching was carried out for 1 hour under

電解浸出されたカオリン液から過、水洗及び
乾燥工程を経て得た精製カオリンは、鉄分含量が
0.32%Feであり、61%の脱鉄効果を挙げることが
出来た。
Refined kaolin obtained from electrolytically leached kaolin liquid through filtration, water washing and drying processes has a low iron content.
The iron content was 0.32%, and the iron removal effect was 61%.

電解電圧は約1.4Vであり、陰極電位は約−275
mV(vs S.C.E.)であつた。
The electrolytic voltage is about 1.4V, and the cathode potential is about −275
mV (vs SCE).

実施例 2 大明山2.28%Feカオリンと1.90%Feカオリンと
を粒度10μ以下に分給した試料について実施例1
の実験条件と同じ方法で電解浸出を実施した。
Example 2 Example 1 for a sample in which Daimingsan 2.28% Fe kaolin and 1.90% Fe kaolin were dispensed into particle sizes of 10μ or less
Electrolytic leaching was carried out in the same manner as the experimental conditions.

過、水洗及び乾燥工程を経て精製されたカオ
リンの鉄分含量は各々0.87%及び0.77%であり、
脱鉄率は各々約65%及び約60%であつた。
The iron content of kaolin purified through filtration, water washing and drying processes is 0.87% and 0.77%, respectively.
The iron removal rates were about 65% and about 60%, respectively.

電解電圧は約1.4Vであり、陰極電位は約−280
mV(vs S.C.E.)であつた。
The electrolytic voltage is about 1.4V, and the cathode potential is about -280
mV (vs SCE).

実施例 3 陰極室溶液を0.5M硫酸+0.1M亜硫酸気体+20
%のカオリン溶液にして、実施例と同じ実験条件
及び方法によつて大明山0.82%Feカオリンを電解
浸出した。
Example 3 The cathode chamber solution was 0.5M sulfuric acid + 0.1M sulfite gas + 20
% kaolin solution, and electrolytically leached Damingshan 0.82% Fe kaolin using the same experimental conditions and method as in the example.

精製されたカオリンの鉄分含量は0.43%Feであ
り、約48%の脱鉄効果を得ることが出来た。
The iron content of the purified kaolin was 0.43% Fe, and an iron removal effect of approximately 48% could be obtained.

電解電圧は1.4Vであり、陰極電位は約−240m
V(vs S.C.E)であつた。
The electrolytic voltage is 1.4V, and the cathode potential is approximately -240m.
It was V (vs SCE).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法で使用する電解槽の断面
図である。第2図は、本発明方法によるカオリン
精製工程の流れ図である。 1……隔膜、2……陽極室、3……陰極室、1
0……電解槽。
FIG. 1 is a sectional view of an electrolytic cell used in the method of the present invention. FIG. 2 is a flowchart of the kaolin purification process according to the method of the present invention. 1...Diaphragm, 2...Anode chamber, 3...Cathode chamber, 1
0... Electrolytic cell.

Claims (1)

【特許請求の範囲】 1 隔膜によつて陰極室と陽極室とに分離された
電解槽の陰極室に硫酸及び亜硫酸溶液とカオリン
又は粘土とを入れ、そして陽極室に硫酸及び亜硫
酸溶液を入れて電解を行い、カオリン又は粘土の
中の鉄分を浸出除去することを特徴とする、カオ
リン及び粘土の電解精製方法。 2 陽極室において亜硫酸の電気化学的酸化によ
つて生成された硫酸を電解浸出液に再使用する特
許請求の範囲第1項記載の方法。 3 陰極室において硫酸濃度を0.1〜2.0M、亜硫
酸濃度を0.1〜1.0M、カオリン又は粘土の濃度を
10〜50%にし、陽極室において硫酸濃度を0.1〜
2.0M、亜硫酸濃度を0.1〜1.0Mにし、温度を20〜
50℃にし、そして電流密度を10mA/cm2〜100m
A/cm2にする特許請求の範囲第1項記載の方法。 4 陰極に白金、アルミニウム又はステンレスス
チール電極を使用し、そして陽極に多孔性黒鉛電
極を使用する特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A sulfuric acid and sulfite solution and kaolin or clay are placed in the cathode chamber of an electrolytic cell separated by a diaphragm into a cathode chamber and an anode chamber, and a sulfuric acid and sulfite solution is placed in the anode chamber. A method for electrolytically refining kaolin and clay, which comprises performing electrolysis and leaching out iron in kaolin or clay. 2. The method according to claim 1, wherein the sulfuric acid produced by electrochemical oxidation of sulfurous acid in the anode chamber is reused as the electrolytic leachate. 3 In the cathode chamber, the sulfuric acid concentration is 0.1-2.0M, the sulfite concentration is 0.1-1.0M, and the kaolin or clay concentration is
10 to 50%, and the sulfuric acid concentration in the anode chamber to 0.1 to 50%.
2.0M, sulfite concentration 0.1~1.0M, temperature 20~
50℃ and current density 10mA/cm 2 ~100m
A method according to claim 1, in which A/cm 2 is obtained. 4. The method according to claim 1, wherein a platinum, aluminum or stainless steel electrode is used as the cathode and a porous graphite electrode is used as the anode.
JP61006157A 1985-04-11 1986-01-14 Electrolytic purification for kaolin and clay Granted JPS61236647A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1985P2434 1985-04-11
KR1019850002434A KR880000581B1 (en) 1985-04-11 1985-04-11 Refining process for kaoline by electroysis

Publications (2)

Publication Number Publication Date
JPS61236647A JPS61236647A (en) 1986-10-21
JPH048393B2 true JPH048393B2 (en) 1992-02-14

Family

ID=19240472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61006157A Granted JPS61236647A (en) 1985-04-11 1986-01-14 Electrolytic purification for kaolin and clay

Country Status (2)

Country Link
JP (1) JPS61236647A (en)
KR (1) KR880000581B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7026637B2 (en) * 2016-04-15 2022-02-28 ビーエーエスエフ コーポレーション A method for producing hydrous kaolin clay, and a product produced from the hydrous kaolin clay.

Also Published As

Publication number Publication date
JPS61236647A (en) 1986-10-21
KR860007965A (en) 1986-11-10
KR880000581B1 (en) 1988-04-16

Similar Documents

Publication Publication Date Title
US9322105B2 (en) Recovering lead from a lead material including lead sulfide
CN101845562A (en) Improved device and method for producing electrolytic manganese metal by two-ore method
WO2010050462A1 (en) Method of separating arsenic mineral from copper-containing substance with high arsenic content
CN107010751A (en) A kind of integrated conduct method of high concentration arsenic-containing acid waste water
EA020947B1 (en) Method for recovering valuable metals
EP0115500A1 (en) Recovery of silver and gold from ores and concentrates
US4525254A (en) Process and apparatus for purifying effluents and liquors
US3793174A (en) Method of treating waste water containing ligninsulfonate
US4190508A (en) Process for removing chalcophile elements from aqueous solutions by electrolysis
CA1064856A (en) Purification of nickel electrolyte by electrolytic oxidation
JPH048393B2 (en)
RO132597B1 (en) Process for recovering precious metals from electrical and electronic waste by anodic dissolution in ionic liquids
CN109879491A (en) A kind of electrolysis processing Mn-bearing waste water recycling manganese method
SU1058511A3 (en) Method for recovering hexavalent uranium
CN105018726A (en) Treatment method for lead and zinc paragenic ore
US2394874A (en) Electrorefining of nickel
US1344127A (en) Metallurgical process
KR890005181B1 (en) Production of zinc from ores and concentrates
US3476663A (en) Process for deriving precious metal values from sea water environments
AU734584B2 (en) Production of electrolytic copper from dilute solutions contaminated by other metals
CN109055744B (en) A method of the extraction of indium from the methane sulfonic acid lead solution containing indium
RU2051753C1 (en) Method for extraction of finely-dispersed particles of metals from solutions
AU558740B2 (en) Recovery of silver and gold from ores and concentrates
US1483056A (en) Metallurgical process
US1255435A (en) Method of purifying zinc-bearing solutions.