JPH048280Y2 - - Google Patents

Info

Publication number
JPH048280Y2
JPH048280Y2 JP452686U JP452686U JPH048280Y2 JP H048280 Y2 JPH048280 Y2 JP H048280Y2 JP 452686 U JP452686 U JP 452686U JP 452686 U JP452686 U JP 452686U JP H048280 Y2 JPH048280 Y2 JP H048280Y2
Authority
JP
Japan
Prior art keywords
sensor
exhaust
catalytic converter
fuel ratio
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP452686U
Other languages
Japanese (ja)
Other versions
JPS62117246U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP452686U priority Critical patent/JPH048280Y2/ja
Publication of JPS62117246U publication Critical patent/JPS62117246U/ja
Application granted granted Critical
Publication of JPH048280Y2 publication Critical patent/JPH048280Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は特にV型エンジンにおいて触媒コンバ
ータの上流側および下流側に夫々酸素濃度センサ
(O2センサ)を設け、上流側のO2センサによる空
燃比フイードバツク制御に加えて下流側のO2
ンサによる空燃比フイードバツク制御を行う空燃
比制御装置に関する。
[Detailed description of the invention] [Field of industrial application] This invention is particularly applicable to V-type engines, in which oxygen concentration sensors (O 2 sensors) are provided on the upstream and downstream sides of the catalytic converter, and the O 2 sensor on the upstream side The present invention relates to an air-fuel ratio control device that performs air-fuel ratio feedback control using a downstream O 2 sensor in addition to air-fuel ratio feedback control.

〔従来の技術〕[Conventional technology]

一般に空燃比制御装置においては、機関の吸入
空気量(もしくは吸入空気圧)および回転速度に
応じて燃料噴射弁の基本噴射量を演算し、機関の
排気ガス中の特定成分たとえば酸素成分の濃度を
検出するO2センサの検出信号にもとづいて演算
された空燃比補正係数に応じて前記基本噴射量を
補正し、この補正された噴射量に応じて実際に供
給される燃料量を制御する。この制御を繰返して
最終的に機関の空燃比を所定範囲内に収束させ
る。このような空燃比フイードバツク制御によ
り、空燃比を理論空燃比近傍の非常に狭い範囲内
に制御できるので、排気系に設けられた三元触媒
コンバータ、すなわち、排気ガス中に含まれる
CO、HC、NOXの3つの有害成分を同時に浄化
する触媒コンバータの浄化能力を高く保持でき
る。
Generally, an air-fuel ratio control device calculates the basic injection amount of a fuel injector according to the engine's intake air amount (or intake air pressure) and rotational speed, and detects the concentration of a specific component, such as an oxygen component, in the engine's exhaust gas. The basic injection amount is corrected according to the air-fuel ratio correction coefficient calculated based on the detection signal of the O 2 sensor, and the amount of fuel actually supplied is controlled according to the corrected injection amount. This control is repeated until the air-fuel ratio of the engine is finally converged within a predetermined range. This kind of air-fuel ratio feedback control makes it possible to control the air-fuel ratio within a very narrow range around the stoichiometric air-fuel ratio.
The catalytic converter's ability to simultaneously purify three harmful components, CO, HC, and NOx , can be maintained at a high level.

上述の空燃比フイードバツク制御(シングル
O2センサシステム)では、酸素濃度を検出する
O2センサは触媒コンバータより上流の排気系に
設けられるが、O2センサ自体の固体差、燃料噴
射弁および排気ガス再循環弁等の部品の機関への
組付け位置の公差によるO2センサの箇所におけ
る排気ガスの混合の不均一、あるいはO2センサ
の出力特性の経時あるいは経年的な変化等に起因
するO2センサの出力特性のばらつきのために空
燃比の制御精度の改善に支障が生じてきている。
Air-fuel ratio feedback control (single
O2 sensor system) detects oxygen concentration
The O 2 sensor is installed in the exhaust system upstream of the catalytic converter, but the O 2 sensor is Improving the accuracy of air-fuel ratio control may be hindered due to variations in the output characteristics of the O 2 sensor due to uneven mixing of exhaust gas at different locations or changes in the output characteristics of the O 2 sensor over time. It's coming.

かかるO2センサ(主O2センサ)の出力特性の
ばらつきを補償するために、触媒コンバータの下
流に第2のO2センサを設け、上流側O2センサに
よる空燃比フイードバツク制御に加えて下流側
O2センサによる空燃比フイードバツク制御を行
うダブルO2センサシステムが既に提案されてい
る。
In order to compensate for variations in the output characteristics of the O 2 sensor (main O 2 sensor), a second O 2 sensor is provided downstream of the catalytic converter, and in addition to air-fuel ratio feedback control by the upstream O 2 sensor, the downstream side
A double O 2 sensor system that performs air-fuel ratio feedback control using an O 2 sensor has already been proposed.

ところで従来からV型エンジンにおいては触媒
コンバータの暖機性向上のための一対の左、右バ
ンクの排気マニホルドを可能な限りエンジン本体
の近傍で連結して一本の排気管となし放熱面積を
減らすように工夫されている。そしてこのような
V型エンジンにおいては第1(主)O2センサは暖
機性向上、左右バンクの角気筒の排気ガスが均等
に当たること等を考慮して、上記両排気マニホル
ドの合流結合点より下流で該結合点に近い位置に
配置されている。
By the way, in conventional V-type engines, a pair of left and right bank exhaust manifolds are connected as close to the engine body as possible to improve the warm-up of the catalytic converter, forming a single exhaust pipe to reduce the heat dissipation area. It has been devised as follows. In such a V-type engine, the first (main) O 2 sensor is installed from the joining point of both exhaust manifolds, taking into consideration things such as improving warm-up and ensuring that the exhaust gas from the square cylinders of the left and right banks is evenly distributed. It is located downstream and close to the connection point.

しかしながらこのように主O2センサを両排気
マニホルドの合流部より下流の排気管中に取り付
けるとエンジン高負荷、高回転時に両排気マニホ
ルドからの多量の排気ガスによる多量の熱を受け
るので主O2センサは過熱し、熱劣化が促進され、
長距離、長時間走行後の主O2センサの耐久性、
並びに主O2センサの特性のリツチ方向へのずれ
による排気ガス浄化性能の悪化が問題となる。
However, if the main O 2 sensor is installed in the exhaust pipe downstream of the confluence of both exhaust manifolds, the main O 2 The sensor overheats, accelerating thermal degradation,
Durability of the main O2 sensor after long distance and long driving,
Another problem is that the exhaust gas purification performance deteriorates due to a shift in the characteristics of the main O 2 sensor toward the rich direction.

そこで本出願人はさきに、主O2センサの暖機
性を損うことなく主O2センサに当る排気ガスの
温度並びに流量を低減させることによつて主O2
センサが排気ガスから受ける熱量を少なくしそれ
により主O2センサの過熱を並びにそれに伴う熱
劣化を防止するため、左右一対のバンクの一方の
バンクの排気マニホルドを連通管を介して排気管
に通じる他方のバンクの排気マニホルドに連結し
たV型エンジンの排気系に排気ガス浄化用触媒コ
ンバータを設けると共に該触媒コンバータの上下
流に第1、第2の2個のO2センサを設けこれら
両O2センサにより空燃比をフイードバツク制御
するV型エンジンの空燃比制御装置において、触
媒コンバータの上流側に配置される第1のO2
ンサを上記連通管内に設けた空燃比制御装置を開
発した(実願昭60−108800号参照)。そしてこの
空燃比制御装置により、主O2センサは壊されず、
特性のリツチずれも起こさず良好な排気エミツシ
ヨンを維持できるものとなつた。
Therefore, the present applicant first attempted to reduce the temperature and flow rate of the exhaust gas that hits the main O 2 sensor without impairing the warm-up performance of the main O 2 sensor.
In order to reduce the amount of heat that the sensor receives from the exhaust gas and thereby prevent overheating of the main O 2 sensor and the accompanying thermal deterioration, the exhaust manifold of one bank of the pair of left and right banks is connected to the exhaust pipe via a communication pipe. An exhaust gas purifying catalytic converter is provided in the exhaust system of the V-type engine connected to the exhaust manifold of the other bank, and two O 2 sensors, a first and a second O 2 sensor, are provided upstream and downstream of the catalytic converter. In an air-fuel ratio control device for a V-type engine that feedback-controls the air-fuel ratio using a sensor, we have developed an air-fuel ratio control device in which a first O 2 sensor placed upstream of the catalytic converter is installed in the communication pipe (practical application). (See No. 108800, 1983). And with this air-fuel ratio control device, the main O 2 sensor will not be damaged.
It has become possible to maintain good exhaust emissions without causing any deviation in the richness of the characteristics.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、上記の本出願人の開発した空燃
比制御装置において、触媒コンバータの下流に配
設された第2のO2センサは、触媒コンバータに
おける反応熱及び熱容量によりその下流側排気温
度が前記第1のO2センサを設けた連通管内の排
気温度より高くなりまた排気ガス量も前記連通管
の2倍にも達するほど多くなるため、前記第1の
O2センサよりも排気ガスから多量の熱を受け、
過熱し易く、そのため熱劣化が促進され、この第
2のO2センサの所期の出力が出なくなるという
不具合が生じるおそれがある。
However, in the above-mentioned air-fuel ratio control device developed by the present applicant, the second O 2 sensor disposed downstream of the catalytic converter has a temperature of the downstream exhaust gas of the first O 2 sensor due to the reaction heat and heat capacity in the catalytic converter. The temperature of the exhaust gas in the communication pipe in which the O 2 sensor is installed is higher than that in the communication pipe, and the amount of exhaust gas is twice as large as that in the communication pipe.
It receives more heat from the exhaust gas than the O2 sensor,
It is easy to overheat, which accelerates thermal deterioration, and there is a risk that the second O 2 sensor will not be able to output the desired output.

そこで本考案は、前記第2のO2センサに当る
排気ガスの温度及び排気ガス流量を低減し、該
O2センサの過熱及び熱劣化を防止し、長時間、
長距離走行後にも第2のO2センサが壊れず、特
性のリツチずれも起こさずに良好な排気エミツシ
ヨンを維持しようとするものである。
Therefore, the present invention reduces the temperature and flow rate of the exhaust gas that hits the second O 2 sensor, and
Prevents overheating and thermal deterioration of the O2 sensor, allowing it to last for a long time.
The aim is to maintain good exhaust emissions even after long-distance driving without the second O 2 sensor breaking down or changing the richness of the characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するため、本考案によれ
ば、左右一対のバンクの一方のバンクの排気マニ
ホルドを連通管を介して排気管に通じる他方のバ
ンクの排気マニホルドに連結したV型エンジンの
排気系に排気ガス浄化用触媒コンバータを設ける
と共に該触媒コンバータの上下流に第1、第2の
2個のO2センサを設けこれら両O2センサにより
空燃比をフイードバツク制御するV型エンジンの
空燃比制御装置において、触媒コンバータの上流
側の第1のO2センサは上記連通管内に設けられ、
また触媒コンバータの下流側の第2のO2センサ
は、触媒コンバータ下流の2系統に分けられた2
つの排気管のうちの一方の排気管内に配設され
た、空燃比制御装置が提供される。
In order to solve the above problems, according to the present invention, the exhaust manifold of one bank of a pair of left and right banks is connected to the exhaust manifold of the other bank which communicates with the exhaust pipe via a communication pipe for a V-type engine. The air-fuel ratio of a V-type engine is provided with a catalytic converter for exhaust gas purification in the system, and two O 2 sensors, a first and second O 2 sensor, are provided upstream and downstream of the catalytic converter, and the air-fuel ratio is feedback-controlled by both O 2 sensors. In the control device, a first O 2 sensor on the upstream side of the catalytic converter is provided in the communication pipe,
In addition, the second O 2 sensor downstream of the catalytic converter is connected to the 2nd O 2 sensor downstream of the catalytic converter.
An air-fuel ratio control device is provided that is disposed within one of the two exhaust pipes.

〔実施例〕〔Example〕

本考案の実施例について図面を参照して以下に
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本考案に係る内燃機関の空燃比制御装
置の一実施例を示す全体概要平面図である。同図
において、公知の如くV型エンジン1は左右一対
のバンク4A,4Bを有し、図示実施例では各バ
ンクに夫々3個の気筒が設けられた所謂V6エン
ジンとして示されている。各バンク4A,4Bか
らは夫々排気マニホルド2A,2Bが延びこれら
排気マニホルド2A,2Bは連通管3により連結
される。
FIG. 1 is an overall schematic plan view showing an embodiment of an air-fuel ratio control device for an internal combustion engine according to the present invention. In the figure, as is well known, a V-type engine 1 has a pair of left and right banks 4A and 4B, and in the illustrated embodiment, each bank is shown as a so-called V6 engine with three cylinders each. Exhaust manifolds 2A and 2B extend from each bank 4A and 4B, respectively, and these exhaust manifolds 2A and 2B are connected by a communicating pipe 3.

各気筒には燃料供給系から加圧燃料を吸気ポー
トへ供給するための燃料噴射弁7が設けられてい
る。
Each cylinder is provided with a fuel injection valve 7 for supplying pressurized fuel from a fuel supply system to an intake port.

図示実施例では排気マニホルド2Bは連通管3
により合流連結点8で排気マニホルド2Aに連結
され、従つて排気マニホルド2Bからの排気ガス
は排気マニホルド2Aの排気ガスと合流した後、
排気マニホルド2Aに連結される排気管9を介し
て排出される。排気管9には排気ガス中の3つの
有害成分HC、CO、COXを同時に浄化する三元触
媒を収容する触媒コンバータ12が設けられてい
る。
In the illustrated embodiment, the exhaust manifold 2B is the communication pipe 3.
is connected to the exhaust manifold 2A at the merging connection point 8, so that the exhaust gas from the exhaust manifold 2B joins with the exhaust gas from the exhaust manifold 2A, and then
It is exhausted through an exhaust pipe 9 connected to the exhaust manifold 2A. The exhaust pipe 9 is provided with a catalytic converter 12 that accommodates a three-way catalyst that simultaneously purifies the three harmful components HC, CO, and CO x in the exhaust gas.

触媒コンバータ12の上流側には第1のO2
ンサ(主O2センサ)13が設けられる。
A first O 2 sensor (main O 2 sensor) 13 is provided upstream of the catalytic converter 12 .

触媒コンバータ12の下流側の排気管は2つの
系統の排気管16A,16Bに分けられその一方
の排気管16Aに第2のO2センサ15が設けら
れる。
The exhaust pipe on the downstream side of the catalytic converter 12 is divided into two systems of exhaust pipes 16A and 16B, and a second O 2 sensor 15 is provided in one of the exhaust pipes 16A.

各排気管16A,16Bにはマフラ17A,1
7Bがそれぞれ設けられている。第1及び第2の
O2センサ13,15は排気ガス中の酸素成分濃
度に応じた電気信号を発生する。すなわち、第1
及び第2のO2センサ13,15は空燃比が理論
空燃比に対してリーン側かリツチ側かに応じて、
異なる出力電圧を制御回路10に入力する。
Each exhaust pipe 16A, 16B has a muffler 17A, 1
7B are provided respectively. first and second
The O 2 sensors 13 and 15 generate electrical signals according to the concentration of oxygen components in the exhaust gas. That is, the first
and the second O 2 sensors 13 and 15 depending on whether the air-fuel ratio is lean or rich with respect to the stoichiometric air-fuel ratio.
Different output voltages are input to the control circuit 10.

制御回路10は、たとえばマイクロコンピユー
タとして構成され、エンジン冷却水温、吸入空気
量、クランク角等の入力信号に応じて第1及び第
2のO2センサ13,15からの出力にもとずき
各気筒の燃料噴射弁7により燃料噴射量を制御
し、空燃比を適正に制御するものである。
The control circuit 10 is configured, for example, as a microcomputer, and controls each output based on the outputs from the first and second O 2 sensors 13 and 15 in accordance with input signals such as engine cooling water temperature, intake air amount, and crank angle. The fuel injection amount is controlled by the fuel injection valve 7 of the cylinder, and the air-fuel ratio is appropriately controlled.

本考案は制御回路10の制御自体に向けられる
ものではなく、また制御回路10による制御方法
はすでに多数提案されているので制御回路10の
内部構成については詳述しない。
The present invention is not directed to the control of the control circuit 10 itself, and since many control methods using the control circuit 10 have already been proposed, the internal structure of the control circuit 10 will not be described in detail.

以上の如きダブルO2センサシステムにおいて、
本考案によれば第1のO2センサ13の取付位置
に工夫が施されている。すなわち、第1のO2
ンサ13は本考案によれば合流結合点8の近傍で
かつその上流の連通管3内に配置される。従来は
第1のO2センサ13は前述の如く合流結合点8
の下流の排気マニホルド2A内あるいはそれより
更に下流の排気管9内に配置されていた。
In the double O 2 sensor system as described above,
According to the present invention, the mounting position of the first O 2 sensor 13 is devised. That is, according to the invention, the first O 2 sensor 13 is arranged in the communication pipe 3 in the vicinity of the merging connection point 8 and upstream thereof. Conventionally, the first O 2 sensor 13 is connected to the confluence connection point 8 as described above.
It was arranged in the exhaust manifold 2A downstream of the exhaust manifold 2A or in the exhaust pipe 9 further downstream.

このように第1のO2センサ13を合流結合点
8より上流の連通管3内に配置することにより第
1のO2センサ13に当る排気ガスの流量は排気
マニホルド2Aからの排気ガスに相当する分だけ
減るので従来に比べ実質上半分になる。また、排
気ガスの温度もそれに応じて低くなる。更に、第
1のO2センサの取付位置を合流結合点8に近づ
ける程排気ガス温は低下する。
By arranging the first O 2 sensor 13 in the communication pipe 3 upstream of the confluence connection point 8 in this way, the flow rate of exhaust gas hitting the first O 2 sensor 13 corresponds to the exhaust gas from the exhaust manifold 2A. Since the amount is reduced by the amount that is used, it is effectively half compared to the conventional method. Furthermore, the temperature of the exhaust gas also decreases accordingly. Furthermore, as the mounting position of the first O 2 sensor is brought closer to the merging connection point 8, the exhaust gas temperature decreases.

かくして特に高回転、高負荷時に第1のO2
ンサ13に加わる熱負荷は従来に比べ大幅に軽減
され、第1のO2センサ13の熱劣化が防止でき
る。また第1のO2センサ13が連通管3内に設
けられる限りバンク4Bの排気ポート(図示せ
ず)からの距離は短かく、排気系の熱容量が小さ
い。従つて第1のO2センサの暖機性が良く、ヒ
ータ等の暖機性促進手段は必要ない。尚、第1の
O2センサ13を連通管3内に設けたことによる
第1のO2センサ13へのガス当りの不均等(排
気マニホルド2A側の排気ガスは当たらなくな
る)はいずれにしろ触媒コンバータ12の下流に
設けられた第2のO2センサ15により補正制御
されるので問題ない。
In this way, the thermal load applied to the first O 2 sensor 13, especially at high rotations and high loads, is significantly reduced compared to the conventional case, and thermal deterioration of the first O 2 sensor 13 can be prevented. Further, as long as the first O 2 sensor 13 is provided in the communication pipe 3, the distance from the exhaust port (not shown) of the bank 4B is short, and the heat capacity of the exhaust system is small. Therefore, the first O 2 sensor has good warm-up performance, and no warm-up promotion means such as a heater is required. Furthermore, the first
In any case, the unevenness of the gas hitting the first O 2 sensor 13 (exhaust gas on the exhaust manifold 2A side is no longer hitting) due to the provision of the O 2 sensor 13 in the communication pipe 3 is caused by the fact that the gas hits the first O 2 sensor 13 downstream of the catalytic converter 12. There is no problem because the correction is controlled by the second O 2 sensor 15 provided.

また触媒コンバータ12の下流側の排気管は2
つの排気管16A,16Bに分けられ2系統にな
つているので、一方の排気管16A内に設けられ
た第2のO2センサ15に当る排気ガスの流量は
他の排気管16Bを流れる分だけ減少し、従来の
ものに比べ実質上半分になる。また排気ガスの温
度もこれに応じて低くなる。このようにして、第
2のO2センサ15に加わる熱負荷は従来に比べ
大幅に軽減され、第2のO2センサの熱劣化が防
止されるものとなる。
Further, the exhaust pipe on the downstream side of the catalytic converter 12 is 2
Since the exhaust pipes 16A and 16B are divided into two systems, the flow rate of exhaust gas that hits the second O 2 sensor 15 provided in one exhaust pipe 16A is equal to the flow rate of the exhaust gas flowing through the other exhaust pipe 16B. It is reduced to almost half compared to the conventional one. The temperature of the exhaust gas also decreases accordingly. In this way, the thermal load applied to the second O 2 sensor 15 is significantly reduced compared to the conventional one, and thermal deterioration of the second O 2 sensor is prevented.

〔考案の効果〕[Effect of idea]

以上のごとく、本考案によれば第1のO2セン
サ及び第2のO2センサに当る排気ガス温度及び
その流量を低減することができ、それにより第
1O2センサ、第2のO2センサが排気ガスから受け
る熱量を少なくし、これら両センサの過熱及びそ
れに伴う熱劣化を防止することができる。その結
果、長時間使用後及び長距離走行後においても第
1及び第2のO2センサは壊れず、特性のリツチ
ずれも起こさずに良好な排気エミツシヨンを維持
することができる。
As described above, according to the present invention, it is possible to reduce the exhaust gas temperature and the flow rate of the exhaust gas hitting the first O 2 sensor and the second O 2 sensor.
It is possible to reduce the amount of heat that the 1O 2 sensor and the second O 2 sensor receive from the exhaust gas, thereby preventing overheating of both sensors and the resulting thermal deterioration. As a result, the first and second O 2 sensors do not break down even after long-term use or long-distance driving, and it is possible to maintain good exhaust emissions without causing a change in the richness of the characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の空燃比制御装置の一実施例の
全体構成を示す図解的平面図。 1……V型エンジン本体、2A,2B……排気
マニホルド、3……連通管、4A,4B……バン
ク、13……第1O2センサ、15……第2O2セン
サ、16A,16B……排気管。
FIG. 1 is a schematic plan view showing the overall configuration of an embodiment of the air-fuel ratio control device of the present invention. 1... V-type engine body, 2A, 2B... Exhaust manifold, 3... Communication pipe, 4A, 4B... Bank, 13... 1st O 2 sensor, 15... 2nd O 2 sensor, 16A, 16B... Exhaust pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 左右一対のバンクの一方のバンクの排気マニホ
ルドを連通管を介して排気管に通じる他方のバン
クの排気マニホルドに連結したV型エンジンの、
排気系に排気ガス浄化用触媒コンバータを設ける
と共に該触媒コンバータの上下流に第1、第2の
2個の酸素濃度センサを設けこれら両酸素濃度セ
ンサにより空燃比をフイードバツク制御するV型
エンジンの空燃比制御装置において、触媒コンバ
ータの上流側の第1の酸素濃度センサは上記連通
管内に配設され、また触媒コンバータの下流側の
第2の酸素濃度センサは、触媒コンバータ下流の
2系統に分けられた一方の排気管内に配設された
ことを特徴とするV型エンジンの空燃比制御装
置。
A V-type engine in which the exhaust manifold of one bank of a pair of left and right banks is connected to the exhaust manifold of the other bank that communicates with the exhaust pipe via a communication pipe.
A catalytic converter for exhaust gas purification is provided in the exhaust system, and two oxygen concentration sensors, a first and a second oxygen concentration sensor, are provided upstream and downstream of the catalytic converter, and the air-fuel ratio is feedback-controlled by these two oxygen concentration sensors. In the fuel ratio control device, a first oxygen concentration sensor on the upstream side of the catalytic converter is arranged in the communication pipe, and a second oxygen concentration sensor on the downstream side of the catalytic converter is divided into two systems downstream of the catalytic converter. An air-fuel ratio control device for a V-type engine, characterized in that the device is disposed in one exhaust pipe.
JP452686U 1986-01-18 1986-01-18 Expired JPH048280Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP452686U JPH048280Y2 (en) 1986-01-18 1986-01-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP452686U JPH048280Y2 (en) 1986-01-18 1986-01-18

Publications (2)

Publication Number Publication Date
JPS62117246U JPS62117246U (en) 1987-07-25
JPH048280Y2 true JPH048280Y2 (en) 1992-03-03

Family

ID=30785265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP452686U Expired JPH048280Y2 (en) 1986-01-18 1986-01-18

Country Status (1)

Country Link
JP (1) JPH048280Y2 (en)

Also Published As

Publication number Publication date
JPS62117246U (en) 1987-07-25

Similar Documents

Publication Publication Date Title
US5570574A (en) Air-fuel ratio control system for internal combustion engine
JP3175491B2 (en) Control device for variable cylinder engine
JPH1082315A (en) Exhaust emission control device for internal combustion engine
KR100501630B1 (en) Exhaust emission control system for multiple cylinder internal combustion engine
JPH048280Y2 (en)
JP3796919B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP3552617B2 (en) Exhaust gas purification device for internal combustion engine
JPH0532570B2 (en)
JP3912488B2 (en) Air-fuel ratio control device for multi-cylinder internal combustion engine
JP2884798B2 (en) Exhaust gas purification device for internal combustion engine
JP2599941B2 (en) Engine fuel control device
JPH07224699A (en) Internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JPS62178740A (en) Exhaust gas purifying device for multicylinder engine
JP3956107B2 (en) Exhaust purification device for multi-cylinder internal combustion engine
JPS6115208Y2 (en)
JP2940934B2 (en) Tenjin air-fuel ratio controller
KR20000020351A (en) Deactivation system of internal combustion engine for vehicle
JPH0633749A (en) Secondary air control device for internal combustion engine
JP2535917B2 (en) Air-fuel ratio control method for internal combustion engine
JP2003166436A (en) Exhaust emission control device for multicylinder engine of cylinder injection type and spark ignition type
JPH0472976B2 (en)
JPH077568Y2 (en) Engine controller
JP3159546B2 (en) Engine air-fuel ratio control device
JPH11264338A (en) Pilot injection control device for internal combustion engine