JPH0480974B2 - - Google Patents

Info

Publication number
JPH0480974B2
JPH0480974B2 JP10802085A JP10802085A JPH0480974B2 JP H0480974 B2 JPH0480974 B2 JP H0480974B2 JP 10802085 A JP10802085 A JP 10802085A JP 10802085 A JP10802085 A JP 10802085A JP H0480974 B2 JPH0480974 B2 JP H0480974B2
Authority
JP
Japan
Prior art keywords
cooling
pattern
target
steel
transformation rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10802085A
Other languages
Japanese (ja)
Other versions
JPS61266524A (en
Inventor
Kazuhiro Yahiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10802085A priority Critical patent/JPS61266524A/en
Publication of JPS61266524A publication Critical patent/JPS61266524A/en
Publication of JPH0480974B2 publication Critical patent/JPH0480974B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Control Of Heat Treatment Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、鋼材の冷却制御方法に係り、特に、
熱間圧延後の熱延鋼板や厚鋼板等の鋼材の冷却に
採用して好適な、鋼材を冷却制御する際に、変態
率を制御して目標材質を得る鋼材の冷却制御方法
に関する。
The present invention relates to a cooling control method for steel materials, and in particular,
The present invention relates to a method of controlling the cooling of a steel material, which is suitable for cooling steel materials such as hot-rolled steel plates and thick steel plates after hot rolling, and which obtains a target material quality by controlling the transformation rate when controlling the cooling of the steel material.

【従来の技術】 従来、鋼材の材質を制御する方法として、鋼材
の温度を管理することが行われている。しかし、
鋼材の材質は温度のみでなく、変態挙動にも大き
く影響されている。即ち、鋼材の材質を決定する
要因の1つとして、γ鉄からα鉄への変態状況が
ある。従つて、このγ鉄からα鉄への変態挙動を
制御することが鋼材の材質を制御することに大き
く影響する。 しかし、鋼の変態挙動は、鋼の成分、圧延条件
(圧下荷重、歪量)、冷却条件(板厚、ロール温
度、デスケーリングのパターン、水温、外気温)
等によつて変化する。この鋼の変態挙動を冷却に
よつて管理しようとする場合、上記要因を各種設
定して、その状況下毎の変態挙動を予め観測して
おかねばならない。
BACKGROUND OF THE INVENTION Conventionally, a method of controlling the quality of steel has been to control the temperature of the steel. but,
The quality of steel materials is greatly influenced not only by temperature but also by transformation behavior. That is, one of the factors that determines the material quality of steel is the state of transformation from γ iron to α iron. Therefore, controlling this transformation behavior from γ iron to α iron has a large effect on controlling the material quality of steel materials. However, the transformation behavior of steel depends on the steel composition, rolling conditions (rolling load, strain amount), cooling conditions (plate thickness, roll temperature, descaling pattern, water temperature, outside air temperature).
It changes depending on etc. In order to control the transformation behavior of steel by cooling, it is necessary to set various of the above-mentioned factors and observe the transformation behavior under each situation in advance.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、制御対象となる全ての鋼板を観
測した上である条件下の鋼板に対する目標冷却条
件、目標変態率を求めることは現実的には不可能
である。このため、従来、鋼材を冷却制御する際
に、変態率を制御して目標材質を得る鋼材の冷却
制御方法は一部の鋼材に限定されるという問題点
を有していた。 一方、例えば、特開昭59−129717に開示される
如く、変態量を検出する装置を配置したことを特
徴とする鋼板の直接焼入れ装置が提案されてい
る。この鋼板の直接焼入れ装置は、焼入れにあた
つて変態量を測定して材質の安定化を図らんとす
るものであり、この直接焼入れ装置においては、
冷却中の変態量の推移と冷却後に得られる材質と
の関係を一義的に取扱つている。しかしながら、
現実的には、冷却中の変態量の推移と冷却後に得
られる材質との関係を一義的に取扱つたのでは、
適格な材質制御は困難であるという問題点を有す
る。
However, it is practically impossible to obtain the target cooling conditions and target transformation rate for the steel plate under certain conditions after observing all the steel plates to be controlled. For this reason, conventionally, when controlling the cooling of steel materials, there has been a problem in that the method of controlling the cooling of steel materials to obtain a target material quality by controlling the transformation rate is limited to some steel materials. On the other hand, as disclosed in, for example, Japanese Patent Application Laid-Open No. 59-129717, a direct hardening apparatus for steel sheets has been proposed, which is characterized by being equipped with a device for detecting the amount of transformation. This direct quenching equipment for steel plates attempts to stabilize the material by measuring the amount of transformation during quenching, and in this direct quenching equipment,
It primarily deals with the relationship between the change in the amount of transformation during cooling and the material quality obtained after cooling. however,
In reality, the relationship between the change in the amount of transformation during cooling and the material quality obtained after cooling should be treated uniquely.
The problem is that proper material control is difficult.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくな
されたもので、材質制御対象となる全ての鋼板を
観測する必要がなく、鋼材の全長に亘つて目標材
質が得られるような、冷却条件、変態率パターン
を選定することができ、従つて、高い精度で一定
材質の鋼材を得ることができる鋼材の冷却制御方
法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and it is not necessary to observe all the steel plates whose material properties are to be controlled. It is an object of the present invention to provide a method for controlling the cooling of a steel material by which a transformation rate pattern can be selected and, therefore, a steel material having a constant material quality can be obtained with high accuracy.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、鋼材を冷却制御する際に、変態率を
制御して目標材質を得る鋼材の冷却制御方法にお
いて、第1図にその要旨を示す如く、鋼材の目標
材質、成分、圧延条件に応じて、予測材質と目標
材質との偏差が最小となる冷却パターンを選定
し、該選定冷却パターンから算出された予測材質
と目標材質との偏差が目標材質精度内となるよう
な、前記選定冷却パターンの温度補正量を算出
し、該温度補正量によつて前記選定冷却パターン
を補正して、目標材質が得られる冷却パターンを
求め、該目標冷却パターンから目標変態率パター
ンを求め、前記目標冷却パターン及び目標変態率
パターンに基づき鋼材の冷却を制御することによ
り、前記目的を達成したものである。
The present invention provides a method for controlling the cooling of a steel material in which a target material quality is obtained by controlling the transformation rate.As shown in FIG. The selected cooling pattern is selected such that the deviation between the predicted material and the target material calculated from the selected cooling pattern is within the target material accuracy. calculate a temperature correction amount, correct the selected cooling pattern using the temperature correction amount to obtain a cooling pattern that can obtain the target material, obtain a target transformation rate pattern from the target cooling pattern, and calculate the target cooling pattern. The above object is achieved by controlling the cooling of the steel material based on the target transformation rate pattern.

【作用】[Effect]

本発明は、鋼材を冷却制御するに際して、鋼材
の目標材質、成分、圧延条件に応じて、予測材質
と目標材質との偏差が最小となる冷却パターンを
選定し、該選定冷却パターンから算出された予測
材質と目標材質との偏差が目標材質精度内となる
ような、前記選定冷却パターンの温度補正量を算
出し、該温度補正量によつて前記選定冷却パター
ンを補正して、目標材質が得られる冷却パターン
を求め、該目標冷却パターンから目標変態率パタ
ーンを求め、前記目標冷却パターン及び目標変態
率パターンに基づき鋼材の冷却を制御するように
している。従つて、材質制御対象となる全ての鋼
板を観測して、これら全鋼板に対する冷却パター
ンを求める必要もなく、鋼材の全長に亘つて目標
材質が得られるような、冷却条件、変態率パター
ンを選定することができるようになる。これによ
り、高い精度で一定材質の鋼材を得ることがで
き、材質の均質性を確保することができるように
なる。又、圧延条件、成分を考慮して目標材質を
得るための冷却パターンを確定しているため、目
標の材質を容易に製造することができる。
In controlling cooling of steel materials, the present invention selects a cooling pattern that minimizes the deviation between the predicted material quality and the target material according to the target material quality, composition, and rolling conditions of the steel material, and calculates the cooling pattern based on the selected cooling pattern. A temperature correction amount for the selected cooling pattern is calculated so that the deviation between the predicted material and the target material falls within the target material accuracy, and the selected cooling pattern is corrected by the temperature correction amount to obtain the target material. A target transformation rate pattern is determined from the target cooling pattern, and cooling of the steel material is controlled based on the target cooling pattern and the target transformation rate pattern. Therefore, there is no need to observe all steel plates whose material properties are to be controlled and find cooling patterns for all of these steel plates, and select cooling conditions and transformation rate patterns that will allow the target material quality to be obtained over the entire length of the steel material. You will be able to do this. Thereby, it is possible to obtain a steel material of a constant material with high precision, and it becomes possible to ensure the homogeneity of the material. Furthermore, since the cooling pattern for obtaining the target material is determined by taking rolling conditions and components into consideration, the target material can be easily manufactured.

【実施例】【Example】

以下、図面を参照して本発明の実施例を詳細に
説明する。 まず、本発明方法を実施する製造工程を説明す
る。第2図における符号10は熱間圧延工程のう
ちの仕上圧延機、12は熱延鋼板、13は熱延鋼
板12を冷却するための冷却水を例えばミスト、
ジエツト、管ラミナーあるいはスリツトラミナー
状態にして鋼板12に注水する冷却水バンクを示
す。この冷却水バンク13は、例えば、冷却水を
供給する給水装置14と、後述する冷却制御装置
24の指示に従つてバルブ制御器15Aを介し駆
動され、前記給水装置14から供給される冷却水
の流量を調整する水量調整バルブ15と、該水量
調整バルブ15によつて水量を調整された冷却水
を熱延鋼板12に注水する注水装置16とで構成
される。 又、図中17は変態率センサを示し、該変態率
センサ17は該装置17上を通過する熱延鋼板1
2のγ/α変態率を定量的に検出し、その測定信
号を後述する変態率演算装置26に伝送する。な
お、図中18は冷却後の熱延鋼板12の巻取機を
示す。19は熱延鋼板12のランアウトテーブル
上の搬送速度を計測する速度計、B1は仕上げ圧
延温度を計測する温度計、B2はランアウトテー
ブル上の中間温度を計測する温度計、B3は巻取
り温度を計測する温度計を示す。 本発明に係る熱延鋼板12の冷却制御装置は、
熱延鋼板12の目標材質、圧延条件(圧延温度、
板厚、圧下荷重等)、成分等を入力するデータ入
出力装置20と、該データ入出力装置20からの
データに基づき冷却ゾーン内の各時間における目
標変態率パターン、目標冷却パターンを算出する
変態率制御セツトアツプ装置22と、該変態率制
御セツトアツプ装置22からの目標変態率パター
ン、目標冷却パターンに基づいて前記冷却水バン
ク13を制御する冷却制御装置24と、前記変態
率センサ17で検出した実測変態率と目標変態率
とを比較演算する変態率演算装置26とで構成さ
れる。 次に、本実施例の作用を説明する。 まず、データ入出力装置20により熱延鋼板1
2の成分、目標材質So、圧延条件を入力する。
変態率制御セツトアツプ装置22では、第3図に
示すような演算フローチヤートに基づいて、目標
変態率パターン、目標冷却パターンをデータ入出
力装置20からのデータに基づき算出する。 即ち、まず、冷却パターン(時間に対する鋼板
温度)を仮定し、この仮定した冷却パターンで、
冷却水バンク13のバンクパターン、変態率パタ
ーン、予測材質Scalを計算する。次に、この冷却
パターンを順次変えて、代表的な複数の冷却パタ
ーンについて予測材質Scalを求める。この予測材
質Scalを求める演算は、例えば、公知の材質予測
モデル(Yoshihiro Saito et al.(International
Conference on Steel Rolling、2、1309−
1320、1980))を使用する。この材質予測モデル
は、冷却条件、成分、圧延スケジユールから、変
態率変化及び最終材質が得られるものであり、こ
の材質予測モデルは、第4図に示す如く、成分、
圧延条件、冷却パターンから変態現象モデルを得
て、次にこの変態現象モデルから変態率パターン
を得て、この変態率パターンから材質回帰式によ
り予測材質を求める構造となつている。 このようにして求めた複数の冷却パターンに対
する予測材質Scalの中で最も目標材質Soに近い
冷却パターンを選択し、該選択冷却パターンにつ
いて、目標材質Soに予測材質Scalが近づくよう
以下の収束計算を行う。 収束計算は、まず、前記選択冷却パターンによ
り得られる予測材質Scalと目標材質Soの偏差か
らの冷却ゾーン内のある時刻(熱延鋼板12の任
意の位置が各冷却ゾーンの位置を通過する時刻)
における温度補正量ΔTi(i=1、…n)を次式
の関係に基づき算出する。この温度補正量ΔTi
は、目標材質Soと計算によつて求められた予測
材質Scalとの関数として、次式で与えられる。 ΔTi=fi(So−Scal、成分、圧延条件) ……(1) 上記(1)式で得られた温度補正量ΔTiで前記選択
冷却パターンの補正を行う。次に、この補正され
た冷却パターンに基づき、前記冷却水バンク13
に適合するバンクパターンを求め、該バンクパタ
ーンから再度前出の材質予測モデルを用いて予測
材質Scalを算出する。この材質計算により得られ
た予測材質Scalが所定の目標材質精度εo範囲内
となるような冷却パターンが得られるまで、以上
の収束計算を繰返し行う。 所定の目標材質精度εoを満足する冷却パター
ンが得られて確定すると、前出の材質予測モデル
内の変態現象モデルによつて目標変態率パターン
を確定する。このようにして得られた目標変態率
パターン及び目標冷却パターンは冷却制御装置2
4に出力される。 冷却制御装置24では、目標冷却パターンから
得られるバンクパターンによつて熱延鋼板12の
冷却を行うと共に変態率センサ16で検出した実
測変態率と、目標変態率パターンから得られる目
標変態率とを変態率演算装置26により比較し
て、この比較結果を基にして冷却水バンク13の
制御を行い、熱延鋼板12の冷却制御を行う。 従つて、本実施例によれば、目標材質を得るべ
く予め算出した冷却パターンにより熱延鋼板12
の冷却を行い、しかも、この冷却は、熱延鋼板1
2の変態率推移が目標変態率パターンとなるよう
に実測変態率に基づきフイードバツク制御するよ
うにして行うことにより、高精度の材質制御を目
的とした冷却が可能となり、目標材質を精度良く
得ることができる。 次に鋼種をSS41(強度範囲41〜52Kg/mm2)と
し、目標強度を45Kg/mm2として熱延鋼板を冷却し
た場合の実施結果を第5図に示す。第5図は、横
軸に引張強度TS(Kg/mm2)を、縦軸に引張強度試
験の採取個数nをとつた、熱延鋼板の強度のばら
つきを示す線図であり、第5図Aは、本実施例の
実施結果を、第5図Bは、本実施例と同条件で圧
延したものを従来の通常の冷却方法で制御冷却し
た実施結果を示し、何れも引張り強度45Kg/mm2
狙つた結果である。この第5図からも明らかなよ
うに、本発明では、平均値が45.20Kg/mm2、標
準偏差σが1.11、従来方法では、平均値が
45.26Kg/mm2、標準偏差σが1.39であり、本実施
例の方が強度にばらつきがなく、材質精度が向上
していることが判る。
Embodiments of the present invention will be described in detail below with reference to the drawings. First, the manufacturing process for carrying out the method of the present invention will be explained. In FIG. 2, reference numeral 10 is a finishing rolling machine in the hot rolling process, 12 is a hot-rolled steel plate, and 13 is a cooling water for cooling the hot-rolled steel plate 12, for example, mist,
A cooling water bank is shown which injects water into the steel plate 12 in a jet, tube laminar or slit laminar state. For example, the cooling water bank 13 is driven via a valve controller 15A according to instructions from a water supply device 14 that supplies cooling water and a cooling control device 24, which will be described later. It is comprised of a water amount adjustment valve 15 that adjusts the flow rate, and a water injection device 16 that injects cooling water whose amount has been adjusted by the water amount adjustment valve 15 into the hot rolled steel sheet 12. Further, in the figure, 17 indicates a transformation rate sensor, and the transformation rate sensor 17 is connected to the hot rolled steel sheet 1 passing over the device 17.
The γ/α transformation rate of No. 2 is quantitatively detected, and the measured signal is transmitted to a transformation rate calculation device 26, which will be described later. In addition, 18 in the figure shows a winder for the hot-rolled steel sheet 12 after cooling. 19 is a speedometer that measures the conveyance speed on the runout table of the hot rolled steel plate 12, B1 is a thermometer that measures the finish rolling temperature, B2 is a thermometer that measures the intermediate temperature on the runout table, and B3 is the coiling temperature. Indicates the thermometer to be measured. The cooling control device for hot rolled steel sheet 12 according to the present invention includes:
Target material and rolling conditions (rolling temperature,
A data input/output device 20 that inputs information such as plate thickness, rolling load, etc.), components, etc., and a transformation device that calculates a target transformation rate pattern and a target cooling pattern at each time in the cooling zone based on the data from the data input/output device 20. A rate control setup device 22, a target transformation rate pattern from the transformation rate control setup device 22, a cooling control device 24 that controls the cooling water bank 13 based on the target cooling pattern, and an actual measurement detected by the transformation rate sensor 17. It is comprised of a metamorphosis rate calculating device 26 that compares and calculates the metamorphosis rate and a target metamorphosis rate. Next, the operation of this embodiment will be explained. First, the data input/output device 20
Input the component No. 2, target material So, and rolling conditions.
The transformation rate control setup device 22 calculates a target transformation rate pattern and a target cooling pattern based on data from the data input/output device 20 based on a calculation flowchart as shown in FIG. That is, first, a cooling pattern (steel plate temperature with respect to time) is assumed, and with this assumed cooling pattern,
The bank pattern, transformation rate pattern, and predicted material Scal of the cooling water bank 13 are calculated. Next, this cooling pattern is sequentially changed to obtain predicted material Scal for a plurality of representative cooling patterns. This calculation for calculating the predicted material Scal can be performed using, for example, a known material prediction model (Yoshihiro Saito et al. (International
Conference on Steel Rolling, 2, 1309−
1320, 1980)). This material property prediction model can obtain transformation rate changes and final material properties from cooling conditions, components, and rolling schedule.As shown in FIG.
The structure is such that a transformation phenomenon model is obtained from the rolling conditions and cooling pattern, then a transformation rate pattern is obtained from this transformation phenomenon model, and a predicted material quality is determined from this transformation rate pattern using a material regression equation. Select the cooling pattern closest to the target material So among the predicted material Scal for the multiple cooling patterns obtained in this way, and perform the following convergence calculation for the selected cooling pattern so that the predicted material Scal approaches the target material So. conduct. In the convergence calculation, first, a certain time in the cooling zone from the deviation between the predicted material Scal obtained by the selected cooling pattern and the target material So (the time at which an arbitrary position of the hot rolled steel sheet 12 passes through the position of each cooling zone)
The temperature correction amount ΔTi (i=1, . . . n) is calculated based on the relationship of the following equation. This temperature correction amount ΔTi
is given by the following equation as a function of the target material So and the calculated predicted material Scal. ΔTi=fi (So−Scal, component, rolling conditions) (1) The selected cooling pattern is corrected using the temperature correction amount ΔTi obtained from the above equation (1). Next, based on this corrected cooling pattern, the cooling water bank 13
A bank pattern that matches is obtained, and the predicted material Scal is calculated from the bank pattern again using the above-mentioned material prediction model. The above convergence calculation is repeated until a cooling pattern is obtained in which the predicted material Scal obtained by this material calculation falls within the predetermined target material precision εo range. When a cooling pattern that satisfies the predetermined target material accuracy εo is obtained and determined, a target transformation rate pattern is determined using the transformation phenomenon model in the material prediction model described above. The target transformation rate pattern and target cooling pattern obtained in this way are stored in the cooling control device 2.
4 is output. The cooling control device 24 cools the hot rolled steel sheet 12 using the bank pattern obtained from the target cooling pattern, and also compares the measured transformation rate detected by the transformation rate sensor 16 with the target transformation rate obtained from the target transformation rate pattern. The transformation rate calculating device 26 performs a comparison, and the cooling water bank 13 is controlled based on the comparison result, thereby controlling the cooling of the hot rolled steel sheet 12. Therefore, according to this embodiment, the hot rolled steel sheet 12 is heated according to a cooling pattern calculated in advance to obtain the target material quality.
Moreover, this cooling is performed on the hot rolled steel sheet 1.
By performing feedback control based on the measured transformation rate so that the transformation rate transition in step 2 becomes the target transformation rate pattern, cooling for the purpose of highly accurate material quality control becomes possible, and the target material quality can be obtained with high accuracy. I can do it. Next, FIG. 5 shows the results obtained when the hot-rolled steel sheet was cooled with the steel type being SS41 (strength range 41 to 52 Kg/mm 2 ) and the target strength 45 Kg/mm 2 . FIG. 5 is a diagram showing the variation in strength of hot-rolled steel sheets, with the horizontal axis representing the tensile strength TS (Kg/mm 2 ) and the vertical axis representing the number n of pieces sampled for the tensile strength test. Figure 5A shows the results of this example, and Figure 5B shows the results of rolling under the same conditions as in this example and controlled cooling using a conventional cooling method. This is the result of aiming for 2 . As is clear from Fig. 5, in the present invention, the average value is 45.20Kg/mm 2 and the standard deviation σ is 1.11, whereas in the conventional method, the average value is 45.20Kg/mm 2 and the standard deviation σ is 1.11.
45.26Kg/mm 2 , and the standard deviation σ is 1.39, indicating that this example has less variation in strength and improved material accuracy.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、材質制御
対象となる全ての鋼板を観測する必要がなく、鋼
材の全長に亘つて目標材質が得られるような、冷
却条件、変態率パターンを選定することができ
る。従つて、高精度の材質制御機能を有し、特に
材質の均質性を確保することができる。又、圧延
条件、成分を考慮して目標材質を得るための冷却
パターンを確定しているため、目標の材質を容易
に製造することができる等の優れた効果を有す
る。
As explained above, according to the present invention, it is not necessary to observe all the steel plates whose material properties are to be controlled, and the cooling conditions and transformation rate pattern can be selected so that the target material quality can be obtained over the entire length of the steel material. I can do it. Therefore, it has a highly accurate material control function and can particularly ensure material homogeneity. Furthermore, since the cooling pattern for obtaining the target material is determined by taking rolling conditions and components into consideration, it has excellent effects such as being able to easily manufacture the target material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る鋼材の冷却制御方法の
要旨を示す流れ図、第2図は、本発明が採用され
た鋼材の冷却制御装置の実施例の全体構成を示
す、一部ブロツク線図を含む側面図、第3図は、
同じく、変態率制御セツトアツプ装置における、
目標変態率パターン、目標冷却パターンを決定す
るための演算流れ図、第4図は、本発明で用いた
材質予測モデルの構成を示すブロツク線図、第5
図は、従来法と本発明法とにより冷却された熱延
鋼板の引張り強度のばらつきを示す線図である。 10……仕上圧延機、12……熱延鋼板、13
……冷却水バンク、17……変態率センサ、20
……データ入出力装置、22……変態率制御セツ
トアツプ装置、24……冷却制御装置、26……
変態率演算装置。
FIG. 1 is a flowchart showing the gist of the steel cooling control method according to the present invention, and FIG. 2 is a partial block diagram showing the overall configuration of an embodiment of a steel cooling control device to which the present invention is adopted. The side view including Figure 3 is
Similarly, in the metamorphosis rate control setup device,
FIG. 4 is a calculation flowchart for determining the target transformation rate pattern and target cooling pattern; FIG. 4 is a block diagram showing the configuration of the material prediction model used in the present invention;
The figure is a diagram showing variations in tensile strength of hot rolled steel sheets cooled by the conventional method and the method of the present invention. 10... Finishing rolling mill, 12... Hot rolled steel plate, 13
...Cooling water bank, 17...Transformation rate sensor, 20
...Data input/output device, 22...Transformation rate control setup device, 24...Cooling control device, 26...
Metamorphosis rate calculation device.

Claims (1)

【特許請求の範囲】 1 鋼材を冷却制御する際に、変態率を制御して
目標材質を得る鋼材の冷却制御方法において、 鋼材の目標材質、成分、圧延条件に応じて、予
測材質と目標材質との偏差が最小となる冷却パタ
ーンを選定し、 該選定冷却パターンから算出された予測材質と
目標材質との偏差が目標材質精度内となるよう
な、前記選定冷却パターンの温度補正量を算出
し、 該温度補正量によつて前記選定冷却パターンを
補正して、目標材質が得られる冷却パターンを求
め、 該目標冷却パターンから目標変態率パターンを
求め、 前記目標冷却パターン及び目標変態率パターン
に基づき鋼材の冷却を制御するようにしたことを
特徴とする鋼材の冷却制御方法。
[Claims] 1. In a steel cooling control method for obtaining a target material by controlling a transformation rate when cooling a steel material, the predicted material and the target material are determined according to the target material, composition, and rolling conditions of the steel material. Select a cooling pattern that minimizes the deviation from the selected cooling pattern, and calculate a temperature correction amount for the selected cooling pattern such that the deviation between the predicted material calculated from the selected cooling pattern and the target material falls within the target material accuracy. , correcting the selected cooling pattern using the temperature correction amount to obtain a cooling pattern that provides the target material; obtaining a target transformation rate pattern from the target cooling pattern; A method for controlling cooling of steel, characterized in that cooling of the steel is controlled.
JP10802085A 1985-05-20 1985-05-20 Method for controlling cooling of steel product Granted JPS61266524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10802085A JPS61266524A (en) 1985-05-20 1985-05-20 Method for controlling cooling of steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10802085A JPS61266524A (en) 1985-05-20 1985-05-20 Method for controlling cooling of steel product

Publications (2)

Publication Number Publication Date
JPS61266524A JPS61266524A (en) 1986-11-26
JPH0480974B2 true JPH0480974B2 (en) 1992-12-21

Family

ID=14473938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10802085A Granted JPS61266524A (en) 1985-05-20 1985-05-20 Method for controlling cooling of steel product

Country Status (1)

Country Link
JP (1) JPS61266524A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3052966B2 (en) * 1988-02-02 2000-06-19 出光興産株式会社 How to determine heat treatment conditions for metallic materials
WO1990015885A1 (en) * 1989-06-16 1990-12-27 Kawasaki Steel Corporation Steel material cooling control method
JP2908741B2 (en) * 1995-12-19 1999-06-21 インターナショナル・ビジネス・マシーンズ・コーポレイション Disk device and method for recovering from read failure in disk device
JP5724272B2 (en) * 2010-09-28 2015-05-27 Jfeスチール株式会社 Steel plate surface inspection method and apparatus

Also Published As

Publication number Publication date
JPS61266524A (en) 1986-11-26

Similar Documents

Publication Publication Date Title
JP2783124B2 (en) Temperature control method for hot rolled steel
US4648916A (en) Method of controlling cooling of hot-rolled steel sheet and system therefor
US20140053886A1 (en) Apparatus for cooling hot-rolled steel sheet
JP2006281300A (en) Cooling control method, device, and computer program
JPH0480974B2 (en)
TWI744739B (en) Thick steel plate cooling control method, cooling control device, and thick steel plate manufacturing method
KR100568358B1 (en) Hot strip cooling control mothode for chage target temperature
JPH0919712A (en) Device for controlling cooling of steel sheet
KR19990047916A (en) Cooling control method of hot-rolled steel sheet
US9211574B2 (en) Method for manufacturing steel sheet
EP2933031B1 (en) Method for producing steel sheet
JP3058403B2 (en) Cooling control method for hot rolled steel sheet
JPH0275409A (en) Method for controlling winding temperature of hot rolled steel sheet
JPH01162508A (en) Cooling control method for steel material
JPS63317208A (en) Control device for cooling hot rolled steel strip
JP3973143B2 (en) Temperature control method and temperature control apparatus in hot rolling mill
JPH07103425B2 (en) Cooling method for controlling transformation rate of steel
JPH02112813A (en) Temperature control method for rolling and cooling of wire rod, bar or the like
JPH0857523A (en) Controlled cooling method
JPH0380848B2 (en)
JPH03287720A (en) Method for controlling hot finish rolling temperature of strip
RU2184632C2 (en) Method for controlling cooling conditions of rolled pieces
KR950007469B1 (en) Steel material cooling control method
JPH08300024A (en) Method for controlling plate width in hot rolling
KR20230092143A (en) Cold Rolling Machine and Cold Rolling Control Method