JPH0481215A - Ehrhardt tube making method - Google Patents

Ehrhardt tube making method

Info

Publication number
JPH0481215A
JPH0481215A JP19323990A JP19323990A JPH0481215A JP H0481215 A JPH0481215 A JP H0481215A JP 19323990 A JP19323990 A JP 19323990A JP 19323990 A JP19323990 A JP 19323990A JP H0481215 A JPH0481215 A JP H0481215A
Authority
JP
Japan
Prior art keywords
steel ingot
ingot
cast
surface layer
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19323990A
Other languages
Japanese (ja)
Inventor
Tadashi Dohara
忠志 堂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19323990A priority Critical patent/JPH0481215A/en
Publication of JPH0481215A publication Critical patent/JPH0481215A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a hollow tube stock excellent in surface property from an ingot as cast by giving working strain to its surface area before the ingot is heated. CONSTITUTION:The ingot 1 as cast is a macro columnar structure and when working strain is given to its surface layer before this ingot 1 is heated, the columnar structure of the surface layer is broken and the columnar structure broken in a heating stage is recrystallized and extinguished, deformability of the surface layer is improved and therefore, crack defects become hard to occur.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳造のままの鋼塊から表面性状に優れた中空
素管を得るエルハルト製管方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an Erhardt pipe manufacturing method for obtaining a hollow shell pipe with excellent surface properties from an as-cast steel ingot.

(従来の技術) エルハルト製管は、第1図に示すように加熱後の鋼塊1
を内面の水平断面形状が円形のコンテナ2内に装入しく
図(a))、これにマンドレル3を圧入して穿孔加工し
く図(b))、鋼塊lを底付きカップ状の中空素管4に
成形する(図(C))。穿孔加工ではマンドレルが圧入
された部分の鋼塊がコンテナ1内に充満し、次いで上部
にせり上がることで底付きカップ状の中空素管となる。
(Prior art) As shown in Fig.
The steel ingot 1 is charged into a container 2 whose inner surface has a circular horizontal cross-sectional shape (Figure (a)), and the mandrel 3 is press-fitted into the container 2 to form a hole (Figure (b)). Form into a tube 4 (Figure (C)). During the drilling process, the steel ingot into which the mandrel was press-fitted fills the container 1, and then rises to the top to form a cup-shaped hollow tube with a bottom.

前記鋼塊は、断面正方形又は長方形のものが多いが、丸
形断面や画形断面をしたものもある。そして、これらの
鋼塊は一般に鋳造のままの状態で穿孔加工に供されてい
るが、鋳造のままの鋼塊は巨大な柱状晶組織であり、熱
間変形能が極めて低く、穿孔時の厳しい加工に耐えきれ
ずに、第2図に示すように中空素管4の外表面に亀裂状
の欠陥5(以下、この欠陥を亀裂欠陥という)を生しる
ことがある。特に、ステンレス鋼などの高合金鋼ではそ
の傾向が顕著である。
Most of the steel ingots have a square or rectangular cross section, but some have a round or patterned cross section. These steel ingots are generally subjected to drilling in the as-cast state, but the as-cast steel ingots have a huge columnar crystal structure and have extremely low hot deformability, making them difficult to drill during drilling. It may not be able to withstand processing, and as shown in FIG. 2, a crack-like defect 5 (hereinafter referred to as a crack defect) may occur on the outer surface of the hollow tube 4. This tendency is particularly noticeable in high alloy steels such as stainless steel.

(発明が解決しようとする課題) 穿孔加工では、鋼塊にマンドレルが圧入され、圧入され
た部分の鋼塊がコンテナ内を充満し、次いで上部にせり
上がるときに鋼塊側面および底面に引張力がかかる。こ
の引張力により鋼塊側面および底面に亀裂が生じる。ま
た、マンドレルが鋼塊に圧入されたときに鋼塊上面にも
引張力が作用するため、亀裂が上面にも発生ずる。中空
素管にこのような亀裂欠陥が現れると製品価値が著しく
低下する。
(Problem to be Solved by the Invention) In the drilling process, a mandrel is press-fitted into a steel ingot, the press-fitted part of the steel ingot fills the container, and then as it rises to the top, a tensile force is applied to the sides and bottom of the steel ingot. It takes. This tensile force causes cracks to form on the sides and bottom of the steel ingot. Furthermore, when the mandrel is press-fitted into the steel ingot, tensile force also acts on the top surface of the steel ingot, so cracks also occur on the top surface. If such crack defects appear in the hollow tube, the product value will be significantly reduced.

本発明の課題は、このような亀裂欠陥の問題を解消し、
鋳造のままの鋼塊から表面性状に優れた中空素管を得る
ことができるエルハルト製管方法を提供することにある
The object of the present invention is to solve the problem of such crack defects,
An object of the present invention is to provide an Erhardt pipe manufacturing method that allows obtaining a hollow pipe with excellent surface properties from an as-cast steel ingot.

(課題を解決するための手段) 鋳造のままの鋼塊は先に述べたとおり巨大な柱状晶組織
になっており、熱間変形能が低い上に、鋼塊の外表面は
穿孔加工時における温度低下により熱間変形能が更に低
下する。この外表面の熱間変形能の低下と、鋼塊表面と
工具との摩擦により生じるせん断力とがあいまって中空
素管の外表面に亀裂欠陥を発生させる。従って、加工中
に変形能が低下しても、少なくとも鋼塊表面層がせん断
力に耐えるだけの変形能を有しておれば、中空素管の外
表面に亀裂欠陥が現れることはないと考えられる。
(Means for solving the problem) As mentioned above, the as-cast steel ingot has a huge columnar crystal structure, has low hot deformability, and the outer surface of the steel ingot is difficult to form during drilling. The hot deformability further decreases as the temperature decreases. This reduction in the hot deformability of the outer surface and the shear force generated by the friction between the steel ingot surface and the tool combine to generate crack defects on the outer surface of the hollow tube. Therefore, even if the deformability decreases during processing, as long as the surface layer of the steel ingot has enough deformability to withstand the shearing force, crack defects will not appear on the outer surface of the hollow tube. It will be done.

そこで、本発明者らは鋳造のままの鋼塊表面層の変形能
を高める方法について検討した結果、加熱前に鋼塊表面
層に加工歪みを付与して柱状晶組織を破壊し、加熱工程
により再結晶させると、外表面の変形能が向上して、亀
裂状の欠陥が発生しにくくなることを見出した。
Therefore, the present inventors investigated a method to increase the deformability of the as-cast steel ingot surface layer, and found that the process strain was applied to the steel ingot surface layer before heating to destroy the columnar crystal structure, and the heating process It has been found that recrystallization improves the deformability of the outer surface and makes crack-like defects less likely to occur.

本発明は「素材に鋳造のままの鋼塊を用い、この鋼塊を
加熱した後、穿孔加工するエルハルト製管方法において
、前記鋼塊を加熱する前にその表面に加工歪みを付与す
ることを特徴とするエルハルト製管方法Jを要旨とする
The present invention is based on ``the Erhardt pipe making method in which a cast steel ingot is used as a raw material, and the steel ingot is heated and then drilled. This article summarizes the characteristic features of Erhardt pipe manufacturing method J.

(作用) 以下、本発明方法について詳細に説明する。(effect) The method of the present invention will be explained in detail below.

鋳造のままの鋼塊は巨大な柱状晶組織になっているが、
この鋼塊を加熱する前にその表面層に加工歪みを与え(
加工歪みを付与した表面層を加工層という)、表面層の
柱状晶組織を破壊し、加熱工程で破壊した柱状晶組織を
再結晶させて消失させれば、表面層の変形能が向上する
ので、亀裂欠陥は生じにく(なる。
The as-cast steel ingot has a huge columnar crystal structure,
Before heating this steel ingot, a processing strain is applied to its surface layer (
The deformability of the surface layer can be improved by destroying the columnar crystal structure of the surface layer, recrystallizing the columnar crystal structure destroyed in the heating process, and eliminating it by recrystallizing it. , crack defects are less likely to occur.

この効果は、後述する実施例に示す如く、鋼塊表面に加
工歪みを付与するだけで現れるが、その加工層が薄いと
効果も小さいので、鋼塊表面から少なくとも5mm厚、
より好ましくは鋼塊表面から10mm厚以上の表面層に
加工歪みを付与するのがよい。
As shown in the examples described later, this effect appears simply by applying processing strain to the surface of the steel ingot, but the effect is small if the processed layer is thin.
More preferably, processing strain is applied to a surface layer having a thickness of 10 mm or more from the surface of the steel ingot.

加工歪みは、鋼塊の全表面に付与してもよく、或いは、
穿孔加工後に行われる押抜きにより得られる製品の表面
になる部分だけに付与してもよい。
Processing strain may be applied to the entire surface of the steel ingot, or
It may be applied only to the surface of the product obtained by punching after the perforation process.

例えば、断面が矩形の鋼塊では鋼塊底面の内周部は押抜
き後は製品の表面にならず、切断除去されるので、この
部分を除く、鋼塊の周囲4面と上面および下面の外縁部
に加工歪みを付与しておけば、亀裂欠陥のない表面性状
に優れた製品を得ることができる。
For example, in a steel ingot with a rectangular cross section, the inner periphery of the bottom of the steel ingot does not become the surface of the product after punching and is removed by cutting. By applying processing strain to the outer edge, a product with excellent surface quality and no crack defects can be obtained.

加工歪みは、鋼塊の形状に応じて適当な手段を選択し、
その表面に付与すればよい。例えば、圧延加工法、ダイ
ス押抜き加工法、鍛造加工法、第3図に示すようなチェ
ーンによる加工法等が採用できる。第3図に示す方法は
、上昇および回転可能な把持用爪6で保持された鋼塊1
の側面側と下方側に第4図に示すようなチェーン7を外
周に取付けた回転可能なドラム8を配置し、ドラム8を
回転させてチェーン7により鋼塊1の表面を叩くチェー
ン叩き加工法である。
For processing distortion, select an appropriate method according to the shape of the steel ingot,
It may be applied to the surface. For example, a rolling method, a die punching method, a forging method, a processing method using a chain as shown in FIG. 3, etc. can be employed. The method shown in FIG.
A rotatable drum 8 with a chain 7 attached to its outer periphery as shown in Fig. 4 is arranged on the side and lower sides of the steel ingot 1, and the drum 8 is rotated to hit the surface of the steel ingot 1 with the chain 7. It is.

圧延加工法およびダイス押抜き加工法では、鋼塊の周囲
4面を同時に加工することができる。上面および下面は
圧延加工法およびダイス押抜き加工法で加工するのは難
しいので、前記のチェーン叩き加工法などの別な方法で
行うのがよい。鍛造加工法は相対する而を同時に加工す
ることができるので、鋼塊を回転させれば全面に加工を
施すことができる。チェーン叩き加工法は、テーパ状の
鋼塊に有効である。鋼塊表面は波打ちなどがあり、表面
は必ずしも良好ではない。チェーン叩き加工法によれば
、このような鋼塊でも表面に均一に加工歪みを付与する
ことができる。或いは、特公昭61−11690号公報
に開示されている装置を使用すれば、鋼塊コルゲート凹
面に確実に加工歪みを付与することができる。
In the rolling method and the die punching method, four peripheral surfaces of a steel ingot can be processed simultaneously. Since it is difficult to process the upper and lower surfaces using the rolling method and the die punching method, it is preferable to use another method such as the chain hammering method described above. The forging process allows opposing parts to be processed at the same time, so by rotating the steel ingot, the entire surface can be processed. The chain tapping method is effective for tapered steel ingots. The surface of the steel ingot has some undulations and is not necessarily in good condition. According to the chain beating method, even such a steel ingot can be uniformly subjected to processing strain on its surface. Alternatively, by using the apparatus disclosed in Japanese Patent Publication No. 61-11690, processing strain can be reliably applied to the concave surface of the corrugated steel ingot.

本発明において、素材の鋼塊は鋳造のままのものであれ
ば、その材質は格別問わないが、ステンレス鋼やその他
の高合金鋼のような難加工材料に適用された場合に本発
明は大きな効果を発揮する。
In the present invention, the material of the raw steel ingot is not particularly limited as long as it is as cast, but the present invention has great advantages when applied to difficult-to-process materials such as stainless steel and other high alloy steels. be effective.

また、鋼塊の形状も問わない。例えば、角形断面、矩形
断面、偏平形断面、丸形断面、葉形断面等のいずれの形
状の鋼塊にも本発明は適用することができる。
Further, the shape of the steel ingot does not matter. For example, the present invention can be applied to steel ingots having any shape such as a square cross section, a rectangular cross section, a flat cross section, a round cross section, a lobe cross section, etc.

以下、実施例により本発明を更に説明する。The present invention will be further explained below with reference to Examples.

(実施例) 下注造塊法によって20Cr−3ONi系合金(アロイ
800 I+ )の鋼塊と22Cr  26Ni −5
Mo系合金の鋼塊を鋳込んだ。鋼塊はいずれも断面形状
が角形で、寸法は上面491mm角、下面449mm角
、平均470mm角、長さ1200mm、である。次い
で、一部の鋼塊はそのままで、他のものは第3図に示し
たドラム回転式の装置によってチェーン叩き加工法によ
り加工歪みを付与した。加工層の厚みはチェーンの太さ
と回転ドラムの回転数等を変化させて調整した。第1表
にその詳細な条件を示す。チェーンは第4図に示すよう
に楕円形のリングを繋ぎ合わせたものである。
(Example) A steel ingot of 20Cr-3ONi alloy (Alloy 800 I+) and 22Cr 26Ni -5 were made by the bottom pouring ingot method.
A Mo-based alloy steel ingot was cast. All of the steel ingots had a rectangular cross-sectional shape, and the dimensions were an upper surface of 491 mm square, a lower surface of 449 mm square, an average of 470 mm square, and a length of 1200 mm. Next, some of the steel ingots were left as they were, while others were subjected to processing distortion by chain hammering using a drum-rotating device shown in FIG. The thickness of the processed layer was adjusted by changing the thickness of the chain and the rotation speed of the rotating drum. Table 1 shows the detailed conditions. The chain is made up of oval rings connected together as shown in Figure 4.

しかる後、これらの鋼塊を加熱し、穿孔加工して底付き
カップ状の中空素管に形成した。中空素管は同じ条件で
それぞれ10個づつ製造した。
Thereafter, these steel ingots were heated and perforated to form a cup-shaped hollow tube with a bottom. Ten hollow tubes were manufactured under the same conditions.

このようにして得られた中空素管の表面を目視検査し、
亀裂欠陥の発生率を調べた結果を第2表に加工層の厚み
、穿孔加工条件とともに示す。
Visually inspect the surface of the hollow tube obtained in this way,
The results of investigating the incidence of crack defects are shown in Table 2 along with the thickness of the processed layer and the drilling conditions.

第2表から、本発明方法によれば従来方法に比べ、亀裂
欠陥の発生率が減少していることがわかる。特に、加工
歪のを表面から10mmの表面層に付与して加熱し、穿
孔加工したものは亀裂欠陥は皆無である。
Table 2 shows that according to the method of the present invention, the incidence of crack defects is reduced compared to the conventional method. In particular, there are no crack defects in the case where processing strain is applied to the surface layer 10 mm from the surface, heated, and punched.

(以下、余白) (発明の効果) 本発明方法によれば、鋳造のままの鋼塊から歩留りよく
表面性状に優れた製品を製造することができる。
(Hereinafter, blanks) (Effects of the Invention) According to the method of the present invention, a product with a high yield and excellent surface properties can be manufactured from an as-cast steel ingot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、エルハル1−製管方法を示す概略断面説明図
、 第2図は、亀裂欠陥の発生した中空素管を示す図、 第3図は、チェーン叩き加工法による加工歪みの付与の
態様を示した概略図、 第4図は、実施例で用いたチェーンの形状を示す図、で
ある。 1:鋼塊、2:コンテナ、3:マンドレル、4:中空素
管、5:亀裂欠陥、6:把持用爪、7:チェーン、8ニ
ドラム。
Figure 1 is a schematic cross-sectional explanatory diagram showing the Elhar 1 pipe manufacturing method, Figure 2 is a diagram showing a hollow tube with crack defects, and Figure 3 is a diagram showing the process of applying processing distortion by the chain beating method. FIG. 4 is a schematic diagram showing the embodiment. FIG. 4 is a diagram showing the shape of the chain used in the example. 1: Steel ingot, 2: Container, 3: Mandrel, 4: Hollow tube, 5: Crack defect, 6: Gripping claw, 7: Chain, 8 Ni drums.

Claims (1)

【特許請求の範囲】[Claims] 素材に鋳造のままの鋼塊を用い、この鋼塊を加熱した後
、穿孔加工するエルハルト製管方法において、前記鋼塊
を加熱する前にその表面層に加工歪みを付与することを
特徴とするエルハルト製管方法。
An Erhardt pipe making method in which a cast steel ingot is used as a raw material, and the steel ingot is heated and then drilled, characterized in that a processing strain is imparted to the surface layer of the steel ingot before heating it. Erhardt pipe manufacturing method.
JP19323990A 1990-07-20 1990-07-20 Ehrhardt tube making method Pending JPH0481215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19323990A JPH0481215A (en) 1990-07-20 1990-07-20 Ehrhardt tube making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19323990A JPH0481215A (en) 1990-07-20 1990-07-20 Ehrhardt tube making method

Publications (1)

Publication Number Publication Date
JPH0481215A true JPH0481215A (en) 1992-03-13

Family

ID=16304648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19323990A Pending JPH0481215A (en) 1990-07-20 1990-07-20 Ehrhardt tube making method

Country Status (1)

Country Link
JP (1) JPH0481215A (en)

Similar Documents

Publication Publication Date Title
US4162758A (en) Method for producing clad steel pipes
JP4846197B2 (en) Process for continuously cast metal slabs or strips, and plates or strips produced by this process
JP2005500165A5 (en)
JPS62286640A (en) Forging method for titanium alloy
CN109909410A (en) A kind of forging method improving aluminum alloy round dish-shaped forgings flaw detection qualification rate
JPH0481215A (en) Ehrhardt tube making method
JP3242521B2 (en) Manufacturing method of titanium alloy ring
JP2002224792A (en) Method for manufacturing hollow body of polygonal section and hollow body of polygonal section manufactured in the same method
JP2768849B2 (en) Grain refining method for non-magnetic steel cylindrical forgings
US3927292A (en) Weld bead form rolls
JPS61140301A (en) Manufacture of round billet for seamless stainless steel pipe by skew rolling
JPS58209441A (en) Forging method of ring
JPH0729127B2 (en) Method for producing seamless austenitic stainless steel pipe
JPH03198911A (en) Billet producing method for hot extrusion
JPS60196242A (en) Hollow forging method of large-diameter pipe while preventing cooling of inside surface
JPS5819373B2 (en) Forging method for metal materials
JPS5817704B2 (en) Osmanthus Cylinder No. Seizouhouhou
SU770698A1 (en) Method of manufacturing metallic shaped workpiece by pressure welding
RU2025240C1 (en) Method of diffusion welding of two-phase titanium alloys
SU1162513A1 (en) Method of manufacturing rod from molibdenum and its alloys
JPS63112004A (en) Hot rolling method for copper-nickel alloy
CN115488184A (en) Hot perforation method for niobium-containing austenitic stainless steel hollow billet
JPS62230450A (en) Piercing method in punched pipe
RU2288053C2 (en) Method for producing cold-rolled large- and mean- diameter tubes of titanium base alloys
JPH0411618B2 (en)