JPH0481617A - Flowmeter for liquid - Google Patents

Flowmeter for liquid

Info

Publication number
JPH0481617A
JPH0481617A JP19544290A JP19544290A JPH0481617A JP H0481617 A JPH0481617 A JP H0481617A JP 19544290 A JP19544290 A JP 19544290A JP 19544290 A JP19544290 A JP 19544290A JP H0481617 A JPH0481617 A JP H0481617A
Authority
JP
Japan
Prior art keywords
liquid
pipe
flow rate
amount
free end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19544290A
Other languages
Japanese (ja)
Inventor
Hitoshi Sasaki
均 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP19544290A priority Critical patent/JPH0481617A/en
Publication of JPH0481617A publication Critical patent/JPH0481617A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/206Measuring pressure, force or momentum of a fluid flow which is forced to change its direction

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To make excellent the responsiveness to a change in the flow rate of a liquid by making the amount of movement of a free end be changed conformably when the flow rate of the liquid changes. CONSTITUTION:When the section of a pipe 3 is elliptic, the elliptic form tends to approach a true circle under the pressure of a liquid and the radius Rs of curvature changes. The effect of the pressure of the circulating liquid appears in the form that the pressure is so unbalanced as to correspond to a difference between the length of the outside circumference of the pipe 3 and that of the inside circumference thereof. According to this consideration, only a centrifugal force F can be regarded as the factor affecting the radius Rs of curvature of the pipe, and therefore the amount S of deflection of a free end is a function of the flow rate Q of the liquid circulating through the pipe 3. By measuring the amount S of deflection of the free end of the pipe 3, accordingly, the flow rate Q of the liquid can be measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液体の流量を計測する流量計に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a flowmeter that measures the flow rate of liquid.

(従来の技術) 従来、液体の流量を計測する流量計としては、ギヤ式流
量計或いは特開昭63−54969号公報に例示される
ようなコリオリ流量計が知られている。
(Prior Art) Conventionally, as a flowmeter for measuring the flow rate of a liquid, a gear type flowmeter or a Coriolis flowmeter as exemplified in Japanese Patent Application Laid-Open No. 63-54969 has been known.

(発明が解決しようとする課題) しかるに、前者のギヤ式流量計は、計測の対象とする液
体の粘度が変化する場合、例えば塗装用ガンで用いられ
る霧化状態の塗料の流量を計測する場合には、精度が良
くないという問題かある。
(Problem to be Solved by the Invention) However, the former gear type flowmeter is difficult to use when the viscosity of the liquid to be measured changes, for example when measuring the flow rate of atomized paint used in a painting gun. The problem with this is that it is not very accurate.

また、ギヤ式流量計は、測定の対象か霧化状態の塗料の
場合には、色替え時における流量計の洗浄に時間を要す
るという問題もある。
In addition, gear type flowmeters also have the problem that if the object to be measured is atomized paint, it takes time to clean the flowmeter when changing colors.

一方、後者のコリオリ流量計は、上記のような問題点は
少ないが、所定の計測値に収束するのに時間が掛かるた
め、応答性が良くないという問題、つまり通常のコリオ
リ流量計は、時定数が約01lsecはどであって、塗
装用ロボットに装着される塗装用ガンのように、1/1
000sec単位で頻繁に流量を変化させたいような場
合には、応答性の点で満足できるものではない。
On the other hand, the latter type of Coriolis flowmeter does not have the above problems, but it takes time to converge to a predetermined measurement value, so the response is not good. The constant is about 01lsec, and it is 1/1 like a painting gun attached to a painting robot.
When it is desired to change the flow rate frequently in units of 1,000 seconds, the response is not satisfactory.

また、コリオリ流量計は振動に弱いために、上記の塗装
用ロボットに装着する場合には精度が低下するという問
題もある。
Furthermore, since Coriolis flowmeters are susceptible to vibrations, there is also the problem that accuracy decreases when they are mounted on the above-mentioned painting robots.

上記に鑑み、本発明は、液体の流量変化に対する応答性
が良い流量計を提供することを目的とする。
In view of the above, an object of the present invention is to provide a flow meter that is highly responsive to changes in the flow rate of liquid.

(課題を解決するための手段) 本発明は、液体をループ状に湾曲形成したパイプの固定
端側から自由端側に流通させると、バイブ内を流通する
液体の遠心力によって自由端が移動するが、該移動量が
液体の流量と比例関係にあるという知見に基づいてなさ
れたものであって、液体流通時における自由端の移動量
を測定し、該移動量を流量に変換することによって流量
を計測するものである。
(Means for Solving the Problems) The present invention provides that when a liquid is caused to flow from the fixed end side to the free end side of a pipe curved in a loop shape, the free end moves due to the centrifugal force of the liquid flowing inside the vibrator. This was done based on the knowledge that the amount of movement is proportional to the flow rate of the liquid, and the flow rate can be determined by measuring the amount of movement of the free end during liquid flow and converting the amount of movement into a flow rate. It is used to measure.

具体的に本発明が講じた解決手段は、一端部を固定端に
他端部を自由端にしてループ状に湾曲形成され、液体を
前記一端部側から他端部側に流通せしめるループ状のパ
イプと、該パイプ内を流通する液体の遠心力により生じ
る上記自由端の移動量を測定する測定手段と、該測定手
段が測定した上記移動量を液体の流量に変換する変換手
段とからなる構成とするものである。
Specifically, the solution taken by the present invention is a loop-shaped curved structure having one end fixed as a fixed end and the other end as a free end, and allowing liquid to flow from the one end to the other end. A structure consisting of a pipe, a measuring means for measuring the amount of movement of the free end caused by the centrifugal force of the liquid flowing inside the pipe, and a converting means for converting the amount of movement measured by the measuring means into a flow rate of the liquid. That is.

(作用) 上記の構成により、一端部を固定端に他端部を自由端に
してループ状に湾曲形成されたパイプと、該パイプの自
由端の移動量を測定する測定手段と、上記移動量を液体
の流量に変換する変換手段を備えているため、パイプ内
を流通する液体の流量が変化すると、これに伴って液体
の遠心力が変化し、これに即応してパイプの自由端の移
動量が変化する。
(Function) With the above configuration, there is provided a pipe curved into a loop shape with one end being a fixed end and the other end being a free end, a measuring means for measuring the amount of movement of the free end of the pipe, and the amount of movement described above. Since it is equipped with a conversion means that converts the flow rate of the liquid into the flow rate of the liquid, when the flow rate of the liquid flowing in the pipe changes, the centrifugal force of the liquid changes accordingly, and the free end of the pipe moves in response. The amount changes.

また、パイプの自由端の移動量の変化は、上記ループ状
バイブの弾性域内であれば液体の流量変化に伴って繰り
返し行われる。
Furthermore, the amount of movement of the free end of the pipe is repeatedly changed as the flow rate of the liquid changes within the elastic range of the loop-shaped vibrator.

さらに、計測の対象とする液体はループ状のパイプ内を
流通するだけであるから、計測の対象とする液体を交換
する場合にはパイプ内を洗浄するだけで済む。
Furthermore, since the liquid to be measured only flows through the loop-shaped pipe, it is sufficient to simply clean the inside of the pipe when replacing the liquid to be measured.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図は本発明の第1実施例に係る液体の流量計を示し
ており、該液体の流量計は、一端部1か固定端に、他端
部2か自由端に各々形成されたループ状のパイプ3の内
部を、液体が前記一端部1側から他端部2側に流通する
と、該液体の遠心力によってパイプ3の他端部2か外側
に移動し、該移動量と流通する液体の流量との間には一
定の関係があるという知見に基づくものであって、上記
構造のパイプ3と、該パイプ3の他端部2である自由端
における移動量を測定するレーザー式測定器や歪みゲー
ジ等からなる測定手段(図示はしていない)と、該測定
手段が測定した上記移動量を液体の流量に変換するCP
U等からなる変換手段(図示はしていない)とから構成
されているものである。
FIG. 1 shows a liquid flow meter according to a first embodiment of the present invention, which includes loops formed at one end 1 or a fixed end and at the other end 2 or a free end. When a liquid flows inside the shaped pipe 3 from the one end 1 side to the other end 2 side, the centrifugal force of the liquid moves the other end 2 of the pipe 3 to the outside, and the liquid flows with the amount of movement. This is based on the knowledge that there is a certain relationship between the flow rate of liquid, and a laser measurement method that measures the amount of movement at the pipe 3 having the above structure and the free end, which is the other end 2 of the pipe 3. A measuring means (not shown) consisting of a device, a strain gauge, etc., and a CP that converts the amount of movement measured by the measuring means into a liquid flow rate.
It is composed of a converting means (not shown) such as U.

以下、本発明の原理を第1図に基づいて説明するが、そ
の前提として、 パイプの曲率半径:Rs(m) パイプの固定端と自由端との角度:θ(rad)パイプ
の固定端と自由端との間の長さ:L(m)パイプの内側
の半径:RT:(m) パイプの肉厚: t  (m) 液体の比重:γ(kg/m3) 液体の角速度: ω(rad /see )液体の速度
: v (m/see ) バイブ内側の断面積:A(m2) パイプに加わる遠心カニ F (kg)パイプ単位長さ
当たりの遠心カニ f (kg/m)パイプ自由端の撓
み量:S(m) パイプのヤング係数: E (kg/m2>パイプの断
面2次モーメント:Iz(m’)液体の流量: Q (
rn” /see )に各々設定する。
The principle of the present invention will be explained below based on FIG. 1, with the following assumptions: Radius of curvature of the pipe: Rs (m) Angle between the fixed end and free end of the pipe: θ (rad) Length between free end: L (m) Inner radius of pipe: RT: (m) Pipe wall thickness: t (m) Specific gravity of liquid: γ (kg/m3) Angular velocity of liquid: ω (rad /see) Velocity of liquid: v (m/see) Cross-sectional area inside the vibrator: A (m2) Centrifugal crab applied to the pipe F (kg) Centrifugal crab per unit length of pipe f (kg/m) Centrifugal crab applied to the pipe at the free end Amount of deflection: S (m) Young's modulus of the pipe: E (kg/m2>Pipe's moment of inertia: Iz (m') Flow rate of liquid: Q (
rn”/see) respectively.

まず、以上の条件からバイブ3内を流速■で流通する液
体の遠心力によってパイプ3の他端部2(固定端)から
一端部1(自由端)までの間(長さ:L)に加わる等分
布荷重F (−パイプに加わる遠心力)を求める。
First, based on the above conditions, the centrifugal force of the liquid flowing inside the vibrator 3 at a flow rate ■ is applied to the pipe 3 between the other end 2 (fixed end) and one end 1 (free end) (length: L). Find the uniformly distributed load F (-centrifugal force applied to the pipe).

パイプ3の微少長さdlの微少体積dVは、dV−A−
dl・・・■(但し、A−π・RT2)同じく微少長さ
dlの微少型fi d mは、dm−γ・dV・・・■ パイプ3が受ける微少遠心力dfは、 d□f−R8・ω2・dmとなる。
The minute volume dV of the minute length dl of the pipe 3 is dV-A-
dl...■ (However, A-π・RT2) The minute type fi d m with the same minute length dl is dm-γ・dV...■ The minute centrifugal force df that the pipe 3 receives is d□f- It becomes R8・ω2・dm.

ここで、vwR6・ωであるからω−v / R6とな
り、上記■及び0式から、 df−R5・(v/Rs)  ・γ・(πRr2)・d
llこなり、d 1−RS 拳dθであるから、df−
Rs ・(v/Rs)  ・γ・(πRT2)・RSφ
dθになり、さらに、 df−π・γ・RT2 φV2 ・dθ・・・■になる
Here, since vwR6・ω, it becomes ω−v / R6, and from the above ■ and formula 0, df−R5・(v/Rs)・γ・(πRr2)・d
ll konari, d 1-RS fist dθ, so df-
Rs ・(v/Rs) ・γ・(πRT2)・RSφ
dθ, and further becomes df−π・γ・RT2 φV2・dθ...■.

従って、パイプ3の固定端から自由端までの間に加わる
等分布荷重の合計Fは、 F 、、 t:  ・df −π・γ・RT2・v2・f;dθ −πφγ・θ・RT2 ・v2・・・■になる。
Therefore, the total F of the uniformly distributed load applied between the fixed end and the free end of the pipe 3 is: F,, t: ・df −π・γ・RT2・v2・f; dθ −πφγ・θ・RT2・v2 ... becomes ■.

また、単位長さ当たりに加わる等分布荷重fは、f−F
/L −(π・γ・θ・RT2・■2)/(R8・θ)−(π
・γ・RT2 ・v)/Rs・・・■になる。
Also, the uniformly distributed load f applied per unit length is f−F
/L −(π・γ・θ・RT2・■2)/(R8・θ)−(π
・γ・RT2 ・v)/Rs...■.

遠心力に伴う等分布加重Fがパイプ3に加わると、パイ
プ3の曲率半径R6か大きくなり、パイプ3の自由端が
撓んで移動し、この自由端の撓み量がSである。
When a uniformly distributed load F due to centrifugal force is applied to the pipe 3, the radius of curvature R6 of the pipe 3 increases, the free end of the pipe 3 bends and moves, and the amount of bending of this free end is S.

次に、自由端の撓み量Sを求める。Next, the amount of deflection S of the free end is determined.

但し、この解を求めるのは、かなり複雑になるので次の
条件を設定する。すなわち、 a)バイブ固定端と自由端の間の長さLは、撓み量Sに
比べて十分に大きい。従って、自由端が撓んだときの円
周方向への撓み量は無視することができる。
However, since finding this solution is quite complicated, the following conditions are set. That is: a) The length L between the fixed end and the free end of the vibrator is sufficiently larger than the amount of deflection S. Therefore, the amount of deflection in the circumferential direction when the free end is deflected can be ignored.

b)パイプが撓んで曲率半径Rsが増すと、遠心力によ
る等分布加重Fも変化するか、上記a)の条件により、
その変化量は十分に小さいので無視することができる。
b) When the pipe bends and the radius of curvature Rs increases, the uniformly distributed weight F due to centrifugal force also changes, or according to the condition of a) above,
The amount of change is sufficiently small and can be ignored.

これらの条件を設定することにより、撓み二Sは、第2
図に示すような単純な等分布加重を受ける片持ち梁と考
えることかでき、パイプ3の自由端の撓み量Sは、 S= (f−L’)/ (8EIz)−=■になる。
By setting these conditions, the deflection 2S becomes
It can be considered as a cantilever beam receiving a simple uniformly distributed load as shown in the figure, and the amount of deflection S at the free end of the pipe 3 is S=(f-L')/(8EIz)-=■.

二の場合、パイプ3の断面2次モーメントIzは次式で
表される。すなわち、 Iz = (π/64.) X ((2(RT + t
) l 4(’2R丁)4) 一π1(Rv+t)  −R7’l/4・・・■次に、
■、■及びLを0式に代入すると、S= (f−L’)
/ (8EIz) =  f (π・7 ・RT2− v2/Rs)X  
(Rs・θ)’l/(8E[π((RT+t)’RT’
 l /4〕) −(γ・θ’ ・R72*R,53ev2)/ [2・
Et(RT+t)  −RT’))・・・■以上でパイ
プの自由端の撓み量Sが求まったが、■式を計算し易く
するために、■式を液体の流速■に代えて流量: Q 
(rn” /see )で表わす。
In case 2, the cross-sectional moment of inertia Iz of the pipe 3 is expressed by the following formula. That is, Iz = (π/64.) X ((2(RT + t
) l 4('2R d)4) 1π1(Rv+t) -R7'l/4...■Next,
Substituting ■, ■ and L into equation 0, S= (f-L')
/ (8EIz) = f (π・7 ・RT2− v2/Rs)X
(Rs・θ)'l/(8E[π((RT+t)'RT'
l /4]) −(γ・θ' ・R72*R,53ev2)/ [2・
Et(RT+t) -RT'))...■The amount of deflection S at the free end of the pipe has been found above, but in order to make it easier to calculate the formula, the flow rate of the liquid is replaced by the flow rate: Q
It is expressed as (rn”/see).

Q−A−vの関係があるから、 V−Q/A−Q/ (π・RT 2)=−■これを■式
に代入すると、 S=(γ・θ4・R83・Q2)/〔2π2・E・RT
2 f(RT+t)’−Rv’l)・・・[相]次に、
バイブ3内の液体の圧力に伴うバイブ曲率半径RSへの
影響について考慮する。
Since there is a relationship of Q-A-v, V-Q/A-Q/ (π・RT 2)=−■ Substituting this into formula ■, we get S=(γ・θ4・R83・Q2)/[2π2・E・RT
2 f(RT+t)'-Rv'l)... [phase] Next,
Consideration will be given to the influence of the pressure of the liquid inside the vibrator 3 on the radius of curvature RS of the vibrator.

上記の遠心力Fのほかに、パイプ3内を流通する液体の
圧力によって、パイプの曲率半径R6が大きくなること
が懸念されるが、これについては、パイプ3の断面を真
円に近づけること及び流通する液体の圧力をできるだけ
小さく押さえることによって解消する。すなわち、パイ
プ3の断面が楕円形の場合には液体の圧力によって楕円
形が真円形に近付こうとして曲率半径RSが変化するか
、上記のようにパイプ3の断面形を真円に近付けておく
と、流通する液体の圧力の影響は、パイプ3の外側の円
周長と内側の円周長との差に相当する分だけ圧力のバラ
ンスかくずれるという形で現われる。これについては、
パイプ3の曲率半径RSを成る程度大きくすることによ
って解消する。
In addition to the centrifugal force F mentioned above, there is a concern that the radius of curvature R6 of the pipe will increase due to the pressure of the liquid flowing inside the pipe 3. This can be solved by keeping the pressure of the flowing liquid as low as possible. That is, when the cross section of the pipe 3 is elliptical, the radius of curvature RS changes as the ellipse approaches a perfect circle due to the pressure of the liquid, or the cross section of the pipe 3 approaches a perfect circle as described above. In this case, the influence of the pressure of the flowing liquid appears in the form that the pressure balance is disturbed by an amount corresponding to the difference between the outer circumference length and the inner circumference length of the pipe 3. Regarding this,
This problem can be solved by increasing the radius of curvature RS of the pipe 3 to some extent.

以上の考察から、パイプの曲率半径:R8に影響する要
因は遠心カニFのみと見なすことができるため、自由端
の撓みffi:Sはパイプ3内を流通する液体の流量、
Qの関数になる。このため、パイプ3の自由端の撓み量
:Sを測定することによって液体の流量:Qを計測する
ことができる。もっとも、[相]式より撓み量:SはQ
2に比例するため、撓み量;Sから流量:Qへの変換は
少し複雑になる。
From the above considerations, the centrifugal crab F can be considered as the only factor that affects the radius of curvature of the pipe: R8, so the deflection of the free end ffi:S is the flow rate of the liquid flowing inside the pipe 3,
It becomes a function of Q. Therefore, by measuring the deflection amount S of the free end of the pipe 3, the liquid flow rate Q can be measured. However, from the [phase] formula, the amount of deflection: S is Q
2, the conversion from the amount of deflection (S) to the flow rate (Q) is a little complicated.

また、上記の特性により、流量:Qが小さい領域と大き
い領域とでは、撓み量:Sの変化量が異なるために、現
実的には撓み量:Sを検出する上で分解能等の制約が加
わり、流量:Qの計測レンジは若干制約を受ける。この
場合でも、上記流量計を塗装用ガンに適用する場合にお
いては、流量:Qは100〜900c、c、/win程
度であるから、デジタル分解能=12ビットでカバーで
きる。
In addition, due to the above characteristics, the amount of change in the amount of deflection: S differs between regions where the flow rate: Q is small and large, so in reality, there are restrictions such as resolution when detecting the amount of deflection: S. , flow rate: The measurement range of Q is somewhat restricted. Even in this case, when the flow meter is applied to a painting gun, the flow rate Q is about 100 to 900 c, c, /win, so it can be covered with a digital resolution of 12 bits.

第3図は、本発明の第2実施例に係る液体の流量計を示
し、該第2実施例では、パイプ3の他端部2である自由
端は折り返し構造に形成されている。
FIG. 3 shows a liquid flowmeter according to a second embodiment of the present invention, and in the second embodiment, the free end, which is the other end 2 of the pipe 3, is formed into a folded structure.

(以下、余白) 第1表は、第2実施例の流量計を塗料の流量を計測する
場合に用いる場合における流量:Qと撓み量:Sとの関
係を示したものであって、塗料の流量:Qとしては、0
 (c、c、/win )から、1000 (c、c、
/min )つまり1.667X10−”(m3/se
e )までを50 (c、c、/rAin )きざみで
設定し、該流ffi:Qに対応する撓み量:Sと圧力損
失:dPとを計算したものである。この場合、パイプ3
と塗料とについては以下のように設定した。すなわち、
パイプ3については、 材料ニステンレス(SUS304) ヤング係数E:約2.  I X 1010(kg/m
2)曲率半径Rs : 50. 0 (mu)固定端と
自由端との角度θ: 5. 326 (rad )−3
00,0(deg) 長さL:261.8(+n印) 内側半径RT : 2. 00 (mm)肉厚t:0゜
10 (mm) に各々設定し、塗料については、 材料ニ一般上塗りソリッド色 比重γ二1. 00 (g/c、c、)粘度(Ford
cup #4)  : 25. 0 (see )粘度
(ポアズ換算): 0.747 (g*/cm・S)に
各々設定した。
(Hereinafter, blank space) Table 1 shows the relationship between the flow rate: Q and the amount of deflection: S when the flowmeter of the second embodiment is used to measure the flow rate of paint. Flow rate: Q is 0
(c, c, /win) to 1000 (c, c,
/min) or 1.667X10-”(m3/se
e) in steps of 50 (c, c, /rAin), and the amount of deflection: S and pressure loss: dP corresponding to the flow ffi:Q are calculated. In this case, pipe 3
and paint were set as follows. That is,
For pipe 3, the material is stainless steel (SUS304), Young's modulus E: approximately 2. I x 1010 (kg/m
2) Radius of curvature Rs: 50. 0 (mu) Angle θ between fixed end and free end: 5. 326 (rad)-3
00,0 (deg) Length L: 261.8 (+n mark) Inner radius RT: 2. 00 (mm) wall thickness t: 0°10 (mm), and for the paint, the color specific gravity of the general topcoat solid γ21. 00 (g/c, c,) Viscosity (Ford
cup #4): 25. 0 (see) Viscosity (poise conversion): Each was set at 0.747 (g*/cm·S).

また、第1表においては、上記流量計を塗料の流量計側
用に用いる場合に考慮しなければならない項目の1つと
して、塗料がパイプ3を通過する際に生じる圧力損失の
計算結果も示している。
Table 1 also shows the calculation results of the pressure loss that occurs when the paint passes through the pipe 3, which is one of the items that must be taken into consideration when using the above flowmeter as a paint flowmeter. ing.

第1表の計算結果から、実際に撓みx、Sを測定する場
合、流量:Qの測定レンジの下限を100 (c、c、
/min ) 、上限を900 (c、c、/min 
)とすると、撓み量:Sの変化の差は3.651769
36079mm (〜3.69741647780−0
.04564711701)になるから、これをデジタ
ル分解能12ビツト(4096)で0.001mm単位
で測定する。この場合、物体の移動量を0.001mm
単位で測定できるセンサとしてはレーザー測定器や歪み
ケージ等がある。
From the calculation results in Table 1, when actually measuring the deflections x and S, the lower limit of the measurement range for flow rate: Q is 100 (c, c,
/min), the upper limit is 900 (c, c, /min
), the difference in change in deflection amount: S is 3.651769
36079mm (~3.69741647780-0
.. 04564711701), this is measured in units of 0.001 mm with a digital resolution of 12 bits (4096). In this case, the amount of movement of the object is 0.001 mm.
Sensors that can measure in units include laser measuring instruments and strain cages.

また、上記の流量計によって生しる塗料の圧力損失は、
流量:Qか900 (c、c、/min )でパイプ3
の片側当たりで0.573kg/cm2(7)2倍であ
っC1若干の圧力損失になるが許容範囲である。
In addition, the pressure loss of the paint caused by the above flowmeter is
Flow rate: Q or 900 (c, c, /min) pipe 3
It is 0.573 kg/cm2 (7) twice per side of C1, which results in a slight pressure loss, but it is within the allowable range.

また、流量計か外部環境の温度変化を受は難くするため
、熱によるパイプ3の線膨張や測定器類のドリフトを極
力無くすようにすることが好ましい。
Furthermore, in order to make it difficult for the flowmeter to be affected by temperature changes in the external environment, it is preferable to eliminate linear expansion of the pipe 3 and drift of the measuring instruments as much as possible due to heat.

この場合、熱によるパイプ3の線膨張は、ステンレスの
熱線膨張係数が約0.000011であるから、温度が
10°変化したとしても、パイプ3の長さ:Lか261
.8mmであって、熱による伸縮量は261.8XO,
0OOOIIXIO=0.0295mmである。この伸
縮量によって受けるパイプ曲率半径:R8の伸縮差は0
.010mm程度になり、遠心カニFによるパイプの撓
み変化が小さい流量: Q = 100 (c、c、/
min )当たりにおいて、測定値に0,2%の誤差が
生じることになる。もっとも、この誤差は流量、Qか0
のときを見計らって自動的に0点補正を行なうことによ
って成る程度まで小さくすることかできる。
In this case, the thermal linear expansion coefficient of stainless steel is approximately 0.000011, so even if the temperature changes by 10 degrees, the linear expansion of the pipe 3 due to heat will be 261
.. 8mm, the amount of expansion and contraction due to heat is 261.8XO,
0OOIIXIO=0.0295mm. The difference in expansion and contraction of pipe curvature radius: R8 due to this amount of expansion and contraction is 0
.. 010mm, and the pipe deflection change due to the centrifugal crab F is small: Q = 100 (c, c, /
min), an error of 0.2% will occur in the measured value. However, this error is due to the flow rate, Q or 0.
This can be reduced to the extent that it can be achieved by automatically performing zero point correction at the appropriate time.

なお、第1表は、塗料流量、Qのレンジを100〜90
0 (c、c、/l1lin )までカバーした場合を
示したが、必要に応じて、流量レンジを適宜変更するこ
とはできる。
Table 1 shows the range of paint flow rate and Q from 100 to 90.
0 (c, c, /l1lin), but the flow rate range can be changed as necessary.

(発明の効果) 以上説明したように、本発明に係る液体の流量計による
と、一端部を固定端に他端部を自由端にしてループ状に
湾曲形成されたパイプと、該パイプの自由端の移動量を
測定する測定手段と、上記移動量を液体の流量に変換す
る変換手段とからなり、液体流量か変化すると、これに
即応して上記自由端の移動量か変化するため、液体の流
量変化に対する応答性が極めて良い。
(Effects of the Invention) As explained above, according to the liquid flowmeter according to the present invention, there is a pipe that is curved in a loop shape with one end being a fixed end and the other end being a free end, and the pipe is free. It consists of a measuring means for measuring the amount of movement of the end, and a conversion means for converting the amount of movement into the flow rate of the liquid.When the liquid flow rate changes, the amount of movement of the free end changes immediately in response to the change in the liquid flow rate. The response to changes in flow rate is extremely good.

また、本発明の液体の流量計を霧化状塗料の流量を計測
するために用いると、塗料の色替え或いは洗浄に際して
は、ループ状のパイプ内に洗浄液を流通させるだけでよ
いので、色替え及び洗浄が極めて容易である。
Furthermore, when the liquid flowmeter of the present invention is used to measure the flow rate of atomized paint, when changing the color or cleaning the paint, it is only necessary to flow the cleaning liquid through the loop-shaped pipe. and extremely easy to clean.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る液体の流量計の断面
図、第2図は上記液体の流量計の原理の説明図、第3図
は本発明の第2実施例に係る液体の流量計の斜視図であ
る。 1・・・一端部(固定端) 2・・・他端部(自由端) 3・・・パイプ
FIG. 1 is a sectional view of a liquid flow meter according to a first embodiment of the present invention, FIG. 2 is an explanatory diagram of the principle of the liquid flow meter, and FIG. 3 is a cross-sectional view of a liquid flow meter according to a second embodiment of the present invention. FIG. 1... One end (fixed end) 2... Other end (free end) 3... Pipe

Claims (1)

【特許請求の範囲】[Claims] (1)一端部を固定端に他端部を自由端にしてループ状
に湾曲形成され、液体を前記一端部側から他端部側に流
通せしめるループ状のパイプと、該パイプ内を流通する
液体の遠心力により生じる上記自由端の移動量を測定す
る測定手段と、該測定手段が測定した上記移動量を液体
の流量に変換する変換手段とからなることを特徴とする
液体の流量計。
(1) A loop-shaped pipe that is curved into a loop shape with one end fixed and the other end free, allowing liquid to flow from the one end to the other end; A liquid flowmeter comprising: a measuring means for measuring the amount of movement of the free end caused by centrifugal force of the liquid; and a converting means for converting the amount of movement measured by the measuring means into a flow rate of the liquid.
JP19544290A 1990-07-24 1990-07-24 Flowmeter for liquid Pending JPH0481617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19544290A JPH0481617A (en) 1990-07-24 1990-07-24 Flowmeter for liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19544290A JPH0481617A (en) 1990-07-24 1990-07-24 Flowmeter for liquid

Publications (1)

Publication Number Publication Date
JPH0481617A true JPH0481617A (en) 1992-03-16

Family

ID=16341135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19544290A Pending JPH0481617A (en) 1990-07-24 1990-07-24 Flowmeter for liquid

Country Status (1)

Country Link
JP (1) JPH0481617A (en)

Similar Documents

Publication Publication Date Title
AU691773B2 (en) Coriolis flowmeter
US6327915B1 (en) Straight tube Coriolis flowmeter
CA2587175C (en) Method and apparatus for determining flow pressure using density information
EP3129754B1 (en) Apparatus and method for detecting asymmetric flow in vibrating flowmeters
JP2575203B2 (en) Mass flow meter with improved accuracy by compensating for asymmetry and viscous damping
JP2002502022A (en) A system to verify the calibration of Coriolis flow meters
EP0895581A1 (en) Signal processing apparati and methods for attenuating shifts in zero intercept attributable to a changing boundary condition in a coriolis mass flow meter
US6705172B1 (en) Method and device for detecting and compensating zero point influences on coriolis mass flowmeters
JP6395860B2 (en) Flow meter manifold with position indexing boss
RU2406072C2 (en) Vibration-type transducer and its use in built-in measuring means
US6227059B1 (en) System and method for employing an imaginary difference signal component to compensate for boundary condition effects on a Coriolis mass flow meter
WO2018208301A1 (en) Correcting a measured flow rate for viscosity effects
US10539442B2 (en) Fluid momentum detection method and related apparatus
US9976890B2 (en) Vibrating flowmeter and related methods
JPH0481617A (en) Flowmeter for liquid
JPH0438261Y2 (en)
JP2984192B2 (en) Coriolis flow meter
Kolahi et al. Model-based density measurement with Coriolis flowmeter
WO2000002019A1 (en) A coriolis effect fluid flow meter
JP3134984B2 (en) Vibration type measuring instrument
US20220390343A1 (en) Detecting an orientation of a vibratory meter and compensating a measurement based on the detected orientation
CN108871480A (en) Dynamic sealing hinge tubular type coriolis mass flowmeters
JP2019215235A (en) Pressure gauge including bourdon tube