JPH0480756A - Photomask - Google Patents

Photomask

Info

Publication number
JPH0480756A
JPH0480756A JP2197474A JP19747490A JPH0480756A JP H0480756 A JPH0480756 A JP H0480756A JP 2197474 A JP2197474 A JP 2197474A JP 19747490 A JP19747490 A JP 19747490A JP H0480756 A JPH0480756 A JP H0480756A
Authority
JP
Japan
Prior art keywords
light
film
transparent substrate
photomask
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2197474A
Other languages
Japanese (ja)
Other versions
JP2984328B2 (en
Inventor
Kazuya Kamon
和也 加門
Kazushi Nagata
一志 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19747490A priority Critical patent/JP2984328B2/en
Priority to US07/793,319 priority patent/US5279911A/en
Publication of JPH0480756A publication Critical patent/JPH0480756A/en
Application granted granted Critical
Publication of JP2984328B2 publication Critical patent/JP2984328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To expand the depth of focus by providing a high reflecting film, which multiply reflects one part of light passed between light shielding patterns and expands the depth of the focus in a resist film, on one main surface side of a transparent substrate. CONSTITUTION:The transparent substrate 1, the light shielding patterns 5 which are formed on one main surface side of the transparent substrate 4 and the high reflecting film 10 which multiply reflects one part of the light passed between the patterns 5 and which expands the depth of the focus in the resist film 8 are provided. In the case, since the high reflecting film 10 is formed on one main surface side of the substrate 4, a focusing position in the resist film 8 with respect to the light transmitted through the high reflecting film 10 as it is and a focusing position in the film 8 with respect to the light which is multiply reflected by the film 10 exist apart along the thickness direction of the film 8. Thus, the depth of the focus is expanded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体ウェハ等の被加工物をリソグラフィ
技術を用いて加工する際に使用されるフォトマスクに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photomask used when processing a workpiece such as a semiconductor wafer using lithography technology.

〔従来の技術〕[Conventional technology]

第9図はフォトリソグラフィ工程において従来より用い
られているフォトマスクを含む露光装置の概略構成図を
示し、第10図はその要部拡大図を示す。
FIG. 9 shows a schematic configuration diagram of an exposure apparatus including a photomask conventionally used in a photolithography process, and FIG. 10 shows an enlarged view of the main parts thereof.

両図に示すように、光源1から出射された光Llは、レ
ンズ系2て集束されてフォトマスク3上に照射される。
As shown in both figures, light Ll emitted from a light source 1 is focused by a lens system 2 and irradiated onto a photomask 3.

フォトマスク3には、透明基板4の一方主面上に遮光パ
ターン5か形成されており、フォトマスク3に入射され
た光L2のうち遮光パターン5に対応する領域に入射さ
れた光は遮断され、残りの領域に入射された光は透過す
る。フォトマスク3を選択的に透過した光L3は、例え
ば倍率mの投影レンズ系6を介し、被加工物の基板7上
に形成されたレノスト膜8内で集光されて結像される。
The photomask 3 has a light-shielding pattern 5 formed on one main surface of the transparent substrate 4, and among the light L2 incident on the photomask 3, the light incident on the area corresponding to the light-shielding pattern 5 is blocked. , the light incident on the remaining area is transmitted. The light L3 selectively transmitted through the photomask 3 passes through a projection lens system 6 with a magnification of m, for example, and is focused and imaged within the Lenost film 8 formed on the substrate 7 of the workpiece.

こうして、レジスト膜8か部分的に感光され、マスクパ
ターンかレジスト膜8に転写される。
In this way, the resist film 8 is partially exposed to light, and the mask pattern is transferred onto the resist film 8.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

従来のフォトマスク3は以上のように構成されており、
フォトマスク3を選択的に透過したそれぞれの光L3は
、レンズ系6を介して集光点Pを含む焦平面9(集光面
Pを通ってレンズ系6の光軸に垂直な平面)上に結像さ
れる。この場合、レンズ系6には、その開口数をNAと
した場合、波長λの光に対して下記式により表わされる
所定の焦点深度DOFか認められる。
The conventional photomask 3 is configured as described above.
Each light L3 that has selectively passed through the photomask 3 passes through the lens system 6 onto a focal plane 9 that includes the focal point P (a plane that passes through the focal plane P and is perpendicular to the optical axis of the lens system 6). is imaged. In this case, the lens system 6 has a predetermined depth of focus DOF expressed by the following equation for light of wavelength λ, where NA is the numerical aperture.

λ レジスト膜8は、実質上、焦平面9を中心にレジスト膜
8の厚み方向に沿って上記焦点深度り。
λ The resist film 8 substantially has the above focal depth along the thickness direction of the resist film 8 with the focal plane 9 as the center.

Fの範囲内で感光されるため、焦点深度DOFの値はレ
ジスト膜8の厚みに対して充分に大きい二とか望ましい
Since the resist film is exposed within the range of F, the value of the depth of focus DOF is preferably 2 or more sufficiently large relative to the thickness of the resist film 8.

しかしながら、近年LSIの微細化に伴いレンズ系6の
集光能を考慮してその開口数NAが増大する傾向にあり
、その結果焦点深度DOFは逆に減少する傾向にある。
However, in recent years, with the miniaturization of LSIs, the numerical aperture NA of the lens system 6 tends to increase in consideration of its light-gathering ability, and as a result, the depth of focus DOF tends to decrease.

現在のLSIの製造工程では、例えば波長λか436n
mの紫外線に対し開口数NAが約038のレンズ系6が
使用される場合かあり、この場合の焦点深度DOFは上
記り1)式より約 1.5μmとなる。これに対し、レ
ジスト膜8の膜厚も約15μmで、焦点深度DOFとほ
ぼト 等しい。したかって、レシス会膜8を焦点深度DOF内
に正確に位置させるために、露光装置の精度か要求され
るとともに、被加工物のセット作業にも精度が要求され
、それらの精度のわずかの低下でレジスト膜8に感光不
良の領域を生しるという問題を有していた。
In the current LSI manufacturing process, for example, the wavelength λ or 436n
In some cases, a lens system 6 with a numerical aperture NA of about 038 is used for ultraviolet rays of m, and the depth of focus DOF in this case is about 1.5 μm according to equation 1) above. On the other hand, the thickness of the resist film 8 is also approximately 15 μm, which is approximately equal to the depth of focus DOF. Therefore, in order to accurately position the resis perium 8 within the depth of focus DOF, not only is the precision of the exposure device required, but also the workpiece setting work is required, and a slight decrease in these precisions is required. However, there was a problem in that the resist film 8 had areas with poor exposure.

したがって、この発明は、上記問題を解決するためにな
されたもので、焦点深度の拡大を図れるフォトマスクを
提供することである。
Therefore, this invention was made to solve the above-mentioned problem, and it is an object of the present invention to provide a photomask that can increase the depth of focus.

〔課題を解決するための手段〕[Means to solve the problem]

請求項1に係る発明は、リソグラフィ技術を用いて被加
工物上のレジスト膜に所定のパターンを転写する際に使
用するフォトマスクであって、上記目的を達成するため
に、透明基板と、前記透明基板の一方主面側に形成され
た遮光パターンと、前記透明基板の一方主面側に形成さ
れ、前記遮光パターン間を通過した光の一部を多重反射
して前記レジスト膜内ての焦点深度を拡大する高反射膜
とを備える。
The invention according to claim 1 is a photomask used when transferring a predetermined pattern to a resist film on a workpiece using lithography technology, and in order to achieve the above object, a transparent substrate and a A light shielding pattern formed on one main surface of a transparent substrate and a light shielding pattern formed on one main surface of the transparent substrate, which multiple-reflects a portion of the light that has passed between the light shielding patterns and focuses the light within the resist film. Equipped with a highly reflective film that expands depth.

請求項2に係る発明は、請求項1に係るフォトマスクに
おいて、前記高反射膜が前記透明基板の一方主面上に形
成され、前記遮光パターンか前記高反射膜上に形成され
る。
According to a second aspect of the invention, in the photomask according to the first aspect, the high reflection film is formed on one main surface of the transparent substrate, and the light shielding pattern is formed on the high reflection film.

請求項3に係るフォトマスクは、請求項1に係るフォト
マスクにおいて、前記遮光パターンか前記透明基板の一
方主面上に形成されるとともに、前記高反射膜が前記遮
光パターンを覆うように前記透明基板の一方主面上に形
成される。
In the photomask according to claim 3, in the photomask according to claim 1, the light-shielding pattern is formed on one main surface of the transparent substrate, and the high-reflection film covers the light-shielding pattern. It is formed on one main surface of the substrate.

〔作用〕[Effect]

請求項1〜3に係る発明によれば、透明基板の一方主面
側に高反射膜を形成しているため、高反射膜をそのまま
透過した光に対するレジスト膜内での焦点位置と、高反
射膜で多重反射された光に対するレジスト膜内での焦点
位置とかレジスト膜の厚み方向に沿って離れて存在する
ことになり、結果的に焦点深度が拡大する。
According to the inventions according to claims 1 to 3, since the high reflection film is formed on one main surface side of the transparent substrate, the focal position within the resist film for light that has passed through the high reflection film as it is, and the high reflection The focal positions within the resist film for the light multiple reflected by the film are separated along the thickness direction of the resist film, and as a result, the depth of focus is expanded.

〔実施例〕〔Example〕

第1図はこの発明の第1実施例であるフォトマスクを含
む露光装置の要部構成図を示す。この露光装置の全体構
成は、第9図に示される露光装置と同一であるので、同
−又は相当部分に同一符号を用いて以下説明する。
FIG. 1 shows a block diagram of essential parts of an exposure apparatus including a photomask, which is a first embodiment of the present invention. The overall configuration of this exposure apparatus is the same as the exposure apparatus shown in FIG. 9, and therefore will be described below using the same reference numerals for the same or corresponding parts.

第1図に示されるように、フォトマスク3は、透明基板
4と、透明基板4の一方主面側に形成された高反射膜1
0と、高反射膜]0上に形成された遮光パターン5とを
備える。
As shown in FIG. 1, the photomask 3 includes a transparent substrate 4 and a high reflection film 1 formed on one main surface side of the transparent substrate 4.
0, and a light shielding pattern 5 formed on the high reflection film]0.

透明基板4は、例えば石英により構成され、その屈折率
n1は1.47、厚みdlは約511111である。
The transparent substrate 4 is made of quartz, for example, and has a refractive index n1 of 1.47 and a thickness dl of about 511111.

高反射膜10は、例えば鉛ガラスやシリコンナイトライ
ド等により構成される。この高反射膜10は、透明基板
4の屈折率n1に比してその屈折率n2が大きく、かつ
光吸収能の小さな材料で構成するのが望ましい。高反射
膜10の屈折率n2か大きくなると、透明基板4との境
界面および空気層との境界面における反射率がそれぞれ
高くなって、高反射膜10による多重反射が促進される
The high reflection film 10 is made of, for example, lead glass or silicon nitride. It is desirable that the high reflection film 10 is made of a material whose refractive index n2 is larger than the refractive index n1 of the transparent substrate 4 and whose light absorption ability is small. When the refractive index n2 of the high-reflection film 10 increases, the reflectance at the interface with the transparent substrate 4 and the interface with the air layer increases, and multiple reflections by the high-reflection film 10 are promoted.

また、高反射膜10の光吸収能が小さくなると、高反射
膜10内での多重反射光の吸収が抑制される。上記条件
を満たす材料として、例えば鉛ガラスの一種であるLa
F2ガラス(ホヤ株式会社製)あるいはTaFD6ガラ
スを用いるのが望ましい。
Further, when the light absorption ability of the high reflection film 10 becomes small, absorption of multiple reflected light within the high reflection film 10 is suppressed. An example of a material that satisfies the above conditions is La, which is a type of lead glass.
It is desirable to use F2 glass (manufactured by Hoya Corporation) or TaFD6 glass.

LaF2ガラスを使用した場合には、屈折率n2は、1
.78H1波長360nmの光に対する透過率は0.8
となる。なお、高反射膜10の厚みd2は、焦点深度を
考慮して定められるが、その詳細は後述する。
When LaF2 glass is used, the refractive index n2 is 1
.. 78H1 Transmittance for light with a wavelength of 360 nm is 0.8
becomes. Note that the thickness d2 of the high reflection film 10 is determined in consideration of the depth of focus, the details of which will be described later.

遮光パターン5は、CrやM o S i等により構成
され、その厚みd3は通常0.1μm程度である。
The light shielding pattern 5 is made of Cr, MoSi, etc., and its thickness d3 is usually about 0.1 μm.

投影レンズ系6は、複数枚の組み合せレンスにより構成
され、入射と出射の両方向に対しテレセントリックに仕
上げられている。このレンズ系6の倍率mは、例えば1
15が設定される。もっとも、倍率mは上記値に限定さ
れず、例えば、m −1/]0てあってもよく、またm
−1であってもよい。
The projection lens system 6 is composed of a plurality of combined lenses, and is finished to be telecentric with respect to both the input and output directions. The magnification m of this lens system 6 is, for example, 1
15 is set. However, the magnification m is not limited to the above value, and may be, for example, m −1/]0, or m
-1 may be sufficient.

被加工物であるウニ・\基板7上に形成されるレジスト
膜8は、従来より周知のレンスト材料か使用される。例
えばMCPR2000H(三菱化成株式今月製)を使用
した場合には、屈折率n4は168て、厚みd4は約1
5μmである。
The resist film 8 formed on the sea urchin substrate 7, which is the workpiece, is made of a conventionally well-known resist material. For example, when using MCPR2000H (manufactured by Mitsubishi Kasei Corporation), the refractive index n4 is 168 and the thickness d4 is approximately 1.
It is 5 μm.

このフォトマスク3を含む露光装置において、光源1 
(第9図参照)から例えば波長436nmの紫外線の光
L1か照射されると、レンズ系2て集束されて光L2と
してフォトマスク3上に照射され、透明基板4を経て高
反射膜10に入射される。
In an exposure apparatus including this photomask 3, a light source 1
For example, when ultraviolet light L1 with a wavelength of 436 nm is irradiated from (see FIG. 9), it is focused by the lens system 2 and irradiated onto the photomask 3 as light L2, which then enters the high reflection film 10 via the transparent substrate 4. be done.

そして、遮光パターン5の設けられていない領域では、
光L の一部か透過光L3としてレンス系6に向けてそ
のまま出射される一方、残りの光は、高反射膜10の下
面と上面で順次反射された後、1吹成射光L4としてレ
ンズ系6に向けて出射される。なお、高反射膜10内で
は多重反射か行われるため、1次反射光L4以外に2次
以上の高次の反射光がレンズ系6に向けて出射されるこ
とになるが、2次以上の高次の反射光の光強度は極めて
小さくなるため、実用上は無視しうる。
In the area where the light shielding pattern 5 is not provided,
A part of the light L is directly emitted toward the lens system 6 as transmitted light L3, while the remaining light is sequentially reflected by the lower and upper surfaces of the high reflection film 10 and then emitted from the lens system as one burst of incident light L4. It is emitted towards 6. Note that multiple reflections occur within the high reflection film 10, so in addition to the primary reflected light L4, high-order reflected light of secondary or higher order is emitted toward the lens system 6; The light intensity of high-order reflected light becomes extremely small and can be ignored in practical terms.

一方、遮光パターン5の設けられている領域では、レン
ズ系6への光の透過が阻止される。
On the other hand, in the region where the light shielding pattern 5 is provided, transmission of light to the lens system 6 is blocked.

こうして、フォトマスク3を選択的に透過した透過光L
3および1吹成射光L4が、投影レンズ系6を介しSi
基板7上に形成されたレジスト膜8内で集光されて結像
される。
In this way, the transmitted light L selectively transmitted through the photomask 3
The 3rd and 1st blown emitted light beams L4 pass through the projection lens system 6 to the Si
The light is focused and imaged within the resist film 8 formed on the substrate 7.

この場合、透過光L3は、第10図の従来例の場合と同
様、集光点Pを含む焦平面9上に結像されることになる
。これに対し1吹成射光L4は、高反射膜]0内て生し
る光路差のために、集光点Pに対しレンズ系6の光軸方
向に沿って距離りたけ離れた点Qを含む焦平面11上に
結像される。
In this case, the transmitted light L3 is imaged on the focal plane 9 including the condensing point P, as in the conventional example shown in FIG. On the other hand, one burst of emitted light L4 travels to a point Q, which is far away from the condensing point P along the optical axis direction of the lens system 6, due to the optical path difference that occurs within the high reflection film. The image is formed on a focal plane 11 containing the image.

いま、点P、Q間の光学的距離n4Dは、高反射膜10
内で生しる光路差2n2d2とレンズ系6の倍率mを用
いて、 n  D−m  x(2n2 d2) と表わされるため、高反射膜10の厚みd2は、となる
。ここで、屈折率n  、n4および倍率mは既知のた
め、距離りか分れば、厚みd2か定まる。
Now, the optical distance n4D between points P and Q is the high reflection film 10
Using the optical path difference 2n2d2 generated within the lens system 6 and the magnification m of the lens system 6, it is expressed as nD-mx(2n2d2), so the thickness d2 of the high reflection film 10 is as follows. Here, since the refractive indices n, n4 and magnification m are known, the thickness d2 can be determined if the distance is known.

ところで、レンズ系6による焦点深度は、第2図に示す
ように、透過光L3および1吹成射光L4のそれぞれに
対して点P、Qを中心にそれぞれDOF  、DOF4
て表わされる一定範囲内て認められる。したがって、レ
ジスト膜8を厚み方向に沿って全領域にわたり感光する
ためには、光り、L の焦点深度の範囲DOF  、D
OF4を連続させて形成する必要かあり、すなわちを満
足する必要かある。
By the way, as shown in FIG. 2, the depth of focus by the lens system 6 is DOF and DOF4 centered on points P and Q for each of the transmitted light L3 and the one-shot incident light L4, respectively.
Permitted within a certain range expressed as Therefore, in order to expose the entire area of the resist film 8 along the thickness direction, the depth of focus range DOF, D
It is necessary to form OF4 continuously, that is, it is necessary to satisfy the following conditions.

焦点深度DOF  、DOF4は、それぞれ(1)式に
より表わされるため、上記(3〉式は次のように書き直
せる。
Since the depths of focus DOF and DOF4 are each expressed by equation (1), the above equation (3>) can be rewritten as follows.

λ 2゜NA、2 °(“) D   <   DOF   − レンズ系6の開口数NAおよび入射光の波長λは既知の
ため、 (4)式より距離りか決定され、さらに (2
)式より高反射膜10の厚みd2が求まる。
λ 2°NA, 2°(“) D < DOF − Since the numerical aperture NA of the lens system 6 and the wavelength λ of the incident light are known, the distance is determined from equation (4), and further, (2
) The thickness d2 of the highly reflective film 10 can be found from the equation.

例えば、N A = 0.38.  λ= 436nm
、  n2=1.78fi6.  n 4−1.68.
 m−1,5の場合、D<1.5μmd 2217.6
μmとなる。
For example, NA = 0.38. λ=436nm
, n2=1.78fi6. n 4-1.68.
For m-1,5, D<1.5μmd 2217.6
It becomes μm.

以上のように、透過光L3と高反射膜10による1吹成
射光L4を利用してレジスト膜8の感光を行うため、焦
点深度を従来に比べ最大2倍まで拡大できる。
As described above, since the resist film 8 is exposed using the transmitted light L3 and the single burst light L4 from the high reflection film 10, the depth of focus can be expanded up to twice as much as in the conventional method.

第3図ないし第6図は、上記実施例のフォトマスク3の
変形例をそれぞれ示す。
3 to 6 show modifications of the photomask 3 of the above embodiment, respectively.

第3図のフォトマスク3は、遮光パターン5に対応して
、遮光パターン5と高反射膜]0との間に反射防止膜1
2をさらに備えている。反射防止膜12は、たとえば酸
化クロムにより構成され、その屈折率n5は約1.4で
ある。高反射膜10反射防止膜12.遮光パターン5の
屈折率n2n 5.  n  の間には、n  < n
 5 < n eの関係が成立しているため、反射防止
膜12の厚みd5を、例えば λ に設定することにより、良好な反射防止効果か得られる
The photomask 3 in FIG.
It also has 2. The antireflection film 12 is made of, for example, chromium oxide, and has a refractive index n5 of about 1.4. Highly reflective film 10 anti-reflective film 12. Refractive index n2n of light shielding pattern 5 5. Between n, n < n
Since the relationship 5<ne holds true, a good antireflection effect can be obtained by setting the thickness d5 of the antireflection film 12 to, for example, λ.

この反射防止膜12が設けられていない場合には、高反
射膜10と遮光パターン5の境界面で反射された光の一
部か、高反射膜10内で多重反射された後、迷光となっ
てレンズ系6側に出射される。反射防止膜12はこのよ
うな迷光の発生を防止して、露光精度の向上を図る。
If this anti-reflection film 12 is not provided, part of the light reflected at the interface between the high-reflection film 10 and the light-shielding pattern 5 may become stray light after multiple reflections within the high-reflection film 10. The light is emitted to the lens system 6 side. The antireflection film 12 prevents the occurrence of such stray light and improves exposure accuracy.

また、第4図のフォトマスク3は、透明基板4の他方主
面上に、反射防止膜13をさらに備えている。反射防止
膜13は、例えばMgF2により構成され、その屈折率
n7は1.378である。空気層1反射防止膜13.透
明基板4の屈折率n。
The photomask 3 shown in FIG. 4 further includes an antireflection film 13 on the other main surface of the transparent substrate 4. The photomask 3 shown in FIG. The antireflection film 13 is made of, for example, MgF2, and has a refractive index n7 of 1.378. Air layer 1 Anti-reflection film 13. The refractive index n of the transparent substrate 4.

n7.n  の間には、n o< n 7 < n I
の関係か成立しているため、反射防止膜13の厚みd7
を例えば、 λ に設定することにより、良好な反射防止効果が得られる
n7. Between n, no < n 7 < n I
Since the relationship holds true, the thickness d7 of the antireflection film 13
For example, by setting λ to λ, a good antireflection effect can be obtained.

この反射防止膜]3か設けられていない場合には、光源
]からフォトマスク3に入射された光の一部が透明基板
4の上面で反射されて迷光となり、あるいは透明基板4
の下面で反射された入射光の一部が透明基板4の上面で
再度反射されて迷光となって、レンズ系6側に出射され
る。反射防止膜13は、このような迷光の発生を防止し
て、露光精度の向上を図る。
If this anti-reflection film] 3 is not provided, part of the light incident on the photomask 3 from the light source is reflected on the upper surface of the transparent substrate 4 and becomes stray light, or
A part of the incident light reflected on the lower surface of the transparent substrate 4 is reflected again on the upper surface of the transparent substrate 4 and becomes stray light, which is emitted to the lens system 6 side. The antireflection film 13 prevents the occurrence of such stray light and improves exposure accuracy.

また、第5図のフォトマスク3は、遮光パターン5の投
影レンス6側の表面上に、反射防止膜]4をさらに形成
している。この反射防止膜14は、遮光パターン5の下
面側に入射される光の反射を防止して露光精度の向上を
図る。
The photomask 3 shown in FIG. 5 further has an antireflection film 4 formed on the surface of the light shielding pattern 5 on the projection lens 6 side. The antireflection film 14 prevents reflection of light incident on the lower surface side of the light shielding pattern 5, thereby improving exposure accuracy.

もちろん、第3図ないし第5図に示される反射防止膜1
2,13.14を適宜組み合わせてフォトマスク3内に
形成してもよい。第6図は、上記反射防止膜12,13
.14のすべてを備えたフォトマスク3の例を示す。
Of course, the antireflection coating 1 shown in FIGS. 3 to 5
2, 13, and 14 may be formed in the photomask 3 in an appropriate combination. FIG. 6 shows the antireflection coatings 12 and 13.
.. An example of a photomask 3 equipped with all 14 is shown below.

第7図はこの発明の第2実施例であるフォトマスクを含
む露光装置の要部構成図を示す。
FIG. 7 shows a configuration diagram of main parts of an exposure apparatus including a photomask according to a second embodiment of the present invention.

第7図に示すように、このフォトマスク3は、遮光パタ
ーン5か透明基板4の一方主面上に形成されており、こ
の遮光パターン5を覆うように、高反射膜10が透明基
板4の一方主面上に形成されている。その他の構成は、
第1図の第1実施例と同一であるため、同一または相当
部分に同−符号を付してその説明を省略する。
As shown in FIG. 7, this photomask 3 is formed on one main surface of a light shielding pattern 5 or a transparent substrate 4, and a high reflection film 10 is formed on the transparent substrate 4 so as to cover the light shielding pattern 5. On the other hand, it is formed on the main surface. Other configurations are
Since it is the same as the first embodiment shown in FIG. 1, the same or equivalent parts are given the same reference numerals and the explanation thereof will be omitted.

このフォトマスク3を使用した場合にも、高反射膜10
をそのまま透過した光L3に対するし/スト膜8内での
焦点位置Pと、高反射膜10による1吹成射光L4に対
するレジスト膜8内での焦点位atQとが、レジスト膜
8の厚み方向に沿って離れて存在することになり、焦点
深度か拡大する。
Even when this photomask 3 is used, the high reflection film 10
The focal position P in the resist film 8 for the light L3 that has passed through the resist film 8 as it is, and the focal position atQ in the resist film 8 for the one-shot incident light L4 by the high reflection film 10 are in the thickness direction of the resist film 8. The depth of focus will be expanded.

第8図は、上記第2実施例において、透明基板4の他方
主面上に反射防止膜15を形成した例を示す。この反射
防止膜15は、第4図の反射防止膜13と同様の作用を
果たす。
FIG. 8 shows an example in which an antireflection film 15 is formed on the other main surface of the transparent substrate 4 in the second embodiment. This anti-reflection film 15 performs the same function as the anti-reflection film 13 shown in FIG.

〔発明の効果〕〔Effect of the invention〕

請求項1〜3に係る発明のフォトマスクによれば、透明
基板の一方主面側に高反射膜を形成しているため、高反
射膜をそのまま透過した光に対するレジスト膜内ての焦
点位置と、高反射膜で多重反射された光に対するレジス
ト膜内ての焦点位置とがレジスト膜の厚み方向に沿って
離れて存在することになり、これにより焦点深度を拡大
できるという効果が得られる。
According to the photomask of the invention according to claims 1 to 3, since the high reflection film is formed on one main surface side of the transparent substrate, the focal position within the resist film for light that has passed through the high reflection film as it is and , the focal position within the resist film for the light that has been multiple-reflected by the high reflection film is located apart along the thickness direction of the resist film, thereby providing the effect that the depth of focus can be expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例であるフォトマスクを含
む露光装置の要部構成図、第2図は隼へ深度の拡大を説
明するだめの図、第3図ないし第6図は上記第1実施例
に係るフォトマスクの変形例をそれぞれ示す図、第7図
はこの発明の第2実施例であるフォトマスクを含む露光
装置の要部構成図、第8図は上記第2実施例に係るフォ
トマスクの変形例を示す図、第9図はフォトリックラフ
イエ程において従来より用いられているフォトマスクを
含む露光装置の概略構成図、第1. C1図はその要部
拡大図である。 図において、3はフォトマスク、4は透明基板、5は遮
光パターン、7は基板、8はレジスト膜である。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is a block diagram of the main parts of an exposure apparatus including a photomask, which is the first embodiment of the present invention, Fig. 2 is a diagram for explaining the expansion of depth to Hayabusa, and Figs. 3 to 6 are the above-mentioned Figures illustrating modified examples of the photomask according to the first embodiment, FIG. 7 is a configuration diagram of main parts of an exposure apparatus including a photomask according to the second embodiment of the present invention, and FIG. 8 is a diagram showing the second embodiment of the invention. FIG. 9 is a schematic configuration diagram of an exposure apparatus including a photomask conventionally used in the photolithography process. Figure C1 is an enlarged view of the main part. In the figure, 3 is a photomask, 4 is a transparent substrate, 5 is a light shielding pattern, 7 is a substrate, and 8 is a resist film. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)リソグラフィ技術を用いて被加工物上のレジスト
膜に所定のパターンを転写する際に使用するフォトマス
クであって、 透明基板と、 前記透明基板の一方主面側に形成された遮光パターンと
、 前記透明基板の一方主面側に形成され、前記遮光パター
ン間を通過した光の一部を多重反射して前記レジスト膜
内での焦点深度を拡大する高反射膜とを備えた、フォト
マスク。
(1) A photomask used when transferring a predetermined pattern to a resist film on a workpiece using lithography technology, the photomask comprising a transparent substrate and a light-shielding pattern formed on one main surface side of the transparent substrate. and a high-reflection film formed on one main surface side of the transparent substrate, which multiple-reflects a portion of the light that has passed between the light-shielding patterns and expands the depth of focus within the resist film. mask.
(2)前記高反射膜が前記透明基板の一方主面上に形成
され、前記遮光パターンが前記高反射膜上に形成された
請求項1記載のフォトマスク。
(2) The photomask according to claim 1, wherein the high reflection film is formed on one main surface of the transparent substrate, and the light shielding pattern is formed on the high reflection film.
(3)前記遮光パターンが前記透明基板の一方主面上に
形成され、前記高反射膜が前記遮光パターンを覆うよう
に前記透明基板の一方主面上に形成された請求項1記載
のフォトマスク。
(3) The photomask according to claim 1, wherein the light-shielding pattern is formed on one main surface of the transparent substrate, and the high reflection film is formed on the one main surface of the transparent substrate so as to cover the light-shielding pattern. .
JP19747490A 1990-07-23 1990-07-23 Photomask and method of forming resist pattern Expired - Lifetime JP2984328B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19747490A JP2984328B2 (en) 1990-07-23 1990-07-23 Photomask and method of forming resist pattern
US07/793,319 US5279911A (en) 1990-07-23 1991-11-15 Photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19747490A JP2984328B2 (en) 1990-07-23 1990-07-23 Photomask and method of forming resist pattern

Publications (2)

Publication Number Publication Date
JPH0480756A true JPH0480756A (en) 1992-03-13
JP2984328B2 JP2984328B2 (en) 1999-11-29

Family

ID=16375087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19747490A Expired - Lifetime JP2984328B2 (en) 1990-07-23 1990-07-23 Photomask and method of forming resist pattern

Country Status (1)

Country Link
JP (1) JP2984328B2 (en)

Also Published As

Publication number Publication date
JP2984328B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
KR100218074B1 (en) Projection lithography system and method using all-reflective optical element
JPH05281469A (en) Broadband optical reduction system using adapted elements formed of material with different refractive index
JPH07111512B2 (en) Compensated optical system
KR940007066B1 (en) Reflection type photomask and photolithography method thereby
JPH0555120A (en) Reflection-type mask and manufacture and correction thereof
TWI724186B (en) Pellicle structures and methods of fabricating thereof
KR20180057813A (en) Phase shift mask for extreme ultraviolet lithography
JP2008270564A (en) Exposure apparatus, and device manufacturing method
JPH05326370A (en) Projection aligner
US5279911A (en) Photomask
JPH0684746A (en) Projection aligner and formation of pattern
US6627356B2 (en) Photomask used in manufacturing of semiconductor device, photomask blank, and method of applying light exposure to semiconductor wafer by using said photomask
US6251545B1 (en) Method and system for improving transmission of light through photomasks
US20070134563A1 (en) Photomask and method of manufacturing semiconductor device
JPH09127319A (en) Reflecting mirror, manufacture thereof and projection exposure device using mirror thereof
JP2785757B2 (en) Photo mask
US5455130A (en) Photomask comprising an optical path adjusting film
JPS63113501A (en) Reflection preventing film
US6780548B1 (en) Alternating aperture phase shifting photomask with improved transmission balancing
JPH0480756A (en) Photomask
JP3178516B2 (en) Phase shift mask
JP4095791B2 (en) Pattern transfer method and photomask
KR100550715B1 (en) Projection optical system
JPH11264902A (en) Antireflection film and optical system on which the film is applied
JP2000077306A (en) Reflecting mask and x-ray projection aligner

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

EXPY Cancellation because of completion of term