JPH0483799A - Bismuth germanate single crystal for scintilator and production thereof - Google Patents

Bismuth germanate single crystal for scintilator and production thereof

Info

Publication number
JPH0483799A
JPH0483799A JP19687890A JP19687890A JPH0483799A JP H0483799 A JPH0483799 A JP H0483799A JP 19687890 A JP19687890 A JP 19687890A JP 19687890 A JP19687890 A JP 19687890A JP H0483799 A JPH0483799 A JP H0483799A
Authority
JP
Japan
Prior art keywords
single crystal
scintilator
bismuth
crystal
bismuth germanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19687890A
Other languages
Japanese (ja)
Other versions
JPH06102597B2 (en
Inventor
Yasuto Miyazawa
宮沢 靖人
Masami Sekida
正實 関田
Hiroaki Toshima
戸嶋 博昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP19687890A priority Critical patent/JPH06102597B2/en
Publication of JPH0483799A publication Critical patent/JPH0483799A/en
Publication of JPH06102597B2 publication Critical patent/JPH06102597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form a single crystal for scintilator having high transparency, capable of sufficiently utilizing scintilator light and capable of emitting in a region in which sensitivity of Si photodiode which is a detector is high by using a specific composition in a Bi-Pr-Ge based oxide. CONSTITUTION:The aimed bismuth germanate single crystal expressed by the general formula Bi2(1-x)Pr2xGe3O9 (0.001<=x<1). The bismuth germanate single crystal is obtained according to the following method: Each of oxides of bismuth, germanium and praseodymium are sufficiently blended at a ratio of Bi:Ge: Pr of 2(1-x):3:2x and the resultant blend or compound is melted and solidified by a melt solidification method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、X線コンピユーチット・トモグラフィー装置
等の検出用のX線用シンチレータに関し、より詳しくは
、シンチレータ用単結晶とその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an X-ray scintillator for detection in an X-ray computer tomography device, etc., and more particularly relates to a single crystal for a scintillator and a method for manufacturing the same. .

(従来の技術及び解決しようとする課題)従来、X線の
シンチレータ用結晶としては、タリウム(T1)が付加
されたNaIとその発光を検出するための光電子倍増管
が用いられてきた。しかし、NaI(Tl)は強いシン
チレータ光を発光するものの、湿度に対して非常に弱い
ために防護が必要であり、また光電子倍増管を用いるた
め、検出部の小型化が不可能であるという欠点があった
(Prior Art and Problems to be Solved) Conventionally, as an X-ray scintillator crystal, NaI to which thallium (T1) is added and a photomultiplier tube for detecting its luminescence have been used. However, although NaI (Tl) emits strong scintillator light, it is very sensitive to humidity, so protection is required, and since it uses a photomultiplier tube, it has the disadvantage that it is impossible to miniaturize the detection unit. was there.

近年、X線コンピユーチット・トモグラフィー装置i(
以下、rX線CTJと略称する)が開発されるにおよび
、高度に集積されたシンチレータ及び検出器に対する要
望が高くなり、Gd2o2S2:PrセラミックスとS
iフォトダイオードの組合せが検討されている。しかし
、このセラミックスは白色不透明であり、シンチレータ
光が母体内で散乱されたりして検出器に到達する量が少
なくなること、またこの母体内ではPrは約500r+
+s付近にピークをもつグリーンの発光であり、Siフ
ォトダイオードの感度が低下している領域があるという
欠点があった。
In recent years, X-ray computer tomography equipment i (
With the development of rX-ray CTJ (rX-ray CTJ), the demand for highly integrated scintillators and detectors has increased, and
A combination of i-photodiodes is being considered. However, this ceramic is white and opaque, and the amount of scintillator light that reaches the detector is reduced due to scattering within the matrix, and Pr is approximately 500r+ within the matrix.
The green light emission has a peak near +s, and there is a drawback that there is a region where the sensitivity of the Si photodiode is reduced.

本発明は、上記従来技術の欠点を解消し、透明度が高く
、したがって、シンチレータ光を充分に活用でき、また
検出器であるSiフォトダイオードの感度の高い領域で
発光するシンチレータ用単結晶を提供し、またその製造
法を提供することを目的とするものである。
The present invention eliminates the drawbacks of the prior art described above, and provides a single crystal for a scintillator that has high transparency, can fully utilize scintillator light, and emits light in a highly sensitive region of a Si photodiode as a detector. The object of the present invention is to provide a method for producing the same.

(課題を解決するための手段) 従来、酸化ビスマス−酸化ゲルマニウム系においてB1
4Ge、O□2が最もよく知られており、レーザ用及び
シンチレータ用光学結晶として研究開発され、また市販
されている。また、同様にBi工。
(Means for solving the problem) Conventionally, in the bismuth oxide-germanium oxide system, B1
4Ge and O□2 are the most well-known, and have been researched and developed as optical crystals for lasers and scintillators, and are also commercially available. Similarly, Bi engineering.

G e O、。が音響光学結晶として研究開発されてい
る。
G e O,. is being researched and developed as an acousto-optic crystal.

しかし、本発明者らは、上記酸化物の単結晶育成の可能
性並びに発光特性について検討した結果、良質な単結晶
の育成は困難であり、しかも発光特性も従来のセラミッ
クス以上のものは期待できないことが判明した。
However, as a result of examining the possibility of growing single crystals of the above-mentioned oxides and their luminescent properties, the present inventors found that it is difficult to grow high-quality single crystals, and it is not expected that their luminescent properties will be better than that of conventional ceramics. It has been found.

そこで、本発明者らは、良質な単結晶の育成に関し、酸
化ビスマス−酸化ゲルマニウム系について研究した結果
、溶融固化法(−船釣にはチョクラルスキー法と呼ばれ
ている)においてB i2G e。
Therefore, the present inventors conducted research on the bismuth oxide-germanium oxide system regarding the growth of high-quality single crystals, and found that B i2G e .

O3の単結晶が育成可能であることを見い出した。We have discovered that single crystals of O3 can be grown.

しかし、この単結晶の育成においては、精密なストイキ
オメトリ−組成からでないと良質な単結晶が育成できな
いこと、またこの単結晶は発光しないことも同時に判明
した。そのため、良質な単結晶の育成法と併せて発光機
構の付与について鋭意研究を重ねた結果、ここに本発明
をなしたものである。
However, in growing this single crystal, it was also found that a high-quality single crystal could not be grown unless a precise stoichiometry composition was used, and that this single crystal did not emit light. Therefore, as a result of extensive research on methods for growing high-quality single crystals and on providing a light-emitting mechanism, the present invention has been achieved.

すなわち、本発明は、一般式B 12 (1−x+P 
r2xGe30.(但し、0.001≦x<1)で表わ
されることを特徴とするシンチレータ用ゲルマン酸ビス
マス単結晶を要旨とするものである。
That is, the present invention provides general formula B 12 (1-x+P
r2xGe30. (However, 0.001≦x<1).

また、その製造法は、ビスマスとゲルマニウムとプラセ
オジウムの各酸化物をBi: Ge: Pr=2(1−
x): 3 : 2.xの量比で充分混合し、得られた
混合物又は化合物について、溶融同化法にょって溶融、
固化して、一般式B i2(、−x) P r2)(G
 e。
In addition, the manufacturing method uses bismuth, germanium, and praseodymium oxides as Bi:Ge:Pr=2(1-
x): 3: 2. The mixture or compound obtained by mixing thoroughly in the quantity ratio of x is melted by a melt assimilation method.
After solidification, the general formula B i2(,-x)P r2)(G
e.

0g(但し、0.001≦x〈1)で表わされル単結晶
を育成することを特徴とするものである。
0g (however, 0.001≦x<1), and is characterized by growing a single crystal.

以下に本発明を更に詳述する。The present invention will be explained in further detail below.

(作用) Bi20e、O,結晶におけるBiはX線を始めとする
放射線に対して大きい捕獲断面積を持っているが、この
結晶自体は、例えば20kVの電子線による励起でも発
光せず、したがって、何等がの発光イオンを導入する必
要がある。そのためには3価のBiイオンを同じく3価
の希土類イオンで置き換えるのが適当である。
(Function) Bi20e, O, Bi in the crystal has a large capture cross section for radiation including X-rays, but this crystal itself does not emit light even when excited by, for example, a 20 kV electron beam, and therefore, It is necessary to introduce some kind of luminescent ion. For this purpose, it is appropriate to replace the trivalent Bi ions with similarly trivalent rare earth ions.

希土類イオンのうちで、Siフォトダイオードの感度の
高い赤色以上の長波長域に発光のある元素は、Pr、E
u、Erなどが考えられる。しかし、これらのうち、E
uイオンとErイオンはその発光寿命(自然対数の底を
eとすると、発光強度が1/eになる時刻)が数msと
大きく、X@CTにおけるX線パルスの繰り返しである
数k Hz内で充分減衰しない。
Among rare earth ions, the elements that emit light in the long wavelength range above red, where Si photodiodes are highly sensitive, include Pr and E.
Possible examples include u and Er. However, among these, E
U ions and Er ions have long emission lifetimes (time when the emission intensity becomes 1/e, where e is the base of the natural logarithm) of several ms, and within several kHz, which is the repetition of X-ray pulses in X@CT. is not sufficiently attenuated.

一般に希土類イオンは外部の結晶場に影響を受けにくい
ことは知られているが、Prイオンはその中で最も結晶
場の影響を受けることもよく知られている。そのため、
Biイオンの一部をPrイオンで置き換えることとした
ものである。またPrで置き換えても、良質な単結晶が
育成できることも判明した。
It is generally known that rare earth ions are not easily affected by external crystal fields, but it is also well known that Pr ions are most affected by crystal fields. Therefore,
A part of Bi ions is replaced with Pr ions. It has also been found that high quality single crystals can be grown even if Pr is used instead.

具体的には、一般弐B12(1−x、Pr2xGe30
.で表わされる単結晶において、Xの範囲を0.001
≦x < 1とする。Xが0.001未満ではPrイオ
ンの発光が著しく減少し、実用上不適当となるので好ま
しくない。なお、Xの上限値はBiをPrで置き換えら
れる最大限の量である。
Specifically, general 2B12 (1-x, Pr2xGe30
.. In the single crystal represented by , the range of X is 0.001
≦x<1. If X is less than 0.001, the luminescence of Pr ions will be significantly reduced, making it unsuitable for practical use. Note that the upper limit value of X is the maximum amount by which Bi can be replaced by Pr.

前述の如<Gd、O□S2はグリーンに発光するが、本
発明の上記組成の単結晶は赤色に強い発光を持ち、Si
フォトダイオードの感度の高い領域に一致する。更に、
この単結晶は透明であり、X線によるシンチレータ光を
Siフォトダイオードに有効に利用できるという大きな
利点がある。その発光減衰曲線は単一の自然対数で表わ
され、発光寿命は3.9μsと、現在までに報告されて
いる値よりも小さい。したがって、高速繰り返しく約1
00 k Hz程度)も可能であるという特長も有する
As mentioned above, <Gd, O□S2 emits green light, but the single crystal of the present invention with the above composition emits strong red light, and Si
This corresponds to the sensitive area of the photodiode. Furthermore,
This single crystal is transparent and has the great advantage that scintillator light from X-rays can be effectively used in Si photodiodes. Its luminescence decay curve is expressed by a single natural logarithm, and its luminescence lifetime is 3.9 μs, which is smaller than the values reported to date. Therefore, the high-speed repetition is about 1
00 kHz) is also possible.

この単結晶の育成法としては、溶融固化法(チョクラル
スキー法)が適当である。原料は、ビスマスとゲルマニ
ウムとプラセオジウムの各酸化物をBi: Ge: P
r=2(1−x): 3 : 2xの量比で充分混合し
た混合物又は化合物を用いる。育成条件は特に制限され
ることはない。
As a method for growing this single crystal, a melt-solidification method (Czochralski method) is suitable. The raw materials are bismuth, germanium, and praseodymium oxides Bi: Ge: P
A mixture or compound sufficiently mixed in a quantitative ratio of r=2(1-x): 3:2x is used. There are no particular restrictions on the growth conditions.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) Bi203、GaO2及びPr、O,、を、Biのうち
0゜5%をPrが置換するように、すなわち、Bi□、
□Pro、。2Ge、、。。O3の化学量論比で混合し
た。
(Example) Bi203, GaO2 and Pr, O,, were substituted so that 0.5% of Bi was replaced by Pr, that is, Bi□,
□Pro. 2Ge... . Mixed in stoichiometric ratio of O3.

単結晶の育成はチョクラルスキー法を用いた。The Czochralski method was used to grow the single crystal.

育成条件は、回転数60rpm、引き上げ速度2.0m
/hrで、酸素雰囲気で育成した。
The growth conditions are a rotation speed of 60 rpm and a pulling speed of 2.0 m.
/hr in an oxygen atmosphere.

育成した結晶を化学分析した結果、結晶の化学式はB 
lx 、911 P ro$02 G e、 *。。0
.であり、Prの実効分配係数は約1.0であった。
As a result of chemical analysis of the grown crystal, the chemical formula of the crystal is B.
lx, 911 Pro$02 Ge, *. . 0
.. The effective distribution coefficient of Pr was approximately 1.0.

この結晶の発光スペクトルは、第1図に示すように、5
00nm付近のグリーンの発光も見られるが、580n
m以上の赤い領域での積分強度が非常に大きいことがわ
かる。更に、同図においては測定系の分光感度の補正を
行っていないが、その補正値は500nmを1とすると
、600nmで2゜27倍、700nmで5.49倍で
あり、図示の結果以上に、市販のSiフォトダイオード
の感度曲線(2)との一致は優れたものである。したが
って、この結晶の発光は、検知器であるS1フオトダイ
オードの感度の高い領域にあり、且つまたこの結晶は透
明であるので、高感度でX線を検出可能である。
The emission spectrum of this crystal is as shown in Figure 1.
Green light emission around 00nm can also be seen, but at 580nm
It can be seen that the integrated intensity in the red region of m or more is extremely large. Furthermore, although the spectral sensitivity of the measurement system is not corrected in the same figure, the correction value is 2°27 times at 600 nm and 5.49 times at 700 nm, assuming that 500 nm is 1. , the agreement with the sensitivity curve (2) of a commercially available Si photodiode is excellent. Therefore, the light emitted from this crystal is in the sensitive region of the S1 photodiode, which is a detector, and since this crystal is transparent, X-rays can be detected with high sensitivity.

(発明の効果) 以上詳述したように、本発明によれば、シンチレータ光
を充分に活用でき、しかも検出器であるSiフォトダイ
オードの感度の高い領域で発光するシンチレータ用単結
晶を提供することができる。
(Effects of the Invention) As detailed above, according to the present invention, it is possible to provide a single crystal for a scintillator that can fully utilize scintillator light and emits light in a highly sensitive region of a Si photodiode serving as a detector. I can do it.

また単結晶であるので、任意の形状、大きさに切断する
ことができ、検知器であるSiフォトダイオード配列に
合わせて、X線CT用を始めとする集積度の高いX線シ
ンチレータを製造することが可能となる。
In addition, since it is a single crystal, it can be cut into any shape and size, making it possible to manufacture highly integrated X-ray scintillators, including those for X-ray CT, in accordance with the Si photodiode array used as the detector. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で得られた結晶の発光スペクトルを示す
図で、図中、(1)は結晶中のPrの発光を示し、(2
)は市販の代表的なS1フオトダイオードの感度曲線を
示している。 第1図 特許出願人 科学技術庁無機材質研究所長−1瀬高信雄
 〜ミζ 娠 五 禮職)
FIG. 1 is a diagram showing the emission spectrum of the crystal obtained in the example. In the figure, (1) indicates the emission of Pr in the crystal, and (2)
) shows the sensitivity curve of a typical commercially available S1 photodiode. Figure 1 Patent applicant Nobuo Ise Taka, director of the Institute for Inorganic Materials, Science and Technology Agency

Claims (2)

【特許請求の範囲】[Claims] (1)一般式Bi_2_(_1_−_x_)Pr_2_
xGe_3O_9(但し、0.001≦x<1)で表わ
されることを特徴とするシンチレータ用ゲルマン酸ビス
マス単結晶。
(1) General formula Bi_2_(_1_-_x_)Pr_2_
A bismuth germanate single crystal for a scintillator, characterized in that it is represented by xGe_3O_9 (0.001≦x<1).
(2)ビスマスとゲルマニウムとプラセオジウムの各酸
化物をBi:Ge:Pr=2(1−x):3:2xの量
比で充分混合し、得られた混合物又は化合物について、
溶融固化法によって溶融、固化して、一般式Bi_2_
(_1_−_x_)Pr_2_xGe_3O_9(但し
、0.001≦x<1)で表わされる単結晶を育成する
ことを特徴とするシンチレータ用ゲルマン酸ビスマス単
結晶の製造法。
(2) For the mixture or compound obtained by thoroughly mixing bismuth, germanium, and praseodymium oxides in a quantitative ratio of Bi:Ge:Pr=2(1-x):3:2x,
It is melted and solidified by the melt-solidification method to form the general formula Bi_2_
A method for producing a bismuth germanate single crystal for a scintillator, characterized by growing a single crystal represented by (_1_-_x_)Pr_2_xGe_3O_9 (0.001≦x<1).
JP19687890A 1990-07-25 1990-07-25 Bismuth germanate single crystal for scintillator and its manufacturing method Expired - Lifetime JPH06102597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19687890A JPH06102597B2 (en) 1990-07-25 1990-07-25 Bismuth germanate single crystal for scintillator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19687890A JPH06102597B2 (en) 1990-07-25 1990-07-25 Bismuth germanate single crystal for scintillator and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0483799A true JPH0483799A (en) 1992-03-17
JPH06102597B2 JPH06102597B2 (en) 1994-12-14

Family

ID=16365155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19687890A Expired - Lifetime JPH06102597B2 (en) 1990-07-25 1990-07-25 Bismuth germanate single crystal for scintillator and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH06102597B2 (en)

Also Published As

Publication number Publication date
JPH06102597B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
US7008558B2 (en) Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
JP3938470B2 (en) Phosphor, radiation detector using the same, and X-ray CT apparatus
US6793848B2 (en) Terbium or lutetium containing garnet scintillators having increased resistance to radiation damage
KR100706705B1 (en) Scintillator crystals, method for making same, use thereof
CN1715364B (en) Scintillator compositions, related processes, and articles of manufacture
US5057692A (en) High speed, radiation tolerant, CT scintillator system employing garnet structure scintillators
US7692153B2 (en) Scintillator crystal and radiation detector
EP1930395A2 (en) Scintillation compositions and method of manufacture thereof
US9507032B1 (en) Barium iodide and strontium iodide crystals and scintillators implementing the same
JP4733017B2 (en) Rare earth iodide type scintillator crystals
US20070193499A1 (en) Zno single crystal as super high speed scintillator...
JP3777486B2 (en) Phosphor, radiation detector using the same, and X-ray CT apparatus
US20080131348A1 (en) Scintillation compositions and method of manufacture thereof
RU2426694C1 (en) Inorganic scintillation material, crystalline scintillator and radiation detector
JP4521929B2 (en) Phosphor and radiation detector and X-ray CT apparatus using the same
US4988882A (en) Monocrystals of silicates of lanthanides usable as scintillators for the detection of X and gamma radiation
US8907292B2 (en) Tungstate-based scintillating materials for detecting radiation
JPH07324187A (en) Scintillator composition and computer tomographic apparatus
JP2018002974A (en) Luminescence material, ceramic scintillator and radiation detector, and manufacturing method of luminescence material
JPH0483799A (en) Bismuth germanate single crystal for scintilator and production thereof
US20100059668A1 (en) Scintillator material and radiation detectors containing same
EP0456002B1 (en) Single crystal scintillator and apparatus for prospecting underground strata using same
Shah et al. LaBr/sub 3: Ce scintillators for gamma ray spectroscopy
RU2164562C1 (en) Method of producing lead-tungstate scintillation single crystal
Mel'chakov et al. Doping of RbCl and KCaCl3 with alkali ions to obtain fast scintillators

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term