JPH0483883A - Coating method for inner face of spherical body, pipe and vessel with mechanically alloying method utilized therefor - Google Patents

Coating method for inner face of spherical body, pipe and vessel with mechanically alloying method utilized therefor

Info

Publication number
JPH0483883A
JPH0483883A JP2200170A JP20017090A JPH0483883A JP H0483883 A JPH0483883 A JP H0483883A JP 2200170 A JP2200170 A JP 2200170A JP 20017090 A JP20017090 A JP 20017090A JP H0483883 A JPH0483883 A JP H0483883A
Authority
JP
Japan
Prior art keywords
coating
coated
fine particles
metal
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2200170A
Other languages
Japanese (ja)
Other versions
JP2936144B2 (en
Inventor
Keizo Kobayashi
慶三 小林
Takeshi Takayanagi
高柳 猛
Hideaki Ota
英明 太田
Yasuhiko Kondo
近藤 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2200170A priority Critical patent/JP2936144B2/en
Publication of JPH0483883A publication Critical patent/JPH0483883A/en
Application granted granted Critical
Publication of JP2936144B2 publication Critical patent/JP2936144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To improve hardness, wear resistance and corrosion resistance of a coated layer and to enhance adhesive properties by performing mechanical grinding and mixing due to a dry method in order to perform alloying or complication in an atomic level. CONSTITUTION:Simple substance of metal and nonmetallic elements or alloy powder and intermetallic compds. thereof or ceramics fine particles of oxide, carbide and nitricd or a mixture of at least two kinds thereof and furthermore a mixture obtained by adding at least one kind of ceramics fine particle to the powder of metal, alloy and the intermetallic compds. are utilized. These are mechanically alloyed by a dry method by utilizing an attritor, a ball mill and a strongly-agitated pot mill. Thereby the coating material is pushed on the surface of the object to be coated and a thin coated layer is formed thereon. Moreover this object to be coated is polished by the ceramics fine particles and alloying, complication and amorphousness are promoted. Accordingly a thick coated layer consisting of simple substance of metal, alloy, ceramics and composite material or amorphous material thereof is obtained in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属単体もしくは合金、セラミックス微粒子
あるいはこれらの複合化物を乾式で機械的に混合と粉砕
を繰返すことによって、これらを球状体もしくは管及び
容器の内面に被覆し、高強度高硬度、耐摩耗性あるいは
強耐食性を有する被覆層を形成する方法で前記の特性を
持つベアリング・パイプ容器の製造に利用することがで
きる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is capable of forming metals or alloys, ceramic fine particles, or composites thereof into spheres or tubes by repeatedly dry and mechanically mixing and pulverizing them. It can also be used to manufacture bearing pipe containers having the above characteristics by coating the inner surface of the container to form a coating layer having high strength, high hardness, wear resistance, or strong corrosion resistance.

〔従来の技術〕[Conventional technology]

従来、被覆膜の形成技術にはCVD 、PVDなどプラ
メ°マや気相反応を利用したものあるいは塗料の吹き付
けによる被覆法がある。しかし、これらの方法は、非常
に大きな設備を必要とするが、被覆層の密着性が悪い。
Conventional techniques for forming coating films include those that utilize primers or gas phase reactions, such as CVD and PVD, and coating methods that involve spraying paint. However, these methods require very large equipment and the adhesion of the coating layer is poor.

また、球状体に対してその全面に均一な被覆を行うこと
ができなかった。
Further, it was not possible to uniformly coat the entire surface of the spherical body.

さらに、被覆層の厚さも薄く、厚い被覆層でしかも、被
覆表面の滑らかな被覆を行うことが困難であった。
Furthermore, the thickness of the coating layer is thin, and it is difficult to coat the coating surface with a thick coating layer and a smooth coating surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、かなシ厚い被覆層を被覆対象物に均一に形成
し、被覆膜の密着性を良好にするとともに平滑な被覆面
とし、硬度・耐摩耗性・耐食性のすぐれた球状体もしく
は管、容器を製造することができる。
The present invention aims to uniformly form a very thick coating layer on the object to be coated, to improve the adhesion of the coating film and to provide a smooth coating surface, and to form a spherical body or tube with excellent hardness, abrasion resistance, and corrosion resistance. , containers can be manufactured.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成するために、本発明方法は原子レベルで
の合金化もしくは複合化を行うために乾式による機械的
粉砕混合(アトライター、ボールミル、強攪拌ポットミ
ル等)を行うことにより、被覆層の硬度、耐摩耗性、耐
食性を良好にし、さらに密着性を向上させる。その上、
被覆材にセラミックスの微粉末を添加して、研磨効果を
利用し、被覆表面の平滑度を良好にすることを特徴とし
ている。
In order to achieve the above object, the method of the present invention performs dry mechanical pulverization and mixing (attritor, ball mill, strong stirring pot mill, etc.) to achieve alloying or compounding at the atomic level. Improves hardness, wear resistance, and corrosion resistance, and further improves adhesion. On top of that,
It is characterized by adding fine ceramic powder to the coating material to utilize the polishing effect to improve the smoothness of the coating surface.

具体的に説明すると、本発明の原理は第1図に示すごと
く、被覆材料は鋼球の衝撃力およびせん断力により被覆
対象物表面に押し付けられ薄い被覆膜を形成するととも
にセラミックス微粉子により研磨される。これらの効果
は、鋼球の数と大きさに依存し、鋼球数の増加により指
数関数的に合金化、複合化、アモルファス化が促進され
る。したがって、鋼球の大きさと数を適当に選択するこ
とにより短時間で被覆層の厚い被覆ができる。
Specifically, the principle of the present invention is as shown in Fig. 1. The coating material is pressed against the surface of the object to be coated by the impact force and shear force of the steel balls to form a thin coating film, and the coating material is polished by ceramic fine powder. be done. These effects depend on the number and size of steel balls, and as the number of steel balls increases, alloying, composite formation, and amorphous formation are promoted exponentially. Therefore, by appropriately selecting the size and number of steel balls, a thick coating layer can be formed in a short time.

被覆層の厚さと組成の制御は、機械的合金化の攪拌時間
によって行い、被覆層は被覆表面を良好にするため添加
したセラミックス微粒子をわずかに含み、セラミックス
微粉子を含む密着性の高い複合被覆層が得られる。なお
、微粒のセラミックス粒子を配合することによりアモル
ファス化した被覆層を形成することもできる。
The thickness and composition of the coating layer are controlled by the stirring time of mechanical alloying, and the coating layer contains a small amount of ceramic fine particles added to improve the coating surface, and is a highly adhesive composite coating containing ceramic fine particles. You get layers. Note that an amorphous coating layer can also be formed by blending fine ceramic particles.

〔実施例1〕 以下、本発明を被覆対象材料としてステンレス球、被覆
材料として金属間化合物TiAl、セラミックス微粒子
としてジルコニアゾルを用いた場合の被覆膜形成につい
て説明する。
[Example 1] Hereinafter, the formation of a coating film according to the present invention will be described in the case where a stainless steel sphere is used as the material to be coated, an intermetallic compound TiAl is used as the coating material, and zirconia sol is used as the ceramic fine particles.

第2図は、本発明の上記材料への適用例の金属組織を表
わす顕微鏡写真である。被覆膜は約7μm素分析したX
線写真である。膜中には、ステンレスの構成元素および
被覆材料としてのTiAl、セラミックス微粒子のジル
コニアが認められる。膜表面は非常にきれいであり、研
磨効果の高かったことがうかがえる。
FIG. 2 is a micrograph showing the metal structure of an example of application of the present invention to the above material. The coating film was subjected to elementary analysis of approximately 7 μm.
It is a line photograph. In the film, constituent elements of stainless steel, TiAl as a coating material, and zirconia as ceramic particles are recognized. The surface of the film was very clean, indicating that the polishing effect was high.

第4図は、比較としてセラミックス微粒子を入れなかっ
た場合のX線写真である。表面の被覆膜はところどころ
しかなく、面粗さも非常に悪くなっている。
FIG. 4 is an X-ray photograph for comparison when ceramic fine particles were not added. There is only a few coatings on the surface, and the surface roughness is very poor.

本実施例の被覆膜の密着性は1278KX1.・2Ks
ecの大気中酸化テストにおいてもはく離が見られず、
耐酸化性においても、非常に優れた被覆膜が形成されて
いた。本実施例は、9.5 Hzのモータによる振動ボ
ールミルにて100時間行った。雰囲気は不活性雰囲気
とした。
The adhesion of the coating film in this example was 1278KX1.・2Ks
No peeling was observed in the EC atmospheric oxidation test.
A coating film with very good oxidation resistance was also formed. This example was conducted for 100 hours in a vibrating ball mill using a 9.5 Hz motor. The atmosphere was inert.

〔実施例2〕 管の内面被覆の実施例を第5図に示す。実施例1と同様
、鋼球としてはステンレス球を用い、被覆対象としてス
テンレス管、被覆材料として金属間化合物TiAg、セ
ラミックス微粉子としてジルコニアゾルを用い強攪拌ポ
ットミルにて200時間、不活性雰囲気中で処理を行っ
た。被覆膜は、約6μmであった。
[Example 2] FIG. 5 shows an example of the inner surface coating of the tube. As in Example 1, a stainless steel ball was used as the steel ball, a stainless steel pipe was used as the coating object, an intermetallic compound TiAg was used as the coating material, and zirconia sol was used as the ceramic fine powder in a strongly stirring pot mill for 200 hours in an inert atmosphere. processed. The coating film was about 6 μm.

〔実施例3〕 容器の内面被覆の実施例を第6図に示す。実施例1と同
様、鋼球としてはステンレス球を用い、被覆対象として
ステンレス製品、被覆材料として金属間化合物TiAl
、セラミックス微粉子としてジルコニアゾルを用い、振
動ボールミル時間、不活性雰囲気中で処理を行った。結
果は実施例1と同様約7μmの被覆膜が得られた。
[Example 3] FIG. 6 shows an example of the inner surface coating of the container. As in Example 1, a stainless steel ball was used as the steel ball, a stainless steel product was used as the coating object, and an intermetallic compound TiAl was used as the coating material.
Using zirconia sol as the ceramic fine powder, the treatment was carried out in an inert atmosphere for a period of time in a vibrating ball mill. As a result, as in Example 1, a coating film with a thickness of about 7 μm was obtained.

〔実施例4〕 異形容器管の内面被覆の実施例を第7図に示す。[Example 4] An example of the inner coating of the irregularly shaped container tube is shown in FIG.

実施例1と同様、鋼球としてはステンレス球、被覆対象
としてステンレス異形管、被覆材料として金属間化合物
TiAl、セラミックス微粒子としてジルコニアゾルを
用い、強攪拌ポットミルにて200時間、不活性雰囲気
中で処理を行った。被覆膜は5〜7μmであった。
As in Example 1, a stainless steel ball was used, a stainless steel deformed pipe was coated, an intermetallic compound TiAl was used as the coating material, and zirconia sol was used as the ceramic particles, and the mixture was treated in an inert atmosphere for 200 hours in a strongly stirring pot mill. I did it. The coating film was 5-7 μm.

〔実施例5〕 実施例1で得られた製品を真空下、850°C×8時間
熱処理した時の被覆層周辺の変化を第8図に示す。アモ
ルファス状した被覆層は結晶化してA、/ Fe 、 
AI Tiの金属間化合物の生成及びA I 、T i
の混入したZrO2複合酸化物が認められた。被覆層の
密着性の向上及び被覆層が本熱処理によって高硬度とな
り、耐摩耗性が著しく向上した。また、層の厚みは10
μmであった。
[Example 5] Figure 8 shows changes around the coating layer when the product obtained in Example 1 was heat treated at 850°C for 8 hours under vacuum. The amorphous coating layer crystallizes to form A, /Fe,
Generation of intermetallic compounds of AI Ti and A I , T i
A mixed ZrO2 composite oxide was observed. The adhesion of the coating layer was improved and the coating layer became highly hard due to the main heat treatment, and the wear resistance was significantly improved. Also, the layer thickness is 10
It was μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、金属単体、合金、セラミックス及びこ
れらの複合材の被覆層が容易に得られ、またアモルファ
ス状の被覆層も得ることができる。
According to the present invention, coating layers of simple metals, alloys, ceramics, and composites thereof can be easily obtained, and amorphous coating layers can also be obtained.

被覆する金属、合金、セラミックス及びこれらを適当に
組み合わせることにより、管・容器の内面もしくは球状
体表面の耐摩耗性、耐食性、硬度などを向上させること
ができる。したがって、本発明により上記特性にすぐれ
たベアリング、管・容器の製造が可能である。
The wear resistance, corrosion resistance, hardness, etc. of the inner surface of the tube/container or the surface of the spherical body can be improved by coating metals, alloys, and ceramics, and by appropriately combining these. Therefore, according to the present invention, it is possible to manufacture bearings, pipes, and containers that have the above-mentioned characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の原理図、第2図は実施例1に示した
ステンレス製球体表面及び実施例2.3に示した管・容
器内面に形成された被覆層の金属組織を表わす顕微鏡写
真である。第3図は被覆層のX線写真、第4図はセラミ
ックス微粒子を含まない場合のX線写真、第5図は、管
の内面被覆装置図、第6図は、容器の内面被覆装置図、
第7図は、異形容器の内面被覆装置図、第8図は実施例
1に示したステンレス製球体表面及び実施例2.3に示
した管・容器内面に形成された熱処理後の被覆層の金属
組織を表わす顕微鏡写真である。 1・・・被覆対象材料  2・・・被覆膜3・・・鋼球
(衝撃力) 4・・・鋼球(せん断力)5・・・セラミ
ックス微粒子 6・・・被覆材料7・・・ステンレス素
地  8−・・ローラー9・・・鋼球  10・・・蓋
  11・・・管12・・・パルプ 13・・・充填剤
  14・・・異形容器第1図 第2区 第4 しで r    < 第 図 第 区 一一一一一う
Figure 1 is a diagram of the principle of the present invention, and Figure 2 is a microscope showing the metal structure of the coating layer formed on the surface of the stainless steel sphere shown in Example 1 and the inner surface of the tube/container shown in Example 2.3. It's a photo. FIG. 3 is an X-ray photograph of the coating layer, FIG. 4 is an X-ray photograph without ceramic fine particles, FIG. 5 is a diagram of the inner surface coating device for the tube, and FIG. 6 is a diagram of the inner surface coating device for the container.
Figure 7 is a diagram of an apparatus for coating the inner surface of an irregularly shaped container, and Figure 8 is a diagram of the coating layer formed on the surface of the stainless steel sphere shown in Example 1 and the inner surface of the tube/container shown in Example 2.3 after heat treatment. It is a micrograph showing the metal structure. 1... Material to be coated 2... Coating film 3... Steel ball (impact force) 4... Steel ball (shear force) 5... Ceramic fine particles 6... Coating material 7... Stainless steel base 8-... Roller 9... Steel ball 10... Lid 11... Tube 12... Pulp 13... Filler 14... Irregular container Figure 1 Section 2 Section 4 r < Figure 1 Ward 11111

Claims (2)

【特許請求の範囲】[Claims] 1.金属及び非金属元素単体もしくはこれらの合金粉末
及び金属間化合物、あるいは酸化物、炭化物、窒化物の
セラミックス微粒子もしくはこれらの2種以上の混合物
、さらには金属、合金、金属間化合物の粉末にセラミッ
クス微粒子を1種以上加えた混合物を乾式機械的合金化
法を用いて金属単体、合金、金属間化合物、セラミック
ス微粒子もしくはこれらの複合化物、さらには機械的合
金化により生成した上記被覆材のアモルファス化物を球
状体、管及び容器状製品の表面もしくは内面に被覆する
方法。
1. Single metals and nonmetallic elements, alloy powders and intermetallic compounds thereof, ceramic fine particles of oxides, carbides, and nitrides, or mixtures of two or more of these, and ceramic fine particles in powders of metals, alloys, and intermetallic compounds. Using a dry mechanical alloying method, a mixture containing one or more of A method of coating the surface or inner surface of spheres, tubes, and container-shaped products.
2.特許請求範囲第1項に記載した方法により被覆処理
を施した製品を真空もしくは不活性雰囲気または非酸化
性物質のものは大気中において熱処理を行い、被覆材を
製品表層部に拡散浸透させて被覆層のより密着化を図る
とともに、被覆層の改質を行う方法。
2. A product that has been coated by the method described in claim 1 is heat-treated in a vacuum or in an inert atmosphere, or in the air if a non-oxidizing substance is used, and the coating material is diffused into the surface layer of the product to coat it. A method that improves the adhesion of the layers and modifies the coating layer.
JP2200170A 1990-07-27 1990-07-27 Method for coating inner surfaces of spherical bodies, tubes and containers using mechanical alloying method Expired - Lifetime JP2936144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200170A JP2936144B2 (en) 1990-07-27 1990-07-27 Method for coating inner surfaces of spherical bodies, tubes and containers using mechanical alloying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200170A JP2936144B2 (en) 1990-07-27 1990-07-27 Method for coating inner surfaces of spherical bodies, tubes and containers using mechanical alloying method

Publications (2)

Publication Number Publication Date
JPH0483883A true JPH0483883A (en) 1992-03-17
JP2936144B2 JP2936144B2 (en) 1999-08-23

Family

ID=16419960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200170A Expired - Lifetime JP2936144B2 (en) 1990-07-27 1990-07-27 Method for coating inner surfaces of spherical bodies, tubes and containers using mechanical alloying method

Country Status (1)

Country Link
JP (1) JP2936144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619130A (en) * 2022-03-24 2022-06-14 有研工程技术研究院有限公司 Welding method of aluminum-chromium-boron target material and aluminum-silicon alloy back plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173930A (en) * 1974-12-25 1976-06-26 Nippon Steel Corp KINZOKUHIFUKUKOHANNO SEIZOHOHO
JPS63265627A (en) * 1987-04-24 1988-11-02 Sumitomo Metal Ind Ltd Surface coated steel material and its manufacture
JPH0387377A (en) * 1989-07-20 1991-04-12 Battelle Memorial Inst Mechanical alloying and coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173930A (en) * 1974-12-25 1976-06-26 Nippon Steel Corp KINZOKUHIFUKUKOHANNO SEIZOHOHO
JPS63265627A (en) * 1987-04-24 1988-11-02 Sumitomo Metal Ind Ltd Surface coated steel material and its manufacture
JPH0387377A (en) * 1989-07-20 1991-04-12 Battelle Memorial Inst Mechanical alloying and coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619130A (en) * 2022-03-24 2022-06-14 有研工程技术研究院有限公司 Welding method of aluminum-chromium-boron target material and aluminum-silicon alloy back plate
CN114619130B (en) * 2022-03-24 2024-05-31 有研工程技术研究院有限公司 Welding method of aluminum-chromium-boron target material and aluminum-silicon alloy backboard

Also Published As

Publication number Publication date
JP2936144B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
Chivavibul et al. Development of WC-Co coatings deposited by warm spray process
WO2018116856A1 (en) Method for forming sprayed film of intermetallic compound film, sprayed film, method for producing metal product having sprayed film, and glass conveying roll
Li et al. Effect of ball milling of feedstock powder on microstructure and properties of TiN particle-reinforced Al alloy-based composites fabricated by cold spraying
Chen et al. Microstructure, mechanical properties and dry sliding wear behavior of Cu-Al 2 O 3-graphite solid-lubricating coatings deposited by low-pressure cold spraying
WO1997017479A1 (en) Surface-hardened titanium material, surface hardening method of titanium material, watchcase decoration article, and decoration article
Khasenova et al. Mechanical plating of Al/CNT composite coatings on aluminum substrates
JP2002309364A (en) Low-temperature thermal spray coated member and manufacturing method thereof
Siddique et al. Enhanced electrochemical and tribological properties of AZ91D magnesium alloy via cold spraying of aluminum alloy
Saravanan et al. Tribological behavior of thin nano tungsten carbide film deposited on 316L stainless steel surface
Hao et al. Influence of metal properties on the formation and evolution of metal coatings during mechanical coating
Pribytkov et al. Structure and wear resistance of plasma coatings sputtered using TiC+ HSS binder composite powder
JPH0483883A (en) Coating method for inner face of spherical body, pipe and vessel with mechanically alloying method utilized therefor
JP2000034581A (en) Production of metal member excellent in oxidation resistance
Jian et al. Microstructure and wear behaviours of laser-clad Cr13Ni5Si2-based metal-silicide coatings on a titanium alloy
Zhang et al. Effects of post heat treatment on the interfacial characteristics of aluminum coated AZ91D magnesium alloy
Bobkova et al. Structure and properties of the bronze-based functional coating obtained by gas-dynamic and microplasma spraying
Aborkin et al. Structure and efficiency of gas-dynamic deposition of hybrid coatings based on a nanocrystalline aluminum matrix
Tsukane et al. Oxidation/Carburization Behavior of TiC–Ti Composites and Improved Wear Resistance through Surface Modification
Aborkin et al. Effect of Al 2 O 3 on the Microhardness of AMg2/Graphite Nanocomposite Powder Gas Dynamic Coatings on Aluminum Alloys
Saba et al. A novel method for enhancing interface strength of TiC coated layer/Ti substrate
Zhou et al. Microstructure, wear and friction behavior of CoCrAlTaY-x CNTs composite coatings deposited by laser-induction hybrid cladding
EP3030691A2 (en) Method for forming a coating on a solid substrate, and article thus obtained
Kornienko et al. Fine Structure Study of the Plasma Coatings B4C-Ni-P
Bobylyov et al. Kinetics of the formation of diffusion titanium coatings on the surfaces of hard alloys during isothermal mass transfer of titanium in the Pb-Bi-Li melt
RU2760847C1 (en) Cladding method for powder magnetic material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term