JPH048367B2 - - Google Patents

Info

Publication number
JPH048367B2
JPH048367B2 JP61045755A JP4575586A JPH048367B2 JP H048367 B2 JPH048367 B2 JP H048367B2 JP 61045755 A JP61045755 A JP 61045755A JP 4575586 A JP4575586 A JP 4575586A JP H048367 B2 JPH048367 B2 JP H048367B2
Authority
JP
Japan
Prior art keywords
graphite
pyrolytic graphite
anisotropy
reaction tube
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61045755A
Other languages
Japanese (ja)
Other versions
JPS62202809A (en
Inventor
Yoshikazu Yoshimoto
Tomonari Suzuki
Yoshuki Togaki
Shigeo Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61045755A priority Critical patent/JPS62202809A/en
Publication of JPS62202809A publication Critical patent/JPS62202809A/en
Publication of JPH048367B2 publication Critical patent/JPH048367B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<発明の技術分野> 本発明は、1000℃前後またはそれ以下の比較的
低温で、熱分解CVD(化学気相堆積)法により、
異方性の優れた高配向熱分解黒鉛を製造する方法
及び該熱分解黒鉛の異方性の制御技術に関するも
のであり、新規な機能素子を創作するための極め
て有用な基本材料技術を確立した点で技術的意義
を有する。 <従来の技術とその問題点> 化学的に安定で、3000℃以上の高温まで相変態
せず、熱と電気の伝導性に関して著しい異方性を
有する黒鉛の人工合成には、通常長期間に亘る高
温高圧の製造プロセスが必要とされてきた。例え
ば、メタンを出発物質とする場合には高温(約
2000℃以上)で熱分解しさらに高配向化する目的
で高温高圧下での熱処理が用いられている。ま
た、高分子繊維を高温処理することにより、繊維
状炭素を得る方法も古くから知られている。しか
しながら、これらの方法は高温で処理するため
に、画一化された構造材料としては利用できる
が、異方性を制御した機能電子材料への応用は困
難である。他方、比較的低温で熱分解黒鉛を得る
方法として、出発物質に特殊な有機化合物を用
い、脱水素反応、脱ハロゲン化水素反応、脱炭素
反応または脱水反応等を利用した形成法を度々用
いられているが、炭素堆積物の高配向化が達成さ
れた例は皆無であり、従つて結晶性(異方性)の
制御を達成した例も存在しない。黒鉛の異方性を
利用した機能材料または機能素子を実現するため
には、低温における熱分解黒鉛の高配向化及び異
方性の制御等の新技術の確立が必要である。 <発明の目的> 本発明は、上記従来の現状に鑑みてなされたも
ので、1000℃前後またはそれ以下の比較的低温で
優れた異方性を有する熱分解黒鉛を基板上に形成
するとともに得られた熱分解黒鉛の異方性の制御
も可能とする技術を確立したものであり、その異
方性を利用した機能材料または機能素子の実現を
可能とする熱分解黒鉛の製造技術及び該熱分解黒
鉛の異方性の制御技術を提供することを目的とす
る。 <発明の概要> 本発明の熱分解黒鉛形成法は、芳香族化合物ま
たは不飽和化合物を原料とし、基板上へ熱分解黒
鉛を形成するに際して、熱分解雰囲気中に、反応
管壁に付着させた炭素薄膜の効果を導入すること
により、1000℃前後またはそれ以下の低温で、異
方性の優れた熱分解黒鉛を堆積させるとともに基
板上への該熱分解黒鉛の堆積速度を制御すること
で、熱分解黒鉛の結晶性及び異方性を制御するこ
とを特徴とする。 <実施例> 図面は本発明の1実施例に用いられる熱分解黒
鉛生成装置のブロツク構成図である。 出発物質として使用される炭化水素化合物とし
ては、芳香族化合物または不飽和化合物が望まし
く、これらは1000℃前後またはそれ以下の温度で
熱分解される。熱分解黒鉛が形成される基板とし
ては、シリコン、サフアイア、炭化珪素(α形及
びβ形)、窒化硼素、キツシユ黒鉛、高配向黒鉛
等の単結晶または石英ガラスを用いる。これらは
約1000℃の反応温度でも変質しない条件を満足す
るものでなければならない。 反応管への原料供給方法は常圧バブラー法また
は減圧法を用いる。いずれの方法でも、後述する
様に、原料の供給量及び黒鉛の堆積速度を制御す
ることにより高配向熱分解黒鉛が得られ、異方性
の制御も可能である。常圧バブラー法ではキヤリ
アガスとしてアルゴンガスを使用する。図面は常
圧バブラー法を利用した装置構成を示している
が、この装置で減圧CVD法を利用することもで
きる。この場合には黒鉛の膜厚を常圧バブラー法
に比べてより均一に実現することが可能である。 以下製造工程に従つて説明する。 真空蒸留による精製操作を行つたベンゼンが収
納されたバブル容器1内にアルゴンガス制御系2
よりアルゴンガスを供給してベンゼンをバブルさ
せ、パイレツクスガラス管3を介して石英反応管
4へベンゼン分子を給送する。この際バブル容器
1内の液体ベンゼンの温度を一定に保持してアル
ゴンガス流量をバルブ5で調節し、ベンゼン分子
の反応管4内への供給量を毎時数ミリモルに一定
制御する。一方、希釈ライン6よりアルゴンを流
し、反応管4へ給送されるベンゼン分子数密度及
び流速を最適化する。反応管4には、前述したシ
リコン等の成長用基板の載置された試料台7が設
置されており、その周囲の反応管内壁には炭素薄
膜を付着させている。反応管4の外周囲には加熱
炉8が設けられており、この加熱炉8によつて反
応管4内の成長用基板は1000℃前後またはそれ以
下の温度に保持されている。 反応管4内に導入されたベンゼン分子は1000℃
またはそれ以下の温度に加熱されて熱分解し、順
次成長用基板上に成長形成される。この際、成長
形成される熱分解黒鉛は、反応雰囲気中で反応管
4に付着された炭素薄膜の効果が導入されて異方
性の優れた黒鉛となり、従来に比べて低い温度で
高配向化が達成される。また、反応管4内に導入
されるベンゼン分子の流速及び濃度を変化させる
と、堆積速度が変化し、それに応じて結晶性も変
化するので異方性の制御も容易に可能となる。 熱分解黒鉛の結晶性または異方性は、得られた
熱分解黒鉛のC軸方向及びC軸に垂直な面内の比
抵抗測定により評価した。表1によれば、従来の
低温熱分解黒鉛の面内比抵抗の値(1〜2×
10-3Ω・cm)に比べて、上記実施例で得られた熱
分解黒鉛の比抵抗値が1桁程度低くなつており、
明らかに結晶性が向上したことを示している。ま
た、熱分解黒鉛の結晶性は堆積速度に顕著に依存
し、遅い堆積速度で高配向熱分解黒鉛が得られ
る。 尚表1は本発明の1実施例の結果であり、本発
明は何らこれのみに限定されるものでない。
<Technical Field of the Invention> The present invention is directed to the use of thermal decomposition CVD (chemical vapor deposition) at a relatively low temperature of around 1000°C or lower.
This paper relates to a method for producing highly oriented pyrolytic graphite with excellent anisotropy and a technology for controlling the anisotropy of the pyrolytic graphite, and has established extremely useful basic material technology for creating new functional devices. It has technical significance in this respect. <Conventional technology and its problems> Artificial synthesis of graphite, which is chemically stable, does not undergo phase transformation at temperatures above 3000°C, and has significant anisotropy in terms of thermal and electrical conductivity, usually requires a long period of time. A wide range of high-temperature, high-pressure manufacturing processes have been required. For example, when using methane as a starting material, high temperatures (approximately
Heat treatment at high temperature and pressure is used to thermally decompose the material (at temperatures above 2000°C) and further improve the orientation. Furthermore, a method of obtaining fibrous carbon by subjecting polymer fibers to high temperature treatment has been known for a long time. However, since these methods are processed at high temperatures, although they can be used as standardized structural materials, it is difficult to apply them to functional electronic materials with controlled anisotropy. On the other hand, as a method for obtaining pyrolytic graphite at relatively low temperatures, formation methods that use special organic compounds as starting materials and utilize dehydrogenation reactions, dehydrohalogenation reactions, decarbonization reactions, dehydration reactions, etc. are often used. However, there are no examples in which highly oriented carbon deposits have been achieved, and therefore, there are also no examples in which control of crystallinity (anisotropy) has been achieved. In order to realize functional materials or functional devices that utilize the anisotropy of graphite, it is necessary to establish new technologies such as increasing the orientation of pyrolytic graphite at low temperatures and controlling the anisotropy. <Object of the Invention> The present invention has been made in view of the above-mentioned current state of the art. The company has established a technology that makes it possible to control the anisotropy of pyrolytic graphite produced by pyrolytic graphite. The purpose is to provide a technology for controlling the anisotropy of decomposed graphite. <Summary of the Invention> The method for forming pyrolytic graphite of the present invention uses an aromatic compound or an unsaturated compound as a raw material, and when forming pyrolytic graphite on a substrate, it adheres to the wall of a reaction tube in a pyrolysis atmosphere. By introducing the effect of a carbon thin film, we can deposit pyrolytic graphite with excellent anisotropy at a low temperature of around 1000°C or lower, and by controlling the deposition rate of the pyrolytic graphite on the substrate, It is characterized by controlling the crystallinity and anisotropy of pyrolytic graphite. <Example> The drawing is a block diagram of a pyrolytic graphite production apparatus used in an example of the present invention. The hydrocarbon compounds used as starting materials are preferably aromatic or unsaturated compounds, which are thermally decomposed at temperatures around 1000° C. or lower. As the substrate on which pyrolytic graphite is formed, single crystals such as silicon, sapphire, silicon carbide (α-type and β-type), boron nitride, hard graphite, highly oriented graphite, or quartz glass are used. These must satisfy the condition that they do not deteriorate even at a reaction temperature of about 1000°C. A normal pressure bubbler method or a reduced pressure method is used to supply raw materials to the reaction tube. In either method, highly oriented pyrolytic graphite can be obtained by controlling the supply amount of raw materials and the deposition rate of graphite, as will be described later, and it is also possible to control anisotropy. In the normal pressure bubbler method, argon gas is used as a carrier gas. Although the drawing shows a device configuration that uses the normal pressure bubbler method, it is also possible to use the low pressure CVD method with this device. In this case, it is possible to achieve a more uniform graphite film thickness than in the normal pressure bubbler method. The manufacturing process will be explained below. An argon gas control system 2 is installed in a bubble container 1 containing benzene that has been purified by vacuum distillation.
Then, argon gas is supplied to bubble the benzene, and the benzene molecules are sent to the quartz reaction tube 4 through the Pyrex glass tube 3. At this time, the temperature of the liquid benzene in the bubble container 1 is kept constant, the argon gas flow rate is adjusted by the valve 5, and the amount of benzene molecules supplied into the reaction tube 4 is controlled to be constant at several mmol per hour. On the other hand, argon is flowed through the dilution line 6 to optimize the benzene molecule number density and flow rate fed to the reaction tube 4. The reaction tube 4 is equipped with a sample stage 7 on which the aforementioned growth substrate of silicon or the like is placed, and a thin carbon film is attached to the inner wall of the reaction tube around the sample stage 7. A heating furnace 8 is provided around the outer periphery of the reaction tube 4, and the growth substrate inside the reaction tube 4 is maintained at a temperature of about 1000° C. or lower by this heating furnace 8. Benzene molecules introduced into reaction tube 4 are at 1000℃
The material is thermally decomposed by being heated to a temperature higher than or equal to that temperature, and is sequentially grown and formed on a growth substrate. At this time, the pyrolytic graphite that is grown and formed becomes graphite with excellent anisotropy due to the effect of the carbon thin film attached to the reaction tube 4 in the reaction atmosphere, and is highly oriented at a lower temperature than before. is achieved. Furthermore, by changing the flow rate and concentration of benzene molecules introduced into the reaction tube 4, the deposition rate changes and the crystallinity changes accordingly, making it possible to easily control the anisotropy. The crystallinity or anisotropy of the pyrolytic graphite was evaluated by measuring the specific resistance of the obtained pyrolytic graphite in the C-axis direction and in a plane perpendicular to the C-axis. According to Table 1, the in-plane resistivity value of conventional low-temperature pyrolytic graphite (1~2×
10 -3 Ω・cm), the specific resistance value of the pyrolytic graphite obtained in the above example is about an order of magnitude lower,
This clearly shows that the crystallinity has improved. Furthermore, the crystallinity of pyrolytic graphite is significantly dependent on the deposition rate, and highly oriented pyrolytic graphite can be obtained at slow deposition rates. Table 1 shows the results of one example of the present invention, and the present invention is not limited to this in any way.

【表】 <発明の効果> 本発明の熱分解黒鉛形成法によれば、熱分解雰
囲気の効果を取り込んで、異方性の優れた高配向
熱分解黒鉛が、従来より低い1000℃前後またはそ
れ以下の低温で得られる。また、堆積速度を制御
することにより、異方性の制御も可能となるた
め、これを利用した機能電子材料への応用を促進
させることができると期待される。
[Table] <Effects of the Invention> According to the method for forming pyrolytic graphite of the present invention, highly oriented pyrolytic graphite with excellent anisotropy can be produced at a temperature of around 1000°C or lower, which is lower than conventional methods, by incorporating the effect of the pyrolysis atmosphere. Obtained at low temperatures below. Furthermore, by controlling the deposition rate, it is also possible to control anisotropy, so it is expected that this will be used to promote application to functional electronic materials.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の1実施例の説明に供する熱
分解黒鉛製造装置のブロツク構成図である。 1……バブル容器、2……アルゴンガス制御
系、3……ガラス管、4……反応管、6……希釈
ライン、7……試料台、8……加熱炉。
The accompanying drawing is a block diagram of a pyrolytic graphite production apparatus for explaining one embodiment of the present invention. 1... Bubble container, 2... Argon gas control system, 3... Glass tube, 4... Reaction tube, 6... Dilution line, 7... Sample stand, 8... Heating furnace.

Claims (1)

【特許請求の範囲】 1 芳香族化合物又は不飽和化合物を出発物質と
し、該出発物質の供給量を制御して、毎時一定量
反応系へ供給し、 前記反応系として透光性中空内壁に炭素薄膜を
付着させた反応管を用いて、 基板上への黒鉛の堆積速度を制御した、1000℃
前後またはそれ以下の低温熱分解により、基板上
へ異方性を有する高配向化黒鉛を形成することを
特徴とする熱分解黒鉛の製造方法。
[Scope of Claims] 1. An aromatic compound or an unsaturated compound is used as a starting material, the amount of the starting material is controlled and a constant amount is supplied to a reaction system every hour, and carbon is added to a transparent hollow inner wall as the reaction system. Using a reaction tube with a thin film attached, the deposition rate of graphite on the substrate was controlled at 1000℃.
A method for producing pyrolytic graphite, which comprises forming highly oriented graphite having anisotropy on a substrate by pyrolysis at a lower or lower temperature.
JP61045755A 1986-02-28 1986-02-28 Production of thermally decomposed graphite Granted JPS62202809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045755A JPS62202809A (en) 1986-02-28 1986-02-28 Production of thermally decomposed graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045755A JPS62202809A (en) 1986-02-28 1986-02-28 Production of thermally decomposed graphite

Publications (2)

Publication Number Publication Date
JPS62202809A JPS62202809A (en) 1987-09-07
JPH048367B2 true JPH048367B2 (en) 1992-02-14

Family

ID=12728112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045755A Granted JPS62202809A (en) 1986-02-28 1986-02-28 Production of thermally decomposed graphite

Country Status (1)

Country Link
JP (1) JPS62202809A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387680B2 (en) * 2005-05-13 2008-06-17 Cree, Inc. Method and apparatus for the production of silicon carbide crystals
JP5220049B2 (en) * 2010-03-09 2013-06-26 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232904A (en) * 1983-06-14 1984-12-27 Agency Of Ind Science & Technol Manufacture of electrically conductive thin film
JPS6037045A (en) * 1983-08-09 1985-02-26 Ricoh Co Ltd Information memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232904A (en) * 1983-06-14 1984-12-27 Agency Of Ind Science & Technol Manufacture of electrically conductive thin film
JPS6037045A (en) * 1983-08-09 1985-02-26 Ricoh Co Ltd Information memory

Also Published As

Publication number Publication date
JPS62202809A (en) 1987-09-07

Similar Documents

Publication Publication Date Title
KR100287489B1 (en) How to form crystalline silicon carbide film at low temperature
US3900540A (en) Method for making a film of refractory material having bi-directional reinforcing properties
JPH07147251A (en) Growth of crystalline silicon carbide film
EP0348026B1 (en) Diamond growth on a substrate using microwave energy
EP0201696B1 (en) Production of carbon films
KR960012710B1 (en) Process for the preparation of sic thin film from organo silicon compound
US3637423A (en) Pyrolytic deposition of silicon nitride films
US4761308A (en) Process for the preparation of reflective pyrolytic graphite
JPH048367B2 (en)
US3537877A (en) Low temperature method for producing amorphous boron-carbon deposits
JPH0321518B2 (en)
Wang et al. Synthesis of diamond from polymer seeded with nanometer-sized diamond particles
JP3000035B2 (en) Method of forming graphite thin film
JPS634069A (en) Production of thermally decomposed graphite
US3398013A (en) Preparation of films of boron carbide
JPH0510425B2 (en)
JPH06115913A (en) Synthesis of boron carbonitride
JPS63252997A (en) Production of diamond single crystal
JP2000272990A (en) Crucible comprising pyrolytic graphite and used for growing single crystal
JP2803396B2 (en) Diamond thin film synthesis equipment
US3556834A (en) Low temperature method for producing amorphous boron-carbon deposits
JPH0448757B2 (en)
RU2286617C2 (en) Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film
RU2149215C1 (en) Method of preparing pyrolytic carbon
Mierzejewska et al. Vapour growth of boron crystals