JPH0483787A - Production of lamellar single crystal of laminar perovskite-type compound - Google Patents

Production of lamellar single crystal of laminar perovskite-type compound

Info

Publication number
JPH0483787A
JPH0483787A JP2193940A JP19394090A JPH0483787A JP H0483787 A JPH0483787 A JP H0483787A JP 2193940 A JP2193940 A JP 2193940A JP 19394090 A JP19394090 A JP 19394090A JP H0483787 A JPH0483787 A JP H0483787A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
element selected
water
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2193940A
Other languages
Japanese (ja)
Inventor
Hidetomo Ashitaka
芦高 秀知
Rikio Tanioka
谷岡 力夫
Masayoshi Ishii
石井 政良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2193940A priority Critical patent/JPH0483787A/en
Publication of JPH0483787A publication Critical patent/JPH0483787A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3

Abstract

PURPOSE:To obtain the title single crystal in a short time by crystal deposition at the interface between a specific laminar perovskite-type compound and at least two kinds of solvent. CONSTITUTION:A laminar perovskite compound of formula I or II (M is metallic element selected from Pb, Cd, Cu, Fe, Co and Mn; X is at least one halogen element selected from I, Br and Cl; m is 2-8; n is 1-18) is immersed in at least two kinds of solvent (e.g. ethyl acetate and water) with an ammonium salt and a compound of formula MX2 dissolved therein, and the resultant system is left at rest at 0-4 deg.C, thus depositing the objective lamellar single crystal at the interface between said perovskite compound and solvents.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超格子材料として電子デバイス、光デバイス
等に有用な層状ペロブスカイト型化合物の板状単結晶の
作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a plate-like single crystal of a layered perovskite compound useful as a superlattice material for electronic devices, optical devices, etc.

(従来技術およびその問題点) 超格子材料は、その量子井戸内の励起子による非線形特
性を用いることにより、光双安定素子として光通信や光
コンピューターへの応用が見込まれている。
(Prior Art and its Problems) Superlattice materials are expected to be applied to optical communications and optical computers as optical bistable devices by using the nonlinear characteristics caused by excitons in their quantum wells.

このうち、一般式 (C−H2−INH3)2 MX4
(Mは、Pb、 Cd、 Cu、 Fe、 Co及びM
nから選択される一種の金属元素、Xは、I、Br及び
Clから選択される少なくとも一種のハロゲン元素を示
し、n=1〜18の整数である。)、及び、 一般式 NH8C,H!、NH3MX4(Mは、Pb、
 Cd、 Cu、 Fe、 Co及びMnから選択され
る一種の金属元素、Xは、I、Br及びC1から選択さ
れる少なくとも一種のハロゲン元素を示し、m=2〜8
の整数である。) で表される層状ペロブスカイト型化合物は、その分子自
体が半導体部分(MX、部分)と絶縁体部分(アルキル
鎖部分)とから形成されていることから、層間距離等が
よくコントロールされた良好な量子井戸構造を有する材
料として注目されており、例えば、J、Crystal
 Growth、43,213−223(1978) 
、Bull、Chem、Soc、Jpn、、59,56
3−567(1986)、5olid 5tate C
ommn、、69,933−939(1989)等で報
告されている。
Among these, the general formula (C-H2-INH3)2 MX4
(M is Pb, Cd, Cu, Fe, Co and M
One metal element selected from n, X represents at least one halogen element selected from I, Br, and Cl, and n is an integer of 1 to 18. ), and the general formula NH8C,H! , NH3MX4 (M is Pb,
A metal element selected from Cd, Cu, Fe, Co and Mn, X represents at least one halogen element selected from I, Br and C1, m = 2 to 8
is an integer. The layered perovskite compound represented by It is attracting attention as a material having a quantum well structure, for example, J.Crystal
Growth, 43, 213-223 (1978)
,Bull,Chem,Soc,Jpn,,59,56
3-567 (1986), 5olid 5tate C
ommn, 69, 933-939 (1989), etc.

前記文献における層状ペロブスカイト型化合物の結晶は
、ゲル成長法や溶液からの析出法で作製されたものであ
る。
The crystals of the layered perovskite compound in the above literature are produced by a gel growth method or a precipitation method from a solution.

しかしながら、ゲル成長法においては、結晶の作製にお
いて用いる塩類等により、結晶自体の純度低下は避けら
れず、層状構造の乱れを招いてしまう欠点があり、また
結晶の成長時間が遅く、数カ月で数鵬程度のものしか得
られないという問題があった。
However, in the gel growth method, the purity of the crystal itself inevitably decreases due to the salts used in crystal preparation, leading to disturbance of the layered structure.Also, the crystal growth time is slow, and it takes several months to grow. There was a problem that only the level of Peng could be obtained.

一方、溶液からの析出法においては、従来法では結晶作
製容器の壁面(底や側面)から成長するため、極めて脆
弱な板状結晶を破損することなく容器から取り出すこと
は困難であり、また100μm程度の厚い結晶しか得ら
れないため、材料自身による吸収が多大になる等の悪影
響があった。
On the other hand, in the conventional precipitation method from a solution, growth occurs from the walls (bottom and side surfaces) of the crystal preparation container, making it difficult to remove the extremely fragile plate-shaped crystals from the container without damaging them. Since only moderately thick crystals could be obtained, there were negative effects such as a large amount of absorption by the material itself.

(問題点を解決するための技術的手段)本発明は、一般
式 (C,、H2,、、NH3)Z MX4(Mは、P
b、 Cd、 Cu、 Fe、 Co及びMnから選択
される一種の金属元素、Xは、I、Br及びC1から選
択される少なくとも一種のハロゲン元素を示し、n=1
−18の整数である。)、又は、 一般式 N H:I C−Hz−N H:l M X 
4(Mは、Pb、、Cd、 Cu、 Fe、 Co及び
Mnから選択される一種の金属元素、Xは、I、Br及
びClから選択される少なくとも一種のハロゲン元素を
示し、m−2〜8の整数である。) で表される層状ペロブスカイト型化合物を結晶化させる
に際し、界面を形成する2種以上の溶剤を用い、その界
面で結晶を析出させることを特徴とする層状ペロブスカ
イト型化合物の板状単結晶の作製方法に関する。
(Technical means for solving the problem) The present invention provides the general formula (C,,H2,,,NH3)ZMX4(M is P
b, a metal element selected from Cd, Cu, Fe, Co and Mn, X represents at least one halogen element selected from I, Br and C1, n = 1
-18 integer. ), or the general formula NH:IC-Hz-NH:l MX
4 (M is a kind of metal element selected from Pb, Cd, Cu, Fe, Co and Mn, X is at least one kind of halogen element selected from I, Br and Cl, m-2 ~ (This is an integer of 8.) When crystallizing a layered perovskite compound represented by This invention relates to a method for producing a plate-like single crystal.

本発明における層状ペロブスカイト型化合物は、一般式
 (C,H,、。INH:l)Z MX4、又は、一般
式 NH3C,H2,NH,MX4で表される。
The layered perovskite compound in the present invention is represented by the general formula (C,H,,.INH:l)ZMX4 or the general formula NH3C,H2,NH,MX4.

前記一般式において、Mは、Pb、 Cd、 Cu、 
Fe。
In the general formula, M is Pb, Cd, Cu,
Fe.

Co及びMnから選択される一種の金属元素であり、X
は、I、Br及びClから選択される少なくとも−種の
ハロゲン元素である。
It is a kind of metal element selected from Co and Mn, and
is at least one halogen element selected from I, Br and Cl.

また、n=1〜18、m −2〜8の整数である。Further, n=1 to 18, and m is an integer of -2 to 8.

前記一般式におけるアルキル鎖は、直鎮状でも分枝状で
もよい。
The alkyl chain in the general formula may be straight or branched.

前記層状ペロブスカイト型化合物は、以下の方法で合成
される。
The layered perovskite compound is synthesized by the following method.

まず、C,IH,□+ N Hz又はNH2C,H2,
NH2とハロゲン化水素HXとの中和反応により、それ
ぞれClIH2□、NH,X又はXNH3C,H2,N
H,Xを得る。この反応は通常、水やアルコール等の原
料と実質的に反応しない溶剤中で行われ、次に溶剤を除
去した後、未反応物等を適当な溶剤で洗浄して除(。
First, C, IH, □+ N Hz or NH2C, H2,
By the neutralization reaction between NH2 and hydrogen halide HX, ClIH2□, NH,X or XNH3C, H2, N
Obtain H and X. This reaction is usually carried out in a solvent that does not substantially react with the raw materials, such as water or alcohol.Then, after removing the solvent, unreacted substances are removed by washing with an appropriate solvent.

次いで、得られたアンモニウム塩とMX2とを両者可溶
な溶剤中で反応することにより、層状ペロブスカイト型
化合物を得ることができる。
Next, a layered perovskite compound can be obtained by reacting the obtained ammonium salt and MX2 in a solvent in which both are soluble.

本発明において、界面を形成する2種以上の溶剤として
は、酢酸エチル、酢酸プロピルあるいは酢酸ブチル等の
酢酸エステルと水、酢酸エステルとメタノールと水、酢
酸エステルとエタノールと水、ベンゼンと水、トルエン
と水、クロロホルムと水、塩化メチレンと水、ヘキサン
と水、石油エーテルと水、ヘキサンとメタノールと水等
が挙げられる。
In the present invention, the two or more solvents that form an interface include acetic esters such as ethyl acetate, propyl acetate, or butyl acetate and water, acetic esters, methanol and water, acetic esters, ethanol and water, benzene and water, and toluene. and water, chloroform and water, methylene chloride and water, hexane and water, petroleum ether and water, hexane, methanol and water, etc.

溶剤の比率は、界面を形成し得る比率であればよいが、
上層側の量が少なすぎると、析出する結晶が小さくなっ
てしまうので好ましくない。
The ratio of the solvent may be any ratio that can form an interface, but
If the amount on the upper layer side is too small, the precipitated crystals will become small, which is not preferable.

本発明において、前記溶剤の界面で層状ペロフスカイト
型化合物の結晶を析出させる方法としては、その前駆体
であるアンモニウム塩及びMX2とを前記溶剤中に加熱
溶解した後、 (1)静置して徐冷する方法 (2)静置状態で上層の溶剤を蒸発させて濃縮する方法 (3)静置して徐冷しながら上層の溶剤を蒸発させて濃
縮する方法 等が用いられる。
In the present invention, the method for precipitating the crystals of the layered perovskite compound at the interface of the solvent is as follows: (1) After heating and dissolving the ammonium salt and MX2, which are the precursors, in the solvent, Cooling method (2) A method of evaporating and concentrating the solvent in the upper layer while standing still; (3) A method of evaporating and concentrating the solvent in the upper layer while standing still and slowly cooling.

この方法において、アンモニウム塩及びM X zの比
率は、当量よりもアンモニウム塩を過剰に、好ましくは
10%以上過剰に用いたほうが良好な単結晶を得ること
ができる。
In this method, a better single crystal can be obtained by using the ammonium salt in excess of the equivalent amount, preferably 10% or more, of the ammonium salt and M x z.

また、前記方法において、前駆体の代わりに予め合成し
た層状ペロブスカイト型化合物を用いてもよい。
Furthermore, in the above method, a layered perovskite compound synthesized in advance may be used instead of the precursor.

(発明の効果) 本発明によれば、前記一般式で表される層状ペロブスカ
イト型化合物の板状単結晶を容易に得ることが出来る。
(Effects of the Invention) According to the present invention, a plate-like single crystal of a layered perovskite compound represented by the above general formula can be easily obtained.

この板状単結晶は、10μm以下と薄く、超格子材料と
して好適である。また、本発明によれば、この板状単結
晶を極めて短時間(数時間〜数十時間)で得ることがで
き、また析出した結晶は界面に浮遊しているため、結晶
作製容器から容易に取り出すことができ、結晶の破損を
防止−できる。
This plate-like single crystal is as thin as 10 μm or less and is suitable as a superlattice material. Furthermore, according to the present invention, this plate-shaped single crystal can be obtained in an extremely short time (several hours to several tens of hours), and since the precipitated crystals are suspended at the interface, they can be easily removed from the crystal preparation container. The crystal can be taken out and damage to the crystal can be prevented.

(実施例) 以下に、実施例を示して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to Examples.

実施例1 フラスコに水200d及びn−デシルアミン13.7g
を投入し、攪拌しながら9.4%ヨウ化水素酸120g
(Hlll、2g相当)を添加し、さらに還流冷却管を
装着して60〜70°Cで2時間加熱した。次いで、水
を減圧留去した後、エチルエーテル100.dを加え、
洗浄・濾過した。この洗浄・濾過操作を3回繰り返した
後、室温で減圧乾燥して、アンモニウム塩(C+。H,
、NH3I)を得た。元素分析値は以下の通りであった
Example 1 200 d of water and 13.7 g of n-decylamine in a flask
and 120 g of 9.4% hydroiodic acid while stirring.
(Hllll, equivalent to 2 g) was added, and a reflux condenser was further attached and heated at 60 to 70°C for 2 hours. Then, after distilling off water under reduced pressure, ethyl ether 100. Add d,
Washed and filtered. After repeating this washing and filtration operation three times, the ammonium salt (C+.H,
, NH3I) was obtained. The elemental analysis values were as follows.

HNI 42.25  B、36 4.80 44.72wt%
42.11 8.48 4.91 44.49(計算値
)次に、広口すり合わせ容器に酢酸エチル15af及び
水35威を採取し、これに前記アンモニウム塩0.25
0 g (0,877mm+ol)及びヨウ化鉛0.0
20 g (0,0434++u++ol)を添加し、
70〜80°Cに加熱して溶解した。次いで、室温まで
放冷した後、2〜5°C/hrの速度で冷却し、0〜4
°Cで一夜静置して結晶を析出・成長させた。界面に析
出している板状結晶をすくい上げ、冷水中を通した後、
室温で真空乾燥した。
HNI 42.25 B, 36 4.80 44.72wt%
42.11 8.48 4.91 44.49 (calculated value) Next, 15 af of ethyl acetate and 35 h of water were collected in a wide-mouthed container, and 0.25 g of the ammonium salt was added to this.
0 g (0,877mm+ol) and lead iodide 0.0
Add 20 g (0,0434++u++ol),
It was heated to 70-80°C to dissolve it. Next, after cooling to room temperature, cooling at a rate of 2 to 5°C/hr, and cooling to 0 to 4°C.
The mixture was allowed to stand overnight at °C to precipitate and grow crystals. After scooping up the plate-shaped crystals precipitated at the interface and passing them through cold water,
It was dried under vacuum at room temperature.

得られた板状結晶の厚みは、5〜10μmであり、大き
さは0.5〜1×20〜40mであった。
The thickness of the obtained plate crystal was 5 to 10 μm, and the size was 0.5 to 1×20 to 40 m.

この結晶の元素分析値(Pbは■CPによる)は以下の
通りであった。
The elemental analysis values (Pb is based on ■CP) of this crystal were as follows.

CHN   I   Pb 23.1B  4.60 2.68 49.52 20
   wt%23.29 4.69 2.72 49.
21 20.09  (計算値)また、この板状結晶の
X線回折を測定した結果を第1図に示す。C軸方向の面
間隔は平均42.49人(標準偏差0.08 >であっ
た。
CHN I Pb 23.1B 4.60 2.68 49.52 20
wt%23.29 4.69 2.72 49.
21 20.09 (calculated value) Furthermore, the results of measuring the X-ray diffraction of this plate-shaped crystal are shown in FIG. The average spacing in the C-axis direction was 42.49 people (standard deviation >0.08).

さらに、液体窒素中にて、板状結晶の反射スペクトル及
び発光スペクトルを測定した結果をそれぞれ第2図及び
第3図に示す。第2図において、4915人より長波長
域にみられるチャートの波形は、結晶の表面と裏面の間
での干渉によるものと考えられ、得られた結晶が薄く、
平滑であることがわかる。
Furthermore, the results of measuring the reflection spectrum and emission spectrum of the plate-shaped crystal in liquid nitrogen are shown in FIGS. 2 and 3, respectively. In Figure 2, the waveform in the chart that appears in the longer wavelength range than 4915 people is thought to be due to interference between the front and back surfaces of the crystal, and the resulting crystal is thin.
It can be seen that it is smooth.

比較例1 窒素流通口を有する容器に水200dを採取し、実施例
1と同様にして得られたアンモニウム塩0゜250 g
 (0,877auwol)及びヨウ化鉛0.202g
 (0,439+wmol)を添加し、70〜80°C
に加熱して溶解した。次いで、窒素を流通して水を蒸発
させながら徐冷し、結晶を析出・成長させた。
Comparative Example 1 200 d of water was collected in a container with a nitrogen flow port, and 0.250 g of ammonium salt obtained in the same manner as in Example 1 was collected.
(0,877 auwol) and lead iodide 0.202g
(0,439+wmol) at 70-80°C
It was heated to dissolve. Next, the mixture was slowly cooled while nitrogen was passed through it to evaporate water to precipitate and grow crystals.

容器底部に析出した結晶を取り出し、冷水中を通した後
、室温で真空乾燥した。
The crystals deposited at the bottom of the container were taken out, passed through cold water, and then vacuum-dried at room temperature.

得られた結晶の厚みは、80〜130μmであり、大き
さは0.2〜0.5 X O15〜1InI11であっ
た。
The thickness of the obtained crystal was 80-130 μm, and the size was 0.2-0.5×O15-1InI11.

また、この結晶のX線回折、反射スペクトル及び発光ス
ペクトルを測定した結果、X線回折及び発光スペクトル
は実施例1で得られた結晶とほぼ同様であったが、反射
スペクトルにおいては、実施例1でみられた干渉現象は
現れなかった。
Furthermore, as a result of measuring the X-ray diffraction, reflection spectrum, and emission spectrum of this crystal, the X-ray diffraction and emission spectrum were almost the same as those of the crystal obtained in Example 1; The interference phenomenon observed in 2007 did not appear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1で得られた板状結晶のX線
回折スペクトルを表す図であり、第2図は、前記板状結
晶の反射スペクトルを表す図であり・、第3図は、前記
板状結晶の発光スペクトルを表す図である。
FIG. 1 is a diagram showing the X-ray diffraction spectrum of the plate-shaped crystal obtained in Example 1 of the present invention, FIG. 2 is a diagram showing the reflection spectrum of the plate-shaped crystal, and FIG. The figure is a diagram showing the emission spectrum of the plate-shaped crystal.

Claims (1)

【特許請求の範囲】 一般式(C_nH_2_n_+_1NH_3)_2MX
_4(Mは、Pb、Cd、Cu、Fe、Co及びMnか
ら選択される一種の金属元素、Xは、I、Br及びCl
から選択される少なくとも一種のハロゲン元素を示し、
n=1〜18の整数である。)、又は、 一般式NH_3C_mH_2_mNH_3MX_4(M
は、Pb、Cd、Cu、Fe、Co及びMnから選択さ
れる一種の金属元素、Xは、I、Br及びClから選択
される少なくとも一種のハロゲン元素を示し、m=2〜
8の整数である。) で表される層状ペロブスカイト型化合物を結晶化させる
に際し、界面を形成する2種以上の溶剤を用い、その界
面で結晶を析出させることを特徴とする層状ペロブスカ
イト型化合物の板状単結晶の作製方法。
[Claims] General formula (C_nH_2_n_+_1NH_3)_2MX
_4 (M is a kind of metal element selected from Pb, Cd, Cu, Fe, Co and Mn, X is I, Br and Cl
At least one halogen element selected from
n=an integer from 1 to 18. ), or the general formula NH_3C_mH_2_mNH_3MX_4(M
represents a metal element selected from Pb, Cd, Cu, Fe, Co, and Mn, X represents at least one halogen element selected from I, Br, and Cl, and m=2 to
It is an integer of 8. ) Preparation of a plate-shaped single crystal of a layered perovskite compound, characterized in that when crystallizing the layered perovskite compound represented by the formula, two or more solvents that form an interface are used to precipitate crystals at the interface. Method.
JP2193940A 1990-07-24 1990-07-24 Production of lamellar single crystal of laminar perovskite-type compound Pending JPH0483787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193940A JPH0483787A (en) 1990-07-24 1990-07-24 Production of lamellar single crystal of laminar perovskite-type compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2193940A JPH0483787A (en) 1990-07-24 1990-07-24 Production of lamellar single crystal of laminar perovskite-type compound

Publications (1)

Publication Number Publication Date
JPH0483787A true JPH0483787A (en) 1992-03-17

Family

ID=16316276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193940A Pending JPH0483787A (en) 1990-07-24 1990-07-24 Production of lamellar single crystal of laminar perovskite-type compound

Country Status (1)

Country Link
JP (1) JPH0483787A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716927B2 (en) * 2000-12-15 2004-04-06 Japan Science And Technology Agency Perovskite-type organic/inorganic lamellar polymer
CN104131352A (en) * 2014-07-17 2014-11-05 南京信息工程大学 Preparation method of large-sized perovskite structure CH3NH3PbI3 crystal
CN104141166A (en) * 2014-07-17 2014-11-12 南京信息工程大学 Preparing method for methylamine bromide lead crystals of large-size perovskite structure
JP2018039804A (en) * 2016-09-06 2018-03-15 旭化成株式会社 Organic-inorganic metallic compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716927B2 (en) * 2000-12-15 2004-04-06 Japan Science And Technology Agency Perovskite-type organic/inorganic lamellar polymer
CN104131352A (en) * 2014-07-17 2014-11-05 南京信息工程大学 Preparation method of large-sized perovskite structure CH3NH3PbI3 crystal
CN104141166A (en) * 2014-07-17 2014-11-12 南京信息工程大学 Preparing method for methylamine bromide lead crystals of large-size perovskite structure
JP2018039804A (en) * 2016-09-06 2018-03-15 旭化成株式会社 Organic-inorganic metallic compound

Similar Documents

Publication Publication Date Title
Trentler et al. Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth
WO2006012052A2 (en) Amidinate ligand containing chemical vapor deposition precursors
CN110684202B (en) Two-dimensional layered imidazole copper C60Material, preparation method and application thereof
JPH083171A (en) Adduct, its production, and production of thin film
Wells et al. Synthesis and structural characterization of organoindium-phosphorus complexes containing a four-membered In-P-In-Cl or In-P-In-P ring: crystal structures of [cyclic](Me3SiCH2) 2InP (SiMe3) 2In (CH2SiMe3) 2Cl and [(Me3SiCH2) 2InP (SiMe3) 2] 2
Sullivan et al. Aerosol-assisted chemical vapor deposition of ZnS from thioureide single source precursors
JPH0483787A (en) Production of lamellar single crystal of laminar perovskite-type compound
JP2002302473A (en) ASYMMETRIC TYPE beta-KETOIMINATE LIGAND COMPOUND, METHOD FOR PRODUCING THE SAME AND ORGANOMETALLIC PRECURSOR CONTAINING THE SAME
EP3719001A2 (en) A method for synthesis of organic iodides, a perovskite-forming composition comprising an organic iodide and a photovoltaic cell with a perovskite layer obtained therefrom
Bailey et al. Synthesis and spectroscopic characterization of O-alkyl dithiocarbonate (Xanthate) derivatives of dimethyl-and diphenyltellurium (IV). Crystal structures of Me2Te [S2COEt] 2 and Ph2Te [S2COEt] 2
Horley et al. Deposition of tetragonal β-In 2 S 3 thin films from tris (N, N-diisopropylmonothiocarbamato) indium (III), In (SOCN i Pr 2) 3, by low pressure metal-organic chemical vapour deposition
JPH02100210A (en) Organic superconducting material and manufacture thereof
JPH04265227A (en) Low temperature synthesis of alkali metal salts of niobic acid and tantalic acid
US4885188A (en) Process for forming thin film of metal sulfides
JP3904255B2 (en) β-diketone compounds and metal complexes thereof
WO1996020943A1 (en) Liquid precursor for cubic-phase passivating/buffer film
KR100544353B1 (en) A precursor of zirconium dioxide, preparation method thereof and process for the formation of thin film using the same
JP2827360B2 (en) Organic gold compounds
DE69722779T2 (en) VOLATILE MAGNESIUM ALKYL ALUMINUM ALCOXIDE AND THE USE THEREOF FOR DEPOSITING A MAGNESIUM ALUMINATE LAYER
Esteb et al. Novel C1 symmetric zirconocenes containing substituted indenyl moieties for the stereoregular polymerization of propylene
JP3947815B2 (en) Coating liquid and thin film manufacturing method using the same
CN1155743C (en) Tetragonal conical compound as non-linear optical material and crystal growth
US4965381A (en) Organo-metallic crystalline polymer of molybdenum carboxylate and bidentate ligand
JP3823644B2 (en) Method for producing metal oxide thin film
JP3229352B2 (en) Method for producing β-diketonate metal complex