JPH0483727A - Method for preparing optical fiber preform - Google Patents

Method for preparing optical fiber preform

Info

Publication number
JPH0483727A
JPH0483727A JP19314790A JP19314790A JPH0483727A JP H0483727 A JPH0483727 A JP H0483727A JP 19314790 A JP19314790 A JP 19314790A JP 19314790 A JP19314790 A JP 19314790A JP H0483727 A JPH0483727 A JP H0483727A
Authority
JP
Japan
Prior art keywords
glass
weight
deposited
fine powder
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19314790A
Other languages
Japanese (ja)
Inventor
Tsutomu Yabuki
矢吹 勉
Yoshitomi Watanabe
渡辺 好富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP19314790A priority Critical patent/JPH0483727A/en
Publication of JPH0483727A publication Critical patent/JPH0483727A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To control the weight of deposited glass fine powder constant by continuously measuring the weight of a porous glass base material and the transfer speed of a core glass to determine the increase in the weight of the porous glass base material subsequently controlling the transfer speed of the core glass so that the weight of the deposited glass fine powder is constant. CONSTITUTION:A core glass rod 9 held with a scroll chuck attached to the upper end of a target bar 7 through the target bar 7 is rotated with a rotation motor 5 loaded on a supporting fitting 4 and transferred in the longitudinal direction with a motor 1 for transferring a target. A raw material such as SiCl4 is simultaneously blown on the surface of the glass rod by AVD method from burners 10, 11 to deposit glass fine powder on the surface of the glass rod 9. While the glass fine powder is deposited on the surface of the glass rod, the weight of the deposited glass fine powder is continuously measured with a load cell 3 and the transfer speed of the core glass rod 9 is controlled so that the weight of the deposited porous glass fine powder is constant, whereby a prescribed amount of the glass fine powder is deposited to provide an optical fiber preform with high precision without requiring any retreatment.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、コアと一部クラッドとを有するコアガラスロ
ッド表面にガラス微粉末を堆積させ、その後、焼結して
光ファイバ母材を得る、外付全合成法による光ファイバ
母材の製造方法に関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention involves depositing fine glass powder on the surface of a core glass rod having a core and a part of cladding, and then sintering it to obtain an optical fiber preform. , relates to a method for manufacturing an optical fiber preform by an external total synthesis method.

「従来の技術] 従来、光ファイバ母材(いわゆるプリフォーム)を製造
する方法の1つとして、VAD法で作られたコアと一部
クラッドを含むコアガラス口・yドの表面に、該コアガ
ラスロッドを回転させつつ長手方向に移動させながら、
VAD法でガラス微粉末を堆積させて多孔質母材を造り
、これを焼結してクラッドを形成せしめる、いわゆる外
付全合成法による光ファイバ母材の製造方法があり、光
ファイバの機械的特性の向上。
``Prior Art'' Conventionally, as one of the methods for manufacturing an optical fiber preform (so-called preform), the core is placed on the surface of a core glass opening/yield that includes a core made by the VAD method and a part of the cladding. While rotating the glass rod and moving it in the longitudinal direction,
There is a method for manufacturing an optical fiber base material by the so-called external total synthesis method, in which a porous base material is created by depositing glass fine powder using the VAD method, and this is sintered to form a cladding. Improved characteristics.

科学的安定性の向上及び偏心を小さくできる方法として
採用されている。
This method has been adopted as a method to improve scientific stability and reduce eccentricity.

上記外付全合成法による光ファイバ母材の製遣方法では
、コアガラスロッド表面に所定のガラス量を堆積させる
ことで伝送特性及びコア径などを制御する。そのため、
所定のガラス量を堆積させるには、酸水素バーナーに流
す5iCJ<やH2,0□等の原材料の流量を一定にし
、コアガラスロットの移動速度を変えることで調整する
In the method for manufacturing an optical fiber preform using the external total synthesis method, the transmission characteristics, core diameter, etc. are controlled by depositing a predetermined amount of glass on the surface of the core glass rod. Therefore,
In order to deposit a predetermined amount of glass, the flow rate of raw materials such as 5iCJ< or H2,0□ flowing into the oxyhydrogen burner is kept constant and adjusted by changing the moving speed of the core glass lot.

またコアガラスロッドの移動速度を一定とし、ガス流量
、例えば5iCJ 4 、H2等の流量を変えることで
調整することもある。
Alternatively, the moving speed of the core glass rod may be kept constant and adjusted by changing the gas flow rate, for example, the flow rate of 5iCJ 4 or H2.

[発明が解決しようとする課題] 前記の製造方法は、移動速度又はガス流量を変えて行う
ものの、その考え方の基礎は、条件出しをした結果と同
じ条件で製造すれば同じ物が製造できる、という前提に
立っている。
[Problems to be Solved by the Invention] Although the above manufacturing method is performed by changing the moving speed or gas flow rate, the basis of the idea is that the same product can be manufactured if manufactured under the same conditions as the results of setting the conditions. It is based on the premise that.

ところが実際には、コアガラスロッド表面に堆積させる
ガラス量は1本1本異なり、更にコアガラスロッドの回
転によるバーナとの位置関係の変化や、ガラスロッドの
曲がりによるバーナとの位置関係の変化等により、所定
の堆゛積量よりズしてしまう。
However, in reality, the amount of glass deposited on the surface of the core glass rod differs from one core glass rod to another, and the positional relationship with the burner changes due to rotation of the core glass rod, and changes in the positional relationship with the burner due to bending of the glass rod. As a result, the amount of deposition exceeds the predetermined value.

第3図は、ガラスロッドの移動速度を変えることでコア
ガラスロッド(外径d)に対する外付部(外径D)の倍
率を所定の値に調整する場合を示したもので、黒丸は条
件だしのときを、白丸はその条件だしの結果を用いて得
られた連続製造品の倍率の変動を示す。
Figure 3 shows the case where the magnification of the external part (outer diameter D) relative to the core glass rod (outer diameter d) is adjusted to a predetermined value by changing the moving speed of the glass rod. When making dashi, the white circles indicate the variation in magnification of continuously manufactured products obtained using the results of the dashi under those conditions.

このように従来の製造方法では、所定の堆積量よりズし
てしようため、表面にもう一度ガラス微粉末を外付した
り表面を研磨したりして、再処理を行う必要がある。ま
た、5iCJ 4 、H2O2ガス等のガス流量が変化
した場合でも、出来上ってみないとどんな物になってい
るか分からず、条件出しの結果を見るのに時間が掛かつ
てしまう。
As described above, in the conventional manufacturing method, since the amount of deposition exceeds a predetermined value, it is necessary to perform reprocessing by applying fine glass powder to the surface again or polishing the surface. Further, even if the flow rate of gas such as 5iCJ 4 or H2O2 gas changes, it is difficult to know what the product will look like until it is completed, and it takes time to see the results of setting the conditions.

本発明の目的は、前記した従来技術の欠点を解消し、コ
アガラスロッドの表面にガラス微粉末を堆積させながら
所定の堆積量になるように制御できる光ファイバ母材の
製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an optical fiber preform, which eliminates the drawbacks of the prior art described above and can control the deposition amount of fine glass powder on the surface of a core glass rod to a predetermined amount. It is in.

[課題を解決するための手段] 本発明は、コアと一部クラッドとを有するコアガラスの
表面に、該コアガラスを回転させつつ且つ長手方向に移
動させながら、VAD法でガラス微粉末を堆積させて多
孔質母材を遺り、これを焼結してクラッドとする外付全
合成法による光ファイバ母材の製造方法において、上記
ガラス微粉末を堆積させるに際し、連続的に多孔質母材
の重量を測定し、その測定重量と移動速度とに基づいて
多孔質母材の単位長さ当りの増加重量を求め、これと指
示値との比較結果に応じてコアガラスの上記移動速度を
制御することにより、多孔質母材の単位長さ当りの堆積
重量を一定化するものである。
[Means for Solving the Problems] The present invention involves depositing fine glass powder on the surface of a core glass having a core and a portion of cladding by a VAD method while rotating and moving the core glass in the longitudinal direction. In a method for manufacturing an optical fiber preform by an external total synthesis method in which a porous preform is left behind and is sintered to form a cladding, the porous preform is continuously removed when depositing the fine glass powder. Measure the weight of the core glass, calculate the increased weight per unit length of the porous base material based on the measured weight and the moving speed, and control the moving speed of the core glass according to the result of comparing this with the indicated value. By doing so, the deposited weight per unit length of the porous base material is made constant.

[作用] 本発明は、ガラス微粉末を堆積させながら連続的に重量
を測定し、ガラス微粉末を堆積量の増加量が所定の値と
なるように、コアガラスの移動速度を調整するものであ
り、これにより僅かな条件の変化でも、常時所定のガラ
ス微粉末を堆積させることができ、精度良く且つ再処理
の不必要な光ファイバ母材を製造することができる。
[Function] The present invention continuously measures the weight while depositing fine glass powder, and adjusts the moving speed of the core glass so that the amount of increase in the amount of deposited fine glass powder becomes a predetermined value. This makes it possible to deposit a predetermined amount of fine glass powder at all times even with slight changes in conditions, and to manufacture an optical fiber preform with high precision and without the need for reprocessing.

[実施例コ 本発明の具体的な実施例を第1図、第2図を引用しなが
ら詳細に説明する。
[Example] A specific example of the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図は光ファイバ母材製造装置の概略図で、1はター
ゲット移動用モータ、2はターゲット移動用ボールネジ
、3はロードセル、4はターゲット回転部の支持金具、
5はターゲット回転用モータ、6はスクロールチャック
、7はターゲツト棒、8は外付部多孔質母材、9はVA
D法で作られたコアガラスロッド、10はバーナI、1
1はバーナ■、12は制御装置を示す。
FIG. 1 is a schematic diagram of an optical fiber preform manufacturing apparatus, in which 1 is a motor for moving the target, 2 is a ball screw for moving the target, 3 is a load cell, 4 is a support metal fitting for the target rotation part,
5 is a motor for rotating the target, 6 is a scroll chuck, 7 is a target rod, 8 is an external porous base material, 9 is a VA
Core glass rod made by D method, 10 is burner I, 1
1 indicates a burner (2), and 12 indicates a control device.

コアガラスロッド9がターゲットを介してターゲツト棒
7に取り付けられており、そのターゲツト棒7の上端は
、支持金具4より垂下したスクロールチャック6で把持
され、支持金具4に載置したターゲット回転用モータ5
で回転されようになっている6 支持金具4の上部は、その支持金具4の内側に位置する
ロードセル3に乗せられており、従って支持金具4はロ
ードセル3により下方から支持されている、このロード
セル3自体は、ターゲ・7ト移動用ボールネジ2と係合
している移動枠体(図示せず)に取り付けられ、ターゲ
ット移動用ボールネジ2は上方の移動用モータ1で回転
されるようになっている。
A core glass rod 9 is attached to a target rod 7 via a target, and the upper end of the target rod 7 is gripped by a scroll chuck 6 hanging from the support metal fitting 4, and a target rotation motor placed on the support metal fitting 4 is held at the upper end of the target rod 7. 5
The upper part of the support metal fitting 4 is placed on the load cell 3 located inside the support metal fitting 4, and therefore the support metal fitting 4 is supported from below by the load cell 3. 3 itself is attached to a moving frame (not shown) that engages with a ball screw 2 for moving the target, and the ball screw 2 for moving the target is rotated by the motor 1 for moving the target. There is.

要するに、支持金具4はロードセル3を介して移動枠体
に吊られており、これにより外付部多孔質母材8.コア
ガラスロッド9.ターゲ・ット、ターゲット棒7.スク
ロールチャック6、回転用モータ5の全重量が、ロード
セル3で測定される。
In short, the support fitting 4 is suspended from the moving frame via the load cell 3, and thereby the external porous base material 8. Core glass rod9. Target, target stick7. The total weight of the scroll chuck 6 and rotation motor 5 is measured by the load cell 3.

また、ターゲット移動用ボールネジ2が回転されること
で、移動枠体及びロードセル3が一緒に上方向に移動し
、これに伴い支持金具4.ターゲット棒7.コアガラス
ロッド9.外付部多孔質母材8等も一緒に移動する。こ
のコアガラスロッド9の引上げ速度は、制御装置12か
ら移動用モータ1に与えられる移動速度13で決定され
る。
Further, as the target moving ball screw 2 is rotated, the moving frame and the load cell 3 move upward together, and accordingly, the supporting metal fittings 4. Target stick7. Core glass rod9. The external porous base material 8 and the like also move together. The pulling speed of the core glass rod 9 is determined by the moving speed 13 given to the moving motor 1 from the control device 12.

上記ロードセル3の重量測定精度は1g単位であり、0
〜IOVの大きさの電気信号で、吊下げ重量を出力表示
する。このロードセル3から電気信号として出力される
吊下げ重量14は、連続的に制御装置12に入力され、
次のように処理される。
The weight measurement accuracy of the load cell 3 is 1g, and 0
The hanging weight is output and displayed using an electrical signal of ~IOV magnitude. The suspended weight 14 output as an electrical signal from the load cell 3 is continuously input to the control device 12,
It is processed as follows.

即ち、制御装置12は、吊下げ重量14を移動速度13
と演算して、外付部多孔質母材8の単位長さ当りの重量
変化15に換算する。そして、この単位長さ当りの重量
変化15を外部入力可能な指示値16と比較演算し、そ
の比較結果たる差分に応じて移動速度13を変化させ、
その修正された移動信号をターゲット移動用モータ1に
送る。
That is, the control device 12 moves the suspended weight 14 at a moving speed 13.
This is calculated and converted into a weight change of 15 per unit length of the external porous base material 8. Then, this weight change 15 per unit length is compared with an externally inputtable instruction value 16, and the moving speed 13 is changed according to the difference as a result of the comparison.
The corrected movement signal is sent to the target movement motor 1.

光ファイバ母材の製造方法は、上記コアガラスロッド9
を回転用モータ5で回転させつつ且つ移動用モータ1に
より長手方向に移動させながら、AVD法で、そのロッ
ド表面にバーナ10,11の火炎によるガラス微粉末を
堆積させる外付全合成法による。その際、ガラス微粉末
を堆積させながら連続的に重量を測定し、外付部多孔質
母材8のガラス微粉末堆積量が所定の値となるように、
コアガラスロッド9の移動速度を調整する。これにより
、僅かな条件の変化でも、常に所定のガラス微粉末を堆
積させることができ、精度良く且つ再処理の不必要な光
ファイバ母材を製造することができる。
The method for manufacturing the optical fiber preform includes the above-mentioned core glass rod 9.
This is an external total synthesis method in which fine glass powder is deposited by the flames of burners 10 and 11 on the surface of the rod using the AVD method while the rod is rotated by the rotation motor 5 and moved in the longitudinal direction by the movement motor 1. At this time, the weight is continuously measured while depositing the glass fine powder, so that the amount of glass fine powder deposited on the external porous base material 8 becomes a predetermined value.
Adjust the moving speed of the core glass rod 9. Thereby, even if there is a slight change in conditions, a predetermined amount of fine glass powder can always be deposited, and an optical fiber preform can be manufactured with high precision and without the need for reprocessing.

具体的に第2図を参照しながら、上記装置により、コア
及びクラッドを一部含む長さL = 1000mm、外
径d=φ16.Ommのコアガラスロッド9に、その2
.3倍(外付部外径りとコアガラスロッド外径dの比;
 D/d )の外付けをなす場合について説明する。
Specifically, referring to FIG. 2, the above-mentioned apparatus is used to obtain a length L = 1000 mm, including a portion of the core and cladding, and an outer diameter d = φ16. Omm core glass rod 9, Part 2
.. 3 times (ratio of the outer diameter of the external part and the outer diameter of the core glass rod d;
The case of externally attaching the D/d) will be explained.

バーナ10(バーナI)には5iCJ、を2.5 g/
1lin 、バーナ11(バーナ■)には5tcn、を
13.5g /l1in流し、コアガラスロッド9を回
転移動させながら、その表面にガラス微粉末からなる多
孔質母材を堆積させた。移動速度については、先ず、第
2図のa点の部分の堆積を種付けの一定の速度で行い、
その後、第2図のb点の部分までは、これまでの製造結
果の移動速度−倍率の関係から予想される一定移動速度
で堆積した。ここに至るまでには、多孔質母材8の外径
は一定になる。
Burner 10 (Burner I) contains 5iCJ, 2.5 g/
1 lin, 5 tcn was flowed at 13.5 g/l 1 in into the burner 11 (burner ■), and while the core glass rod 9 was rotated, a porous base material made of fine glass powder was deposited on the surface thereof. Regarding the movement speed, first, the deposition at point a in Fig. 2 is carried out at a constant speed of seeding.
Thereafter, up to point b in FIG. 2, the deposition was carried out at a constant moving speed expected from the relationship between moving speed and magnification in the manufacturing results up to now. Up to this point, the outer diameter of the porous base material 8 becomes constant.

外付を開始後、60分後に外径φ83mmと一様となり
、移動速度も85mm/hrとしてガラス微粉末の堆積
にする重量増加量も一定となった。このときの1mm長
さ当りの重量増加分は2.000 gであった。
After 60 minutes from the start of external attachment, the outer diameter became uniform at 83 mm, the moving speed was 85 mm/hr, and the amount of weight increase due to the deposition of fine glass powder was also constant. At this time, the weight increase per 1 mm length was 2.000 g.

第2図のb点の時間に達しなら、重量測定に基づく制御
を開始する。前記ロッドコアへの外付量は1.897g
/mmとならなければならず、これを指示値16として
制御装212へ与える。制御装置12はこの指示値1.
897g/mmと上記重量変化2.000g/mmとを
比較制御17し、その差分に応じた移動速度13をター
ゲット移動用モータ1にフィードバックする。このフィ
ードバック制御により、移動速度は、約1時間、後に堆
積量が1.897 g/mmとなるように上記85mm
/hrから85.7mm/hrへと次第に変化し、第2
図の0点の以後はほぼ一定速度になり堆積が行われた。
When the time at point b in FIG. 2 is reached, control based on weight measurement is started. The amount of external attachment to the rod core is 1.897g
/mm, and this is given to the control device 212 as the instruction value 16. The control device 12 receives this instruction value 1.
A comparison control 17 is performed between 897 g/mm and the weight change of 2.000 g/mm, and a moving speed 13 corresponding to the difference is fed back to the target moving motor 1. Due to this feedback control, the moving speed is adjusted to 85 mm above so that the deposit amount is 1.897 g/mm after about 1 hour.
/hr to 85.7mm/hr, and the second
After the 0 point in the figure, deposition was performed at a nearly constant speed.

その結果、焼結後プリフォームアナライザで信号を評価
したところ、目標通り外付部外径Rがコアガラスロッド
外径rの2.3倍の倍率になった。
As a result, when the signal was evaluated using a preform analyzer after sintering, the outer diameter R of the external part was 2.3 times the outer diameter r of the core glass rod, as desired.

[発明の効果] 以上述べたように、本発明によれば、ガアラス微粉末を
堆積させながら、その堆積状況を重量変化でモニターし
、その値が所定の値になるようにするため、目標値通り
の再処理を必要としない光ファイバ母材を製造すること
ができる。
[Effects of the Invention] As described above, according to the present invention, while depositing Gaaras fine powder, the deposition status is monitored by weight change, and the target value is set so that the value becomes a predetermined value. Optical fiber preforms can be produced that do not require on-site reprocessing.

また製造上の僅かな条件変化も把握でき、変化したら変
化したなりの条件で光ファイバ母材を製造することがで
きる。
Furthermore, it is possible to grasp slight changes in manufacturing conditions, and if there are any changes, the optical fiber preform can be manufactured under the changed conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略図、第2図は本発
明の一実施例を示す制御状況を示すもので、長手方向の
移動速度と重量変化の関係を示す図、第3図は従来の方
法で光ファイバ母材を製造した場合のガラスロッドの移
動速度と倍率の倍率の変動との関係を示す図である。 図中、1はターゲット移動用モータ、2はターゲット移
動用ボールネジ、3はロードセル、4はターゲット回転
部の支持金具、5はターゲット回転用モータ、6はスク
ロールチャック、7はターゲツト棒、8は外付部多孔質
母材、9はコアガラスロッド、10はバーナI、11は
バーナ■、12は制御装置を示す。 特許出願人  日立電線株式会社 代理人弁理士  絹 谷 信 脛 第2図 9゛コア刀゛ブスロ・7ト カ“ラヌロ、トnharmつ’hr) 第3図
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing a control situation showing an embodiment of the present invention, and is a diagram showing the relationship between longitudinal movement speed and weight change. The figure shows the relationship between the moving speed of a glass rod and the variation in magnification when an optical fiber preform is manufactured by a conventional method. In the figure, 1 is a motor for moving the target, 2 is a ball screw for moving the target, 3 is a load cell, 4 is a support bracket for the target rotating part, 5 is a motor for rotating the target, 6 is a scroll chuck, 7 is a target rod, and 8 is an outer Reference numeral 9 indicates a porous base material, 9 indicates a core glass rod, 10 indicates a burner I, 11 indicates a burner ①, and 12 indicates a control device. Patent Applicant Hitachi Cable Co., Ltd. Representative Patent Attorney Shin Kinuya Shin Figure 2 9 Core Sword Busuro 7 Toka Ranuro Tonharmtsu'hr) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、コアと一部クラッドとを有するコアガラスの表面に
、該コアガラスを回転させつつ且つ長手方向に移動させ
ながら、VAD法でガラス微粉末を堆積させて多孔質母
材を造り、これを焼結してクラッドとする外付全合成法
による光ファイバ母材の製造方法において、上記ガラス
微粉末を堆積させるに際し、連続的に多孔質母材の重量
を測定し、その測定重量と移動速度とに基づいて多孔質
母材の単位長さ当りの増加重量を求め、これと指示値と
の比較結果に応じてコアガラスの上記移動速度を制御す
ることにより、多孔質母材の単位長さ当りの堆積重量を
一定化することを特徴とする光ファイバ母材の製造方法
1. While rotating and moving the core glass in the longitudinal direction, fine glass powder is deposited on the surface of the core glass having a core and a part of the cladding using a VAD method to create a porous base material. In a method for manufacturing an optical fiber base material using an external total synthesis method in which it is sintered to form a cladding, the weight of the porous base material is continuously measured when depositing the above-mentioned glass fine powder, and the measured weight and moving speed are measured. By calculating the increased weight per unit length of the porous base material based on the above, and controlling the above-mentioned moving speed of the core glass according to the result of comparing this with the indicated value, the unit length of the porous base material is determined. 1. A method for manufacturing an optical fiber preform, characterized in that the weight of each deposited material is made constant.
JP19314790A 1990-07-23 1990-07-23 Method for preparing optical fiber preform Pending JPH0483727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19314790A JPH0483727A (en) 1990-07-23 1990-07-23 Method for preparing optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19314790A JPH0483727A (en) 1990-07-23 1990-07-23 Method for preparing optical fiber preform

Publications (1)

Publication Number Publication Date
JPH0483727A true JPH0483727A (en) 1992-03-17

Family

ID=16303068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19314790A Pending JPH0483727A (en) 1990-07-23 1990-07-23 Method for preparing optical fiber preform

Country Status (1)

Country Link
JP (1) JPH0483727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653382A1 (en) * 1993-11-12 1995-05-17 Sumitomo Electric Industries, Ltd. Method and apparatus for manufacturing an optical fibre preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653382A1 (en) * 1993-11-12 1995-05-17 Sumitomo Electric Industries, Ltd. Method and apparatus for manufacturing an optical fibre preform
US5624474A (en) * 1993-11-12 1997-04-29 Sumitomo Electric Industries, Ltd. Optical fiber preform manufacturing apparatus which measures a vertical load with three cells

Similar Documents

Publication Publication Date Title
JP3437480B2 (en) Adjustment method of glass base material stretching device
US4294601A (en) Apparatus and process for automatic control of the production of optical fiber
CN103449716A (en) Device and method for manufacturing optical fiber preform rod with VAD (Vapor Axial Deposition) method
CN108929031B (en) Device and method for preparing optical fiber preform base material by VAD
JPS60141634A (en) Parent material for optical fiber and its preparation
JPH0483727A (en) Method for preparing optical fiber preform
CN214004432U (en) Control device for uniform density of multi-deposition blast lamps
JPH04292434A (en) Production of optical fiber preform
US4608071A (en) Method for reducing diameter of a glass rod or tube by drawing
JP4107655B2 (en) Sintering apparatus and sintering method for optical fiber preform
JPS63285130A (en) Device for producing optical fiber preform
JPH0354129A (en) Preparation of optical fiber preform
JPH1135335A (en) Production of optical fiber preform
JPH0583500B2 (en)
JPH03109230A (en) Production of optical fiber preform
JPH07242435A (en) Production of porous glass base material for optical fiber
JPH0692667A (en) Production of optical fiber preform
JPH10114534A (en) Device for producing porous base material for optical fiber and production method
JP2003020239A (en) Method for processing optical fiber preform
JPH051226B2 (en)
JP2001206729A (en) Method for manufacturing optical fiber preform
JPS62162636A (en) Sintering apparatus for porous preform for optical fiber
JPS59137331A (en) Manufacture of base material for optical fiber
JPH05306137A (en) Apparatus for production of optical fiber base material
JPH02243530A (en) Production of base material for optical fiber